int main(int argc, char *argv[]) { bool StopCalc = false; su2double StartTime = 0.0, StopTime = 0.0, UsedTime = 0.0; unsigned long ExtIter = 0; unsigned short iMesh, iZone, nZone, nDim; char config_file_name[MAX_STRING_SIZE]; char runtime_file_name[MAX_STRING_SIZE]; ofstream ConvHist_file; int rank = MASTER_NODE; int size = SINGLE_NODE; /*--- MPI initialization, and buffer setting ---*/ #ifdef HAVE_MPI int *bptr, bl; SU2_MPI::Init(&argc, &argv); MPI_Buffer_attach( malloc(BUFSIZE), BUFSIZE ); MPI_Comm_rank(MPI_COMM_WORLD, &rank); MPI_Comm_size(MPI_COMM_WORLD, &size); #endif /*--- Create pointers to all of the classes that may be used throughout the SU2_CFD code. In general, the pointers are instantiated down a heirarchy over all zones, multigrid levels, equation sets, and equation terms as described in the comments below. ---*/ CDriver *driver = NULL; CIteration **iteration_container = NULL; COutput *output = NULL; CIntegration ***integration_container = NULL; CGeometry ***geometry_container = NULL; CSolver ****solver_container = NULL; CNumerics *****numerics_container = NULL; CConfig **config_container = NULL; CSurfaceMovement **surface_movement = NULL; CVolumetricMovement **grid_movement = NULL; CFreeFormDefBox*** FFDBox = NULL; CInterpolator ***interpolator_container = NULL; CTransfer ***transfer_container = NULL; /*--- Load in the number of zones and spatial dimensions in the mesh file (If no config file is specified, default.cfg is used) ---*/ if (argc == 2) { strcpy(config_file_name, argv[1]); } else { strcpy(config_file_name, "default.cfg"); } /*--- Read the name and format of the input mesh file to get from the mesh file the number of zones and dimensions from the numerical grid (required for variables allocation) ---*/ CConfig *config = NULL; config = new CConfig(config_file_name, SU2_CFD); nZone = GetnZone(config->GetMesh_FileName(), config->GetMesh_FileFormat(), config); nDim = GetnDim(config->GetMesh_FileName(), config->GetMesh_FileFormat()); delete config; /*--- Definition and of the containers for all possible zones. ---*/ iteration_container = new CIteration*[nZone]; solver_container = new CSolver***[nZone]; integration_container = new CIntegration**[nZone]; numerics_container = new CNumerics****[nZone]; config_container = new CConfig*[nZone]; geometry_container = new CGeometry**[nZone]; surface_movement = new CSurfaceMovement*[nZone]; grid_movement = new CVolumetricMovement*[nZone]; FFDBox = new CFreeFormDefBox**[nZone]; interpolator_container = new CInterpolator**[nZone]; transfer_container = new CTransfer**[nZone]; for (iZone = 0; iZone < nZone; iZone++) { solver_container[iZone] = NULL; integration_container[iZone] = NULL; numerics_container[iZone] = NULL; config_container[iZone] = NULL; geometry_container[iZone] = NULL; surface_movement[iZone] = NULL; grid_movement[iZone] = NULL; FFDBox[iZone] = NULL; interpolator_container[iZone] = NULL; transfer_container[iZone] = NULL; } /*--- Loop over all zones to initialize the various classes. In most cases, nZone is equal to one. This represents the solution of a partial differential equation on a single block, unstructured mesh. ---*/ for (iZone = 0; iZone < nZone; iZone++) { /*--- Definition of the configuration option class for all zones. In this constructor, the input configuration file is parsed and all options are read and stored. ---*/ config_container[iZone] = new CConfig(config_file_name, SU2_CFD, iZone, nZone, nDim, VERB_HIGH); /*--- Definition of the geometry class to store the primal grid in the partitioning process. ---*/ CGeometry *geometry_aux = NULL; /*--- All ranks process the grid and call ParMETIS for partitioning ---*/ geometry_aux = new CPhysicalGeometry(config_container[iZone], iZone, nZone); /*--- Color the initial grid and set the send-receive domains (ParMETIS) ---*/ geometry_aux->SetColorGrid_Parallel(config_container[iZone]); /*--- Allocate the memory of the current domain, and divide the grid between the ranks. ---*/ geometry_container[iZone] = new CGeometry *[config_container[iZone]->GetnMGLevels()+1]; geometry_container[iZone][MESH_0] = new CPhysicalGeometry(geometry_aux, config_container[iZone]); /*--- Deallocate the memory of geometry_aux ---*/ delete geometry_aux; /*--- Add the Send/Receive boundaries ---*/ geometry_container[iZone][MESH_0]->SetSendReceive(config_container[iZone]); /*--- Add the Send/Receive boundaries ---*/ geometry_container[iZone][MESH_0]->SetBoundaries(config_container[iZone]); } if (rank == MASTER_NODE) cout << endl <<"------------------------- Geometry Preprocessing ------------------------" << endl; /*--- Preprocessing of the geometry for all zones. In this routine, the edge- based data structure is constructed, i.e. node and cell neighbors are identified and linked, face areas and volumes of the dual mesh cells are computed, and the multigrid levels are created using an agglomeration procedure. ---*/ Geometrical_Preprocessing(geometry_container, config_container, nZone); for (iZone = 0; iZone < nZone; iZone++) { /*--- Computation of wall distances for turbulence modeling ---*/ if (rank == MASTER_NODE) cout << "Computing wall distances." << endl; if ((config_container[iZone]->GetKind_Solver() == RANS) || (config_container[iZone]->GetKind_Solver() == ADJ_RANS) || (config_container[iZone]->GetKind_Solver() == DISC_ADJ_RANS)) geometry_container[iZone][MESH_0]->ComputeWall_Distance(config_container[iZone]); /*--- Computation of positive surface area in the z-plane which is used for the calculation of force coefficient (non-dimensionalization). ---*/ geometry_container[iZone][MESH_0]->SetPositive_ZArea(config_container[iZone]); /*--- Set the near-field, interface and actuator disk boundary conditions, if necessary. ---*/ for (iMesh = 0; iMesh <= config_container[iZone]->GetnMGLevels(); iMesh++) { geometry_container[iZone][iMesh]->MatchNearField(config_container[iZone]); geometry_container[iZone][iMesh]->MatchInterface(config_container[iZone]); geometry_container[iZone][iMesh]->MatchActuator_Disk(config_container[iZone]); } } /*--- If activated by the compile directive, perform a partition analysis. ---*/ #if PARTITION Partition_Analysis(geometry_container[ZONE_0][MESH_0], config_container[ZONE_0]); #endif if (rank == MASTER_NODE) cout << endl <<"------------------------- Driver Preprocessing --------------------------" << endl; /*--- First, given the basic information about the number of zones and the solver types from the config, instantiate the appropriate driver for the problem. ---*/ Driver_Preprocessing(&driver, iteration_container, solver_container, geometry_container, integration_container, numerics_container, interpolator_container, transfer_container, config_container, nZone, nDim); /*--- Instantiate the geometry movement classes for the solution of unsteady flows on dynamic meshes, including rigid mesh transformations, dynamically deforming meshes, and time-spectral preprocessing. ---*/ for (iZone = 0; iZone < nZone; iZone++) { if (config_container[iZone]->GetGrid_Movement() || (config_container[iZone]->GetDirectDiff() == D_DESIGN)) { if (rank == MASTER_NODE) cout << "Setting dynamic mesh structure." << endl; grid_movement[iZone] = new CVolumetricMovement(geometry_container[iZone][MESH_0], config_container[iZone]); FFDBox[iZone] = new CFreeFormDefBox*[MAX_NUMBER_FFD]; surface_movement[iZone] = new CSurfaceMovement(); surface_movement[iZone]->CopyBoundary(geometry_container[iZone][MESH_0], config_container[iZone]); /*if (config_container[iZone]->GetUnsteady_Simulation() == SPECTRAL_METHOD && config_container[iZone]->GetGrid_Movement()) SetGrid_Movement(geometry_container[iZone], surface_movement[iZone], grid_movement[iZone], FFDBox[iZone], solver_container[iZone], config_container[iZone], iZone, 0, 0);*/ } if (config_container[iZone]->GetDirectDiff() == D_DESIGN){ if (rank == MASTER_NODE) cout << "Setting surface/volume derivatives." << endl; /*--- Set the surface derivatives, i.e. the derivative of the surface mesh nodes with respect to the design variables ---*/ surface_movement[iZone]->SetSurface_Derivative(geometry_container[iZone][MESH_0],config_container[iZone]); cout << "Done setting Surface Derivatives " << endl; /*--- Call the volume deformation routine with derivative mode enabled. This computes the derivative of the volume mesh with respect to the surface nodes ---*/ grid_movement[iZone]->SetVolume_Deformation(geometry_container[iZone][MESH_0],config_container[iZone], true, true); cout << "Done SetVolume_Deformation " << endl; /*--- Update the multi-grid structure to propagate the derivative information to the coarser levels ---*/ geometry_container[iZone][MESH_0]->UpdateGeometry(geometry_container[iZone],config_container[iZone]); /*--- Set the derivative of the wall-distance with respect to the surface nodes ---*/ if ( (config_container[iZone]->GetKind_Solver() == RANS) || (config_container[iZone]->GetKind_Solver() == ADJ_RANS) || (config_container[iZone]->GetKind_Solver() == DISC_ADJ_RANS)) geometry_container[iZone][MESH_0]->ComputeWall_Distance(config_container[iZone]); } } /*--- Coupling between zones (limited to two zones at the moment) ---*/ bool fsi = config_container[ZONE_0]->GetFSI_Simulation(); if ((nZone == 2) && !(fsi)) { if (rank == MASTER_NODE) cout << endl <<"--------------------- Setting Coupling Between Zones --------------------" << endl; geometry_container[ZONE_0][MESH_0]->MatchZone(config_container[ZONE_0], geometry_container[ZONE_1][MESH_0], config_container[ZONE_1], ZONE_0, nZone); geometry_container[ZONE_1][MESH_0]->MatchZone(config_container[ZONE_1], geometry_container[ZONE_0][MESH_0], config_container[ZONE_0], ZONE_1, nZone); } /*--- Definition of the output class (one for all zones). The output class manages the writing of all restart, volume solution, surface solution, surface comma-separated value, and convergence history files (both in serial and in parallel). ---*/ output = new COutput(); /*--- Open the convergence history file ---*/ if (rank == MASTER_NODE) output->SetConvHistory_Header(&ConvHist_file, config_container[ZONE_0]); /*--- Check for an unsteady restart. Update ExtIter if necessary. ---*/ if (config_container[ZONE_0]->GetWrt_Unsteady() && config_container[ZONE_0]->GetRestart()) ExtIter = config_container[ZONE_0]->GetUnst_RestartIter(); /*--- Check for a dynamic restart (structural analysis). Update ExtIter if necessary. ---*/ if (config_container[ZONE_0]->GetKind_Solver() == FEM_ELASTICITY && config_container[ZONE_0]->GetWrt_Dynamic() && config_container[ZONE_0]->GetRestart()) ExtIter = config_container[ZONE_0]->GetDyn_RestartIter(); /*--- Initiate value at each interface for the mixing plane ---*/ if(config_container[ZONE_0]->GetBoolMixingPlane()) for (iZone = 0; iZone < nZone; iZone++) iteration_container[iZone]->Preprocess(output, integration_container, geometry_container, solver_container, numerics_container, config_container, surface_movement, grid_movement, FFDBox, iZone); /*--- Main external loop of the solver. Within this loop, each iteration ---*/ if (rank == MASTER_NODE) cout << endl <<"------------------------------ Begin Solver -----------------------------" << endl; /*--- Set up a timer for performance benchmarking (preprocessing time is not included) ---*/ #ifndef HAVE_MPI StartTime = su2double(clock())/su2double(CLOCKS_PER_SEC); #else StartTime = MPI_Wtime(); #endif /*--- This is temporal and just to check. It will have to be added to the regular history file ---*/ ofstream historyFile_FSI; bool writeHistFSI = config_container[ZONE_0]->GetWrite_Conv_FSI(); if (writeHistFSI && (rank == MASTER_NODE)){ char cstrFSI[200]; string filenameHistFSI = config_container[ZONE_0]->GetConv_FileName_FSI(); strcpy (cstrFSI, filenameHistFSI.data()); historyFile_FSI.open (cstrFSI); historyFile_FSI << "Time,Iteration,Aitken,URes,logResidual,orderMagnResidual" << endl; historyFile_FSI.close(); } while (ExtIter < config_container[ZONE_0]->GetnExtIter()) { /*--- Set the value of the external iteration. ---*/ for (iZone = 0; iZone < nZone; iZone++) config_container[iZone]->SetExtIter(ExtIter); /*--- Read the target pressure ---*/ if (config_container[ZONE_0]->GetInvDesign_Cp() == YES) output->SetCp_InverseDesign(solver_container[ZONE_0][MESH_0][FLOW_SOL], geometry_container[ZONE_0][MESH_0], config_container[ZONE_0], ExtIter); /*--- Read the target heat flux ---*/ if (config_container[ZONE_0]->GetInvDesign_HeatFlux() == YES) output->SetHeat_InverseDesign(solver_container[ZONE_0][MESH_0][FLOW_SOL], geometry_container[ZONE_0][MESH_0], config_container[ZONE_0], ExtIter); /*--- Perform a single iteration of the chosen PDE solver. ---*/ /*--- Run a single iteration of the problem using the driver class. ---*/ driver->Run(iteration_container, output, integration_container, geometry_container, solver_container, numerics_container, config_container, surface_movement, grid_movement, FFDBox, interpolator_container, transfer_container); /*--- Synchronization point after a single solver iteration. Compute the wall clock time required. ---*/ #ifndef HAVE_MPI StopTime = su2double(clock())/su2double(CLOCKS_PER_SEC); #else StopTime = MPI_Wtime(); #endif UsedTime = (StopTime - StartTime); /*--- For specific applications, evaluate and plot the equivalent area. ---*/ if (config_container[ZONE_0]->GetEquivArea() == YES) { output->SetEquivalentArea(solver_container[ZONE_0][MESH_0][FLOW_SOL], geometry_container[ZONE_0][MESH_0], config_container[ZONE_0], ExtIter); } /*--- Check if there is any change in the runtime parameters ---*/ CConfig *runtime = NULL; strcpy(runtime_file_name, "runtime.dat"); runtime = new CConfig(runtime_file_name, config_container[ZONE_0]); runtime->SetExtIter(ExtIter); /*--- Update the convergence history file (serial and parallel computations). ---*/ if (!fsi){ output->SetConvHistory_Body(&ConvHist_file, geometry_container, solver_container, config_container, integration_container, false, UsedTime, ZONE_0); } /*--- Evaluate the new CFL number (adaptive). ---*/ if (config_container[ZONE_0]->GetCFL_Adapt() == YES) { output->SetCFL_Number(solver_container, config_container, ZONE_0); } /*--- Check whether the current simulation has reached the specified convergence criteria, and set StopCalc to true, if so. ---*/ switch (config_container[ZONE_0]->GetKind_Solver()) { case EULER: case NAVIER_STOKES: case RANS: StopCalc = integration_container[ZONE_0][FLOW_SOL]->GetConvergence(); break; case WAVE_EQUATION: StopCalc = integration_container[ZONE_0][WAVE_SOL]->GetConvergence(); break; case HEAT_EQUATION: StopCalc = integration_container[ZONE_0][HEAT_SOL]->GetConvergence(); break; case FEM_ELASTICITY: StopCalc = integration_container[ZONE_0][FEA_SOL]->GetConvergence(); break; case ADJ_EULER: case ADJ_NAVIER_STOKES: case ADJ_RANS: case DISC_ADJ_EULER: case DISC_ADJ_NAVIER_STOKES: case DISC_ADJ_RANS: StopCalc = integration_container[ZONE_0][ADJFLOW_SOL]->GetConvergence(); break; } /*--- Solution output. Determine whether a solution needs to be written after the current iteration, and if so, execute the output file writing routines. ---*/ if ((ExtIter+1 >= config_container[ZONE_0]->GetnExtIter()) || ((ExtIter % config_container[ZONE_0]->GetWrt_Sol_Freq() == 0) && (ExtIter != 0) && !((config_container[ZONE_0]->GetUnsteady_Simulation() == DT_STEPPING_1ST) || (config_container[ZONE_0]->GetUnsteady_Simulation() == DT_STEPPING_2ND) || (config_container[ZONE_0]->GetUnsteady_Simulation() == TIME_STEPPING))) || (StopCalc) || (((config_container[ZONE_0]->GetUnsteady_Simulation() == DT_STEPPING_1ST) || (config_container[ZONE_0]->GetUnsteady_Simulation() == TIME_STEPPING)) && ((ExtIter == 0) || (ExtIter % config_container[ZONE_0]->GetWrt_Sol_Freq_DualTime() == 0))) || ((config_container[ZONE_0]->GetUnsteady_Simulation() == DT_STEPPING_2ND) && (!fsi) && ((ExtIter == 0) || ((ExtIter % config_container[ZONE_0]->GetWrt_Sol_Freq_DualTime() == 0) || ((ExtIter-1) % config_container[ZONE_0]->GetWrt_Sol_Freq_DualTime() == 0)))) || ((config_container[ZONE_0]->GetUnsteady_Simulation() == DT_STEPPING_2ND) && (fsi) && ((ExtIter == 0) || ((ExtIter % config_container[ZONE_0]->GetWrt_Sol_Freq_DualTime() == 0)))) || (((config_container[ZONE_0]->GetDynamic_Analysis() == DYNAMIC) && ((ExtIter == 0) || (ExtIter % config_container[ZONE_0]->GetWrt_Sol_Freq_DualTime() == 0))))){ /*--- Low-fidelity simulations (using a coarser multigrid level approximation to the solution) require an interpolation back to the finest grid. ---*/ if (config_container[ZONE_0]->GetLowFidelitySim()) { integration_container[ZONE_0][FLOW_SOL]->SetProlongated_Solution(RUNTIME_FLOW_SYS, solver_container[ZONE_0][MESH_0][FLOW_SOL], solver_container[ZONE_0][MESH_1][FLOW_SOL], geometry_container[ZONE_0][MESH_0], geometry_container[ZONE_0][MESH_1], config_container[ZONE_0]); integration_container[ZONE_0][FLOW_SOL]->Smooth_Solution(RUNTIME_FLOW_SYS, solver_container[ZONE_0][MESH_0][FLOW_SOL], geometry_container[ZONE_0][MESH_0], 3, 1.25, config_container[ZONE_0]); solver_container[ZONE_0][MESH_0][config_container[ZONE_0]->GetContainerPosition(RUNTIME_FLOW_SYS)]->Set_MPI_Solution(geometry_container[ZONE_0][MESH_0], config_container[ZONE_0]); solver_container[ZONE_0][MESH_0][config_container[ZONE_0]->GetContainerPosition(RUNTIME_FLOW_SYS)]->Preprocessing(geometry_container[ZONE_0][MESH_0], solver_container[ZONE_0][MESH_0], config_container[ZONE_0], MESH_0, 0, RUNTIME_FLOW_SYS, true); } if (rank == MASTER_NODE) cout << endl << "-------------------------- File Output Summary --------------------------"; /*--- Execute the routine for writing restart, volume solution, surface solution, and surface comma-separated value files. ---*/ output->SetResult_Files(solver_container, geometry_container, config_container, ExtIter, nZone); /*--- Output a file with the forces breakdown. ---*/ output->SetForces_Breakdown(geometry_container, solver_container, config_container, integration_container, ZONE_0); /*--- Compute the forces at different sections. ---*/ if (config_container[ZONE_0]->GetPlot_Section_Forces()) { output->SetForceSections(solver_container[ZONE_0][MESH_0][FLOW_SOL], geometry_container[ZONE_0][MESH_0], config_container[ZONE_0], ExtIter); } if (rank == MASTER_NODE) cout << "-------------------------------------------------------------------------" << endl << endl; } /*--- If the convergence criteria has been met, terminate the simulation. ---*/ if (StopCalc) break; ExtIter++; } /*--- Output some information to the console. ---*/ if (rank == MASTER_NODE) { /*--- Print out the number of non-physical points and reconstructions ---*/ if (config_container[ZONE_0]->GetNonphysical_Points() > 0) cout << "Warning: there are " << config_container[ZONE_0]->GetNonphysical_Points() << " non-physical points in the solution." << endl; if (config_container[ZONE_0]->GetNonphysical_Reconstr() > 0) cout << "Warning: " << config_container[ZONE_0]->GetNonphysical_Reconstr() << " reconstructed states for upwinding are non-physical." << endl; /*--- Close the convergence history file. ---*/ ConvHist_file.close(); cout << "History file, closed." << endl; } /*--- Deallocations: further work is needed, * these routines can be used to check for memory leaks---*/ /* if (rank == MASTER_NODE) cout << endl <<"------------------------ Driver Postprocessing ------------------------" << endl; driver->Postprocessing(iteration_container, solver_container, geometry_container, integration_container, numerics_container, interpolator_container, transfer_container, config_container, nZone); delete driver; */ /*--- Geometry class deallocation ---*/ if (rank == MASTER_NODE) cout << endl <<"------------------------ Geometry Postprocessing ------------------------" << endl; for (iZone = 0; iZone < nZone; iZone++) { if (geometry_container[iZone]!=NULL){ for (unsigned short iMGlevel = 1; iMGlevel < config_container[iZone]->GetnMGLevels()+1; iMGlevel++){ if (geometry_container[iZone][iMGlevel]!=NULL) delete geometry_container[iZone][iMGlevel]; } delete [] geometry_container[iZone]; } } delete [] geometry_container; /*--- Free-form deformation class deallocation ---*/ for (iZone = 0; iZone < nZone; iZone++) { delete FFDBox[iZone]; } delete [] FFDBox; /*--- Grid movement and surface movement class deallocation ---*/ delete [] surface_movement; delete [] grid_movement; /*Deallocate config container*/ if (rank == MASTER_NODE) cout << endl <<"------------------------- Config Postprocessing -------------------------" << endl; if (config_container!=NULL){ for (iZone = 0; iZone < nZone; iZone++) { if (config_container[iZone]!=NULL){ delete config_container[iZone]; } } delete [] config_container; } /*--- Deallocate output container ---*/ if (output!=NULL) delete output; /*--- Synchronization point after a single solver iteration. Compute the wall clock time required. ---*/ #ifndef HAVE_MPI StopTime = su2double(clock())/su2double(CLOCKS_PER_SEC); #else StopTime = MPI_Wtime(); #endif /*--- Compute/print the total time for performance benchmarking. ---*/ UsedTime = StopTime-StartTime; if (rank == MASTER_NODE) { cout << "\nCompleted in " << fixed << UsedTime << " seconds on "<< size; if (size == 1) cout << " core." << endl; else cout << " cores." << endl; } /*--- Exit the solver cleanly ---*/ if (rank == MASTER_NODE) cout << endl <<"------------------------- Exit Success (SU2_CFD) ------------------------" << endl << endl; #ifdef HAVE_MPI /*--- Finalize MPI parallelization ---*/ MPI_Buffer_detach(&bptr, &bl); MPI_Finalize(); #endif return EXIT_SUCCESS; }
int main(int argc, char *argv[]) { bool StopCalc = false; double StartTime = 0.0, StopTime = 0.0, UsedTime = 0.0; unsigned long ExtIter = 0; unsigned short iMesh, iZone, iSol, nZone, nDim; ofstream ConvHist_file; int rank = MASTER_NODE; int size = SINGLE_NODE; #ifndef NO_MPI /*--- MPI initialization, and buffer setting ---*/ static char buffer[MAX_MPI_BUFFER]; // buffer size in bytes void *ptr; #ifdef WINDOWS MPI_Init(&argc,&argv); MPI_Buffer_attach(buffer,MAX_MPI_BUFFER); MPI_Comm_rank(MPI_COMM_WORLD,&rank); MPI_Comm_size(MPI_COMM_WORLD,&size); #else MPI::Init(argc, argv); MPI::Attach_buffer(buffer, MAX_MPI_BUFFER); rank = MPI::COMM_WORLD.Get_rank(); size = MPI::COMM_WORLD.Get_size(); #endif #endif /*--- Create pointers to all of the classes that may be used throughout the SU2_CFD code. In general, the pointers are instantiated down a heirarchy over all zones, multigrid levels, equation sets, and equation terms as described in the comments below. ---*/ COutput *output = NULL; CIntegration ***integration_container = NULL; CGeometry ***geometry_container = NULL; CSolver ****solver_container = NULL; CNumerics *****numerics_container = NULL; CConfig **config_container = NULL; CSurfaceMovement **surface_movement = NULL; CVolumetricMovement **grid_movement = NULL; CFreeFormDefBox*** FFDBox = NULL; /*--- Load in the number of zones and spatial dimensions in the mesh file (If no config file is specified, default.cfg is used) ---*/ char config_file_name[200]; if (argc == 2){ strcpy(config_file_name,argv[1]); } else{ strcpy(config_file_name, "default.cfg"); } /*--- Read the name and format of the input mesh file ---*/ CConfig *config = NULL; config = new CConfig(config_file_name); /*--- Get the number of zones and dimensions from the numerical grid (required for variables allocation) ---*/ nZone = GetnZone(config->GetMesh_FileName(), config->GetMesh_FileFormat(), config); nDim = GetnDim(config->GetMesh_FileName(), config->GetMesh_FileFormat()); /*--- Definition and of the containers for all possible zones. ---*/ solver_container = new CSolver***[nZone]; integration_container = new CIntegration**[nZone]; numerics_container = new CNumerics****[nZone]; config_container = new CConfig*[nZone]; geometry_container = new CGeometry **[nZone]; surface_movement = new CSurfaceMovement *[nZone]; grid_movement = new CVolumetricMovement *[nZone]; FFDBox = new CFreeFormDefBox**[nZone]; for (iZone = 0; iZone < nZone; iZone++) { solver_container[iZone] = NULL; integration_container[iZone] = NULL; numerics_container[iZone] = NULL; config_container[iZone] = NULL; geometry_container[iZone] = NULL; surface_movement[iZone] = NULL; grid_movement[iZone] = NULL; FFDBox[iZone] = NULL; } /*--- Loop over all zones to initialize the various classes. In most cases, nZone is equal to one. This represents the solution of a partial differential equation on a single block, unstructured mesh. ---*/ for (iZone = 0; iZone < nZone; iZone++) { /*--- Definition of the configuration option class for all zones. In this constructor, the input configuration file is parsed and all options are read and stored. ---*/ config_container[iZone] = new CConfig(config_file_name, SU2_CFD, iZone, nZone, VERB_HIGH); #ifndef NO_MPI /*--- Change the name of the input-output files for a parallel computation ---*/ config_container[iZone]->SetFileNameDomain(rank+1); #endif /*--- Perform the non-dimensionalization for the flow equations using the specified reference values. ---*/ config_container[iZone]->SetNondimensionalization(nDim, iZone); /*--- Definition of the geometry class. Within this constructor, the mesh file is read and the primal grid is stored (node coords, connectivity, & boundary markers. MESH_0 is the index of the finest mesh. ---*/ geometry_container[iZone] = new CGeometry *[config_container[iZone]->GetMGLevels()+1]; geometry_container[iZone][MESH_0] = new CPhysicalGeometry(config_container[iZone], iZone+1, nZone); } if (rank == MASTER_NODE) cout << endl <<"------------------------- Geometry Preprocessing ------------------------" << endl; /*--- Preprocessing of the geometry for all zones. In this routine, the edge- based data structure is constructed, i.e. node and cell neighbors are identified and linked, face areas and volumes of the dual mesh cells are computed, and the multigrid levels are created using an agglomeration procedure. ---*/ Geometrical_Preprocessing(geometry_container, config_container, nZone); #ifndef NO_MPI /*--- Synchronization point after the geometrical definition subroutine ---*/ #ifdef WINDOWS MPI_Barrier(MPI_COMM_WORLD); #else MPI::COMM_WORLD.Barrier(); #endif #endif if (rank == MASTER_NODE) cout << endl <<"------------------------- Solver Preprocessing --------------------------" << endl; for (iZone = 0; iZone < nZone; iZone++) { /*--- Computation of wall distances for turbulence modeling ---*/ if ( (config_container[iZone]->GetKind_Solver() == RANS) || (config_container[iZone]->GetKind_Solver() == ADJ_RANS) ) geometry_container[iZone][MESH_0]->ComputeWall_Distance(config_container[iZone]); /*--- Computation of positive surface area in the z-plane which is used for the calculation of force coefficient (non-dimensionalization). ---*/ geometry_container[iZone][MESH_0]->SetPositive_ZArea(config_container[iZone]); /*--- Set the near-field and interface boundary conditions, if necessary. ---*/ for (iMesh = 0; iMesh <= config_container[iZone]->GetMGLevels(); iMesh++) { geometry_container[iZone][iMesh]->MatchNearField(config_container[iZone]); geometry_container[iZone][iMesh]->MatchInterface(config_container[iZone]); } /*--- Definition of the solver class: solver_container[#ZONES][#MG_GRIDS][#EQ_SYSTEMS]. The solver classes are specific to a particular set of governing equations, and they contain the subroutines with instructions for computing each spatial term of the PDE, i.e. loops over the edges to compute convective and viscous fluxes, loops over the nodes to compute source terms, and routines for imposing various boundary condition type for the PDE. ---*/ solver_container[iZone] = new CSolver** [config_container[iZone]->GetMGLevels()+1]; for (iMesh = 0; iMesh <= config_container[iZone]->GetMGLevels(); iMesh++) solver_container[iZone][iMesh] = NULL; for (iMesh = 0; iMesh <= config_container[iZone]->GetMGLevels(); iMesh++) { solver_container[iZone][iMesh] = new CSolver* [MAX_SOLS]; for (iSol = 0; iSol < MAX_SOLS; iSol++) solver_container[iZone][iMesh][iSol] = NULL; } Solver_Preprocessing(solver_container[iZone], geometry_container[iZone], config_container[iZone], iZone); #ifndef NO_MPI /*--- Synchronization point after the solution preprocessing subroutine ---*/ #ifdef WINDOWS MPI_Barrier(MPI_COMM_WORLD); #else MPI::COMM_WORLD.Barrier(); #endif #endif if (rank == MASTER_NODE) cout << endl <<"----------------- Integration and Numerics Preprocessing ----------------" << endl; /*--- Definition of the integration class: integration_container[#ZONES][#EQ_SYSTEMS]. The integration class orchestrates the execution of the spatial integration subroutines contained in the solver class (including multigrid) for computing the residual at each node, R(U) and then integrates the equations to a steady state or time-accurately. ---*/ integration_container[iZone] = new CIntegration*[MAX_SOLS]; Integration_Preprocessing(integration_container[iZone], geometry_container[iZone], config_container[iZone], iZone); if (rank == MASTER_NODE) cout << "Integration Preprocessing." << endl; #ifndef NO_MPI /*--- Synchronization point after the integration definition subroutine ---*/ #ifdef WINDOWS MPI_Barrier(MPI_COMM_WORLD); #else MPI::COMM_WORLD.Barrier(); #endif #endif /*--- Definition of the numerical method class: numerics_container[#ZONES][#MG_GRIDS][#EQ_SYSTEMS][#EQ_TERMS]. The numerics class contains the implementation of the numerical methods for evaluating convective or viscous fluxes between any two nodes in the edge-based data structure (centered, upwind, galerkin), as well as any source terms (piecewise constant reconstruction) evaluated in each dual mesh volume. ---*/ numerics_container[iZone] = new CNumerics***[config_container[iZone]->GetMGLevels()+1]; Numerics_Preprocessing(numerics_container[iZone], solver_container[iZone], geometry_container[iZone], config_container[iZone], iZone); if (rank == MASTER_NODE) cout << "Numerics Preprocessing." << endl; #ifndef NO_MPI /*--- Synchronization point after the solver definition subroutine ---*/ #ifdef WINDOWS MPI_Barrier(MPI_COMM_WORLD); #else MPI::COMM_WORLD.Barrier(); #endif #endif /*--- Instantiate the geometry movement classes for the solution of unsteady flows on dynamic meshes, including rigid mesh transformations, dynamically deforming meshes, and time-spectral preprocessing. ---*/ if (config_container[iZone]->GetGrid_Movement()) { if (rank == MASTER_NODE) cout << "Setting dynamic mesh structure." << endl; grid_movement[iZone] = new CVolumetricMovement(geometry_container[iZone][MESH_0]); FFDBox[iZone] = new CFreeFormDefBox*[MAX_NUMBER_FFD]; surface_movement[iZone] = new CSurfaceMovement(); surface_movement[iZone]->CopyBoundary(geometry_container[iZone][MESH_0], config_container[iZone]); if (config_container[iZone]->GetUnsteady_Simulation() == TIME_SPECTRAL) SetGrid_Movement(geometry_container[iZone], surface_movement[iZone], grid_movement[iZone], FFDBox[iZone], solver_container[iZone], config_container[iZone], iZone, 0, 0); } } /*--- For the time-spectral solver, set the grid node velocities. ---*/ if (config_container[ZONE_0]->GetUnsteady_Simulation() == TIME_SPECTRAL) SetTimeSpectral_Velocities(geometry_container, config_container, nZone); /*--- Coupling between zones (limited to two zones at the moment) ---*/ if (nZone == 2) { if (rank == MASTER_NODE) cout << endl <<"--------------------- Setting Coupling Between Zones --------------------" << endl; geometry_container[ZONE_0][MESH_0]->MatchZone(config_container[ZONE_0], geometry_container[ZONE_1][MESH_0], config_container[ZONE_1], ZONE_0, nZone); geometry_container[ZONE_1][MESH_0]->MatchZone(config_container[ZONE_1], geometry_container[ZONE_0][MESH_0], config_container[ZONE_0], ZONE_1, nZone); } /*--- Definition of the output class (one for all zones). The output class manages the writing of all restart, volume solution, surface solution, surface comma-separated value, and convergence history files (both in serial and in parallel). ---*/ output = new COutput(); /*--- Open the convergence history file ---*/ if (rank == MASTER_NODE) output->SetHistory_Header(&ConvHist_file, config_container[ZONE_0]); /*--- Check for an unsteady restart. Update ExtIter if necessary. ---*/ if (config_container[ZONE_0]->GetWrt_Unsteady() && config_container[ZONE_0]->GetRestart()) ExtIter = config_container[ZONE_0]->GetUnst_RestartIter(); /*--- Main external loop of the solver. Within this loop, each iteration ---*/ if (rank == MASTER_NODE) cout << endl <<"------------------------------ Begin Solver -----------------------------" << endl; /*--- Set up a timer for performance benchmarking (preprocessing time is not included) ---*/ #ifdef NO_MPI StartTime = double(clock())/double(CLOCKS_PER_SEC); #else #ifdef WINDOWS MPI_Barrier(MPI_COMM_WORLD); StartTime = MPI_Wtime(); #else MPI::COMM_WORLD.Barrier(); StartTime = MPI::Wtime(); #endif #endif while (ExtIter < config_container[ZONE_0]->GetnExtIter()) { /*--- Set a timer for each iteration. Store the current iteration and update the value of the CFL number (if there is CFL ramping specified) in the config class. ---*/ for (iZone = 0; iZone < nZone; iZone++) { config_container[iZone]->SetExtIter(ExtIter); config_container[iZone]->UpdateCFL(ExtIter); } /*--- Perform a single iteration of the chosen PDE solver. ---*/ switch (config_container[ZONE_0]->GetKind_Solver()) { case EULER: case NAVIER_STOKES: case RANS: MeanFlowIteration(output, integration_container, geometry_container, solver_container, numerics_container, config_container, surface_movement, grid_movement, FFDBox); break; case TNE2_EULER: case TNE2_NAVIER_STOKES: TNE2Iteration(output, integration_container, geometry_container, solver_container, numerics_container, config_container, surface_movement, grid_movement, FFDBox); break; case FLUID_STRUCTURE_EULER: case FLUID_STRUCTURE_NAVIER_STOKES: FluidStructureIteration(output, integration_container, geometry_container, solver_container, numerics_container, config_container, surface_movement, grid_movement, FFDBox); break; case WAVE_EQUATION: WaveIteration(output, integration_container, geometry_container, solver_container, numerics_container, config_container, surface_movement, grid_movement, FFDBox); break; case HEAT_EQUATION: HeatIteration(output, integration_container, geometry_container, solver_container, numerics_container, config_container, surface_movement, grid_movement, FFDBox); break; case POISSON_EQUATION: PoissonIteration(output, integration_container, geometry_container, solver_container, numerics_container, config_container, surface_movement, grid_movement, FFDBox); break; case LINEAR_ELASTICITY: FEAIteration(output, integration_container, geometry_container, solver_container, numerics_container, config_container, surface_movement, grid_movement, FFDBox); break; case ADJ_EULER: case ADJ_NAVIER_STOKES: case ADJ_RANS: AdjMeanFlowIteration(output, integration_container, geometry_container, solver_container, numerics_container, config_container, surface_movement, grid_movement, FFDBox); break; case ADJ_TNE2_EULER: case ADJ_TNE2_NAVIER_STOKES: AdjTNE2Iteration(output, integration_container, geometry_container, solver_container, numerics_container, config_container, surface_movement, grid_movement, FFDBox); break; } /*--- Synchronization point after a single solver iteration. Compute the wall clock time required. ---*/ #ifdef NO_MPI StopTime = double(clock())/double(CLOCKS_PER_SEC); #else #ifdef WINDOWS MPI_Barrier(MPI_COMM_WORLD); StopTime = MPI_Wtime(); #else MPI::COMM_WORLD.Barrier(); StopTime = MPI::Wtime(); #endif #endif UsedTime = (StopTime - StartTime); /*--- For specific applications, evaluate and plot the equivalent area or flow rate. ---*/ if ((config_container[ZONE_0]->GetKind_Solver() == EULER) && (config_container[ZONE_0]->GetEquivArea() == YES)) { output->SetEquivalentArea(solver_container[ZONE_0][MESH_0][FLOW_SOL], geometry_container[ZONE_0][MESH_0], config_container[ZONE_0], ExtIter); } /*--- Update the convergence history file (serial and parallel computations). ---*/ output->SetConvergence_History(&ConvHist_file, geometry_container, solver_container, config_container, integration_container, false, UsedTime, ZONE_0); /*--- Check whether the current simulation has reached the specified convergence criteria, and set StopCalc to true, if so. ---*/ switch (config_container[ZONE_0]->GetKind_Solver()) { case EULER: case NAVIER_STOKES: case RANS: StopCalc = integration_container[ZONE_0][FLOW_SOL]->GetConvergence(); break; case TNE2_EULER: case TNE2_NAVIER_STOKES: StopCalc = integration_container[ZONE_0][TNE2_SOL]->GetConvergence(); break; case WAVE_EQUATION: StopCalc = integration_container[ZONE_0][WAVE_SOL]->GetConvergence(); break; case HEAT_EQUATION: StopCalc = integration_container[ZONE_0][HEAT_SOL]->GetConvergence(); break; case LINEAR_ELASTICITY: StopCalc = integration_container[ZONE_0][FEA_SOL]->GetConvergence(); break; case ADJ_EULER: case ADJ_NAVIER_STOKES: case ADJ_RANS: StopCalc = integration_container[ZONE_0][ADJFLOW_SOL]->GetConvergence(); break; case ADJ_TNE2_EULER: case ADJ_TNE2_NAVIER_STOKES: StopCalc = integration_container[ZONE_0][ADJTNE2_SOL]->GetConvergence(); break; } /*--- Solution output. Determine whether a solution needs to be written after the current iteration, and if so, execute the output file writing routines. ---*/ if ((ExtIter+1 == config_container[ZONE_0]->GetnExtIter()) || ((ExtIter % config_container[ZONE_0]->GetWrt_Sol_Freq() == 0) && (ExtIter != 0) && !((config_container[ZONE_0]->GetUnsteady_Simulation() == DT_STEPPING_1ST) || (config_container[ZONE_0]->GetUnsteady_Simulation() == DT_STEPPING_2ND))) || (StopCalc) || (((config_container[ZONE_0]->GetUnsteady_Simulation() == DT_STEPPING_1ST) || (config_container[ZONE_0]->GetUnsteady_Simulation() == DT_STEPPING_2ND)) && ((ExtIter == 0) || (ExtIter % config_container[ZONE_0]->GetWrt_Sol_Freq_DualTime() == 0)))) { /*--- Low-fidelity simulations (using a coarser multigrid level approximation to the solution) require an interpolation back to the finest grid. ---*/ if (config_container[ZONE_0]->GetLowFidelitySim()) { integration_container[ZONE_0][FLOW_SOL]->SetProlongated_Solution(RUNTIME_FLOW_SYS, solver_container[ZONE_0][MESH_0], solver_container[ZONE_0][MESH_1], geometry_container[ZONE_0][MESH_0], geometry_container[ZONE_0][MESH_1], config_container[ZONE_0]); integration_container[ZONE_0][FLOW_SOL]->Smooth_Solution(RUNTIME_FLOW_SYS, solver_container[ZONE_0][MESH_0], geometry_container[ZONE_0][MESH_0], 3, 1.25, config_container[ZONE_0]); solver_container[ZONE_0][MESH_0][config_container[ZONE_0]->GetContainerPosition(RUNTIME_FLOW_SYS)]->Set_MPI_Solution(geometry_container[ZONE_0][MESH_0], config_container[ZONE_0]); solver_container[ZONE_0][MESH_0][config_container[ZONE_0]->GetContainerPosition(RUNTIME_FLOW_SYS)]->Preprocessing(geometry_container[ZONE_0][MESH_0], solver_container[ZONE_0][MESH_0], config_container[ZONE_0], MESH_0, 0, RUNTIME_FLOW_SYS, false); } /*--- Execute the routine for writing restart, volume solution, surface solution, and surface comma-separated value files. ---*/ output->SetResult_Files(solver_container, geometry_container, config_container, ExtIter, nZone); /*--- Compute the forces at different sections. ---*/ if (config_container[ZONE_0]->GetPlot_Section_Forces()) output->SetForceSections(solver_container[ZONE_0][MESH_0][FLOW_SOL], geometry_container[ZONE_0][MESH_0], config_container[ZONE_0], ExtIter); /*--- Compute 1D output. ---*/ if (config->GetWrt_1D_Output()) output->OneDimensionalOutput(solver_container[ZONE_0][MESH_0][FLOW_SOL], geometry_container[ZONE_0][MESH_0], config_container[ZONE_0]); } /*--- If the convergence criteria has been met, terminate the simulation. ---*/ if (StopCalc) break; ExtIter++; } /*--- Close the convergence history file. ---*/ if (rank == MASTER_NODE) { ConvHist_file.close(); cout << endl <<"History file, closed." << endl; } /*--- Solver class deallocation ---*/ // for (iZone = 0; iZone < nZone; iZone++) { // for (iMesh = 0; iMesh <= config_container[iZone]->GetMGLevels(); iMesh++) { // for (iSol = 0; iSol < MAX_SOLS; iSol++) { // if (solver_container[iZone][iMesh][iSol] != NULL) { // delete solver_container[iZone][iMesh][iSol]; // } // } // delete solver_container[iZone][iMesh]; // } // delete solver_container[iZone]; // } // delete [] solver_container; // if (rank == MASTER_NODE) cout <<"Solution container, deallocated." << endl; /*--- Geometry class deallocation ---*/ // for (iZone = 0; iZone < nZone; iZone++) { // for (iMesh = 0; iMesh <= config_container[iZone]->GetMGLevels(); iMesh++) { // delete geometry_container[iZone][iMesh]; // } // delete geometry_container[iZone]; // } // delete [] geometry_container; // cout <<"Geometry container, deallocated." << endl; /*--- Integration class deallocation ---*/ // cout <<"Integration container, deallocated." << endl; /*--- Synchronization point after a single solver iteration. Compute the wall clock time required. ---*/ #ifdef NO_MPI StopTime = double(clock())/double(CLOCKS_PER_SEC); #else #ifdef WINDOWS MPI_Barrier(MPI_COMM_WORLD); StopTime = MPI_Wtime(); #else MPI::COMM_WORLD.Barrier(); StopTime = MPI::Wtime(); #endif #endif /*--- Compute/print the total time for performance benchmarking. ---*/ UsedTime = StopTime-StartTime; if (rank == MASTER_NODE) { cout << "\nCompleted in " << fixed << UsedTime << " seconds on "<< size; if (size == 1) cout << " core." << endl; else cout << " cores." << endl; } /*--- Exit the solver cleanly ---*/ if (rank == MASTER_NODE) cout << endl <<"------------------------- Exit Success (SU2_CFD) ------------------------" << endl << endl; #ifndef NO_MPI /*--- Finalize MPI parallelization ---*/ #ifdef WINDOWS MPI_Barrier(MPI_COMM_WORLD); MPI_Buffer_detach(buffer,NULL); MPI_Finalize(); #else MPI::COMM_WORLD.Barrier(); MPI::Detach_buffer(ptr); MPI::Finalize(); #endif #endif return EXIT_SUCCESS; }