Esempio n. 1
0
int main(int argc, char ** argv)
{
    try
    {
        bool showHelp    = argc>1 && !os::_strcmp(argv[1],"--help");
        bool showVersion = argc>1 && !os::_strcmp(argv[1],"--version");

        printf(" simul-landmarks - Part of the MRPT\n");
        printf(" MRPT C++ Library: %s - BUILD DATE %s\n", MRPT_getVersion().c_str(), MRPT_getCompilationDate().c_str());

        if (showVersion)
            return 0;	// Program end

        // Process arguments:
        if (argc<2 || showHelp )
        {
            printf("Usage: %s <config_file.ini>\n\n",argv[0]);
            if (!showHelp)
            {
                mrpt::system::pause();
                return -1;
            }
            else	return 0;
        }

        string INI_FILENAME = std::string( argv[1] );
        ASSERT_FILE_EXISTS_(INI_FILENAME)

        CConfigFile		ini( INI_FILENAME );


        const int random_seed = ini.read_int("Params","random_seed",0);

        if (random_seed!=0)
            randomGenerator.randomize(random_seed);
        else	randomGenerator.randomize();

        // Set default values:
        unsigned int nLandmarks = 3;
        unsigned int nSteps = 100;
        std::string 	outFile("out.rawlog");
        std::string 	outDir("OUT");

        float min_x =-5;
        float max_x =5;
        float min_y =-5;
        float max_y =5;
        float min_z =0;
        float max_z =0;

        float odometryNoiseXY_std = 0.001f;
        float odometryNoisePhi_std_deg = 0.01f;
        float odometryNoisePitch_std_deg = 0.01f;
        float odometryNoiseRoll_std_deg = 0.01f;

        float minSensorDistance = 0;
        float maxSensorDistance = 10;
        float fieldOfView_deg= 180.0f;

        float sensorPose_x = 0;
        float sensorPose_y = 0;
        float sensorPose_z = 0;
        float sensorPose_yaw_deg = 0;
        float sensorPose_pitch_deg = 0;
        float sensorPose_roll_deg = 0;

        float stdRange = 0.01f;
        float stdYaw_deg = 0.1f;
        float stdPitch_deg = 0.1f;

        bool sensorDetectsIDs=true;

        bool  circularPath = true;
        bool  random6DPath = false;
        size_t squarePathLength=40;

        // Load params from INI:
        MRPT_LOAD_CONFIG_VAR(outFile,string,	ini,"Params");
        MRPT_LOAD_CONFIG_VAR(outDir,string,	ini,"Params");
        MRPT_LOAD_CONFIG_VAR(nSteps,int,	ini,"Params");
        MRPT_LOAD_CONFIG_VAR(circularPath,bool,	ini,"Params");
        MRPT_LOAD_CONFIG_VAR(random6DPath,bool,	ini,"Params");
        MRPT_LOAD_CONFIG_VAR(squarePathLength,int,ini,"Params");

        MRPT_LOAD_CONFIG_VAR(sensorDetectsIDs,bool, ini,"Params");

        MRPT_LOAD_CONFIG_VAR(odometryNoiseXY_std,float,	ini,"Params");
        MRPT_LOAD_CONFIG_VAR(odometryNoisePhi_std_deg,float, ini,"Params");
        MRPT_LOAD_CONFIG_VAR(odometryNoisePitch_std_deg,float, ini,"Params");
        MRPT_LOAD_CONFIG_VAR(odometryNoiseRoll_std_deg,float, ini,"Params");

        MRPT_LOAD_CONFIG_VAR(sensorPose_x,float,	ini,"Params");
        MRPT_LOAD_CONFIG_VAR(sensorPose_y,float,	ini,"Params");
        MRPT_LOAD_CONFIG_VAR(sensorPose_z,float,	ini,"Params");
        MRPT_LOAD_CONFIG_VAR(sensorPose_yaw_deg,float,	ini,"Params");
        MRPT_LOAD_CONFIG_VAR(sensorPose_pitch_deg,float,	ini,"Params");
        MRPT_LOAD_CONFIG_VAR(sensorPose_roll_deg,float,	ini,"Params");


        MRPT_LOAD_CONFIG_VAR(minSensorDistance,float,	ini,"Params");
        MRPT_LOAD_CONFIG_VAR(maxSensorDistance,float,	ini,"Params");
        MRPT_LOAD_CONFIG_VAR(fieldOfView_deg,float,	ini,"Params");

        bool show_in_3d = false;
        MRPT_LOAD_CONFIG_VAR(show_in_3d,bool,	ini,"Params");


        MRPT_LOAD_CONFIG_VAR(stdRange,float,	ini,"Params");
        MRPT_LOAD_CONFIG_VAR(stdYaw_deg,float,	ini,"Params");
        MRPT_LOAD_CONFIG_VAR(stdPitch_deg,float,	ini,"Params");


        float stdYaw = DEG2RAD(stdYaw_deg);
        float stdPitch = DEG2RAD(stdPitch_deg);

        float odometryNoisePhi_std = DEG2RAD(odometryNoisePhi_std_deg);
        float odometryNoisePitch_std = DEG2RAD(odometryNoisePitch_std_deg);
        float odometryNoiseRoll_std = DEG2RAD(odometryNoiseRoll_std_deg);

        float fieldOfView = DEG2RAD(fieldOfView_deg);

        CPose3D  sensorPoseOnRobot(
            sensorPose_x,
            sensorPose_y,
            sensorPose_z,
            DEG2RAD( sensorPose_yaw_deg ),
            DEG2RAD( sensorPose_pitch_deg ),
            DEG2RAD( sensorPose_roll_deg ) );

        // Create out dir:
        mrpt::system::createDirectory(outDir);

        // ---------------------------------------------
        // Create the point-beacons:
        // ---------------------------------------------
        printf("Creating landmark map...");
        mrpt::maps::CLandmarksMap    landmarkMap;
        int randomSetCount = 0;
        int uniqueIds = 1;

        // Process each of the "RANDOMSET_%i" found:
        do
        {
            string sectName = format("RANDOMSET_%i",++randomSetCount);

            nLandmarks = 0;
            MRPT_LOAD_CONFIG_VAR(nLandmarks,uint64_t,	ini,sectName);
            MRPT_LOAD_CONFIG_VAR(min_x,float,	ini,sectName);
            MRPT_LOAD_CONFIG_VAR(max_x,float,	ini,sectName);
            MRPT_LOAD_CONFIG_VAR(min_y,float,	ini,sectName);
            MRPT_LOAD_CONFIG_VAR(max_y,float,	ini,sectName);
            MRPT_LOAD_CONFIG_VAR(min_z,float,	ini,sectName);
            MRPT_LOAD_CONFIG_VAR(max_z,float,	ini,sectName);

            for (size_t i=0; i<nLandmarks; i++)
            {
                CLandmark   LM;
                CPointPDFGaussian   pt3D;

                // Random coordinates:
                pt3D.mean = CPoint3D(
                                randomGenerator.drawUniform(min_x,max_x),
                                randomGenerator.drawUniform(min_y,max_y),
                                randomGenerator.drawUniform(min_z,max_z) );

                // Add:
                LM.createOneFeature();
                LM.features[0]->type = featBeacon;
                LM.ID = uniqueIds++;
                LM.setPose( pt3D );

                landmarkMap.landmarks.push_back(LM);
            }

            if (nLandmarks) cout << nLandmarks << " generated for the 'randomset' " << randomSetCount << endl;

        }
        while (nLandmarks);


        landmarkMap.saveToTextFile( format("%s/%s_ground_truth.txt",outDir.c_str(),outFile.c_str()) );
        printf("Done!\n");

        // ---------------------------------------------
        // Simulate:
        // ---------------------------------------------
        size_t nWarningsNoSight=0;

        CActionRobotMovement2D::TMotionModelOptions   opts;
        opts.modelSelection = CActionRobotMovement2D::mmGaussian;
        opts.gausianModel.a1=0;
        opts.gausianModel.a2=0;
        opts.gausianModel.a3=0;
        opts.gausianModel.a4=0;
        opts.gausianModel.minStdXY = odometryNoiseXY_std;
        opts.gausianModel.minStdPHI = odometryNoisePhi_std;

        // Output rawlog, gz-compressed.
        CFileGZOutputStream  fil( format("%s/%s",outDir.c_str(),outFile.c_str()));
        CPose3D         realPose;

        const size_t N_STEPS_STOP_AT_THE_BEGINNING = 4;

        CMatrixDouble  GT_path;

        for (size_t i=0; i<nSteps; i++)
        {
            cout << "Generating step " << i << "...\n";
            CSensoryFrame           SF;
            CActionCollection         acts;

            CPose3D	incPose3D;
            bool    incPose_is_3D = random6DPath;

            if (i>=N_STEPS_STOP_AT_THE_BEGINNING)
            {
                if (random6DPath)
                {   // 3D path
                    const double Ar = DEG2RAD(3);
                    TPose3D  Ap = TPose3D(0.20*cos(Ar),0.20*sin(Ar),0,Ar,0,0);
                    //Ap.z  += randomGenerator.drawGaussian1D(0,0.05);
                    Ap.yaw   += randomGenerator.drawGaussian1D(0,DEG2RAD(0.2));
                    Ap.pitch += randomGenerator.drawGaussian1D(0,DEG2RAD(2));
                    Ap.roll += randomGenerator.drawGaussian1D(0,DEG2RAD(4));

                    incPose3D = CPose3D(Ap);
                }
                else
                {   // 2D path:
                    if (circularPath)
                    {
                        // Circular path:
                        float Ar = DEG2RAD(5);
                        incPose3D = CPose3D(CPose2D(0.20f*cos(Ar),0.20f*sin(Ar),Ar));
                    }
                    else
                    {
                        // Square path:
                        if ( (i % squarePathLength) > (squarePathLength-5) )
                            incPose3D = CPose3D(CPose2D(0,0,DEG2RAD(90.0f/4)));
                        else		incPose3D = CPose3D(CPose2D(0.20f,0,0));
                    }
                }
            }
            else
            {
                // Robot is still at the beginning:
                incPose3D = CPose3D(0,0,0,0,0,0);
            }

            // Simulate observations:
            CObservationBearingRangePtr obs=CObservationBearingRange::Create();

            obs->minSensorDistance=minSensorDistance;
            obs->maxSensorDistance=maxSensorDistance;
            obs->fieldOfView_yaw = fieldOfView;
            obs->fieldOfView_pitch = fieldOfView;
            obs->sensorLocationOnRobot = sensorPoseOnRobot;

            landmarkMap.simulateRangeBearingReadings(
                realPose,
                sensorPoseOnRobot,
                *obs,
                sensorDetectsIDs, // wheter to identy landmarks
                stdRange,
                stdYaw,
                stdPitch );

            // Keep the GT of the robot pose:
            GT_path.setSize(i+1,6);
            for (size_t k=0; k<6; k++)
                GT_path(i,k)=realPose[k];

            cout << obs->sensedData.size() << " landmarks in sight";

            if (obs->sensedData.empty()) nWarningsNoSight++;

            SF.push_back( obs );

            // Simulate odometry, from "incPose3D" with noise:
            if (!incPose_is_3D)
            {   // 2D odometry:
                CActionRobotMovement2D    act;
                CPose2D     incOdo( incPose3D );
                if (incPose3D.x()!=0 || incPose3D.y()!=0 || incPose3D.yaw()!=0)
                {
                    incOdo.x_incr( randomGenerator.drawGaussian1D_normalized() * odometryNoiseXY_std );
                    incOdo.y_incr( randomGenerator.drawGaussian1D_normalized() * odometryNoiseXY_std );
                    incOdo.phi_incr( randomGenerator.drawGaussian1D_normalized() * odometryNoisePhi_std );
                }
                act.computeFromOdometry(incOdo, opts);
                acts.insert( act );
            }
            else
            {   // 3D odometry:
                CActionRobotMovement3D    act;
                act.estimationMethod	= CActionRobotMovement3D::emOdometry;

                CPose3D   noisyIncPose = incPose3D;

                if (incPose3D.x()!=0 || incPose3D.y()!=0 || incPose3D.yaw()!=0)
                {
                    noisyIncPose.x_incr( randomGenerator.drawGaussian1D_normalized() * odometryNoiseXY_std );
                    noisyIncPose.y_incr( randomGenerator.drawGaussian1D_normalized() * odometryNoiseXY_std );
                    noisyIncPose.z_incr( randomGenerator.drawGaussian1D_normalized() * odometryNoiseXY_std );
                    noisyIncPose.setYawPitchRoll(
                        noisyIncPose.yaw()+ randomGenerator.drawGaussian1D_normalized() * odometryNoisePhi_std,
                        noisyIncPose.pitch()+ randomGenerator.drawGaussian1D_normalized() * odometryNoisePitch_std,
                        noisyIncPose.roll()+ randomGenerator.drawGaussian1D_normalized() * odometryNoiseRoll_std );
                }

                act.poseChange.mean = noisyIncPose;
                act.poseChange.cov.eye();

                act.poseChange.cov(0,0) =
                    act.poseChange.cov(1,1) =
                        act.poseChange.cov(2,2) = square(odometryNoiseXY_std);
                act.poseChange.cov(3,3) = square(odometryNoisePhi_std);
                act.poseChange.cov(4,4) = square(odometryNoisePitch_std);
                act.poseChange.cov(5,5) = square(odometryNoiseRoll_std);

                acts.insert( act );
            }

            // Save:
            fil << SF << acts;

            // Next pose:
            realPose = realPose + incPose3D;

            cout << endl;
        }

        // Save the ground truth for the robot poses as well:
        GT_path.saveToTextFile(
            format("%s/%s_ground_truth_robot_path.txt",outDir.c_str(),outFile.c_str()),
            MATRIX_FORMAT_FIXED,
            true,
            "% Columns are: x(m) y(m) z(m) yaw(rad) pitch(rad) roll(rad)\n");

        cout << "Data saved to directory: " << outDir << endl;

        if (nWarningsNoSight)
            cout << "WARNING: " << nWarningsNoSight << " observations contained zero landmarks in the sensor range." << endl;


        // Optionally, display in 3D:
        if (show_in_3d && size(GT_path,1)>1)
        {
#if MRPT_HAS_OPENGL_GLUT  && MRPT_HAS_WXWIDGETS
            mrpt::gui::CDisplayWindow3D		win("Final simulation",400,300);

            mrpt::opengl::COpenGLScenePtr &scene = win.get3DSceneAndLock();

            scene->insert( mrpt::opengl::CGridPlaneXY::Create( min_x-10,max_x+10,min_y-10,max_y+10,0 ));
            scene->insert( mrpt::opengl::stock_objects::CornerXYZ() );

            // Insert all landmarks:
            for (CLandmarksMap::TCustomSequenceLandmarks::const_iterator it=landmarkMap.landmarks.begin(); it!=landmarkMap.landmarks.end(); ++it)
            {
                mrpt::opengl::CSpherePtr lm = mrpt::opengl::CSphere::Create();
                lm->setColor(1,0,0);
                lm->setRadius(0.1);
                lm->setLocation( it->pose_mean );
                lm->setName( format("LM#%u",(unsigned) it->ID ) );
                //lm->enableShowName(true);
                scene->insert(lm);
            }

            // Insert all robot poses:
            const size_t N = size(GT_path,1);
            mrpt::opengl::CSetOfLinesPtr  pathLines = mrpt::opengl::CSetOfLines::Create();
            pathLines->setColor(0,0,1,0.5);
            pathLines->setLineWidth(3.0);
            pathLines->resize(N-1);

            for (size_t i=0; i<N-1; i++)
                pathLines->setLineByIndex(i, GT_path(i,0),GT_path(i,1),GT_path(i,2),  GT_path(i+1,0),GT_path(i+1,1),GT_path(i+1,2) );

            scene->insert(pathLines);

            for (size_t i=0; i<N; i++)
            {
                mrpt::opengl::CSetOfObjectsPtr  corner = mrpt::opengl::stock_objects::CornerXYZ();
                corner->setScale(0.2);
                corner->setPose(TPose3D(GT_path(i,0),GT_path(i,1),GT_path(i,2),GT_path(i,3),GT_path(i,4),GT_path(i,5)));
                scene->insert(corner);
            }

            win.unlockAccess3DScene();
            win.forceRepaint();

            cout << "Press any key or close the 3D window to exit." << endl;
            win.waitForKey();

#endif // MRPT_HAS_OPENGL_GLUT  && MRPT_HAS_WXWIDGETS
        }

    }
    catch (std::exception &e)
    {
        std::cout << e.what();
    }
    catch (...)
    {
        std::cout << "Untyped exception!";
    }
}
Esempio n. 2
0
/*---------------------------------------------------------------
					path_from_rtk_gps
 ---------------------------------------------------------------*/
void  mrpt::topography::path_from_rtk_gps(
	mrpt::poses::CPose3DInterpolator	&robot_path,
	const mrpt::slam::CRawlog			&rawlog,
	size_t 								first,
	size_t 								last,
	bool								isGUI,
	bool								disableGPSInterp,
	int									PATH_SMOOTH_FILTER ,
	TPathFromRTKInfo					*outInfo
	)
{
	MRPT_START

#if MRPT_HAS_WXWIDGETS
	// Use a smart pointer so we are safe against exceptions:
	stlplus::smart_ptr<wxBusyCursor>	waitCursorPtr;
	if (isGUI)
		waitCursorPtr = stlplus::smart_ptr<wxBusyCursor>( new  wxBusyCursor() );
#endif

    // Go: generate the map:
    size_t      i;

    ASSERT_(first<=last);
    ASSERT_(last<=rawlog.size()-1);


	set<string>	lstGPSLabels;

    size_t count = 0;

	robot_path.clear();
	robot_path.setMaxTimeInterpolation(3.0);	// Max. seconds of GPS blackout not to interpolate.
	robot_path.setInterpolationMethod( CPose3DInterpolator::imSSLSLL );

	TPathFromRTKInfo	outInfoTemp;
	if (outInfo) *outInfo = outInfoTemp;

	map<string, map<TTimeStamp,TPoint3D> >	gps_paths;	// label -> (time -> 3D local coords)

    bool		abort = false;
	bool		ref_valid = false;

	// Load configuration block:
	CConfigFileMemory	memFil;
	rawlog.getCommentTextAsConfigFile(memFil);

	TGeodeticCoords ref(
		memFil.read_double("GPS_ORIGIN","lat_deg",0),
		memFil.read_double("GPS_ORIGIN","lon_deg",0),
		memFil.read_double("GPS_ORIGIN","height",0) );

	ref_valid = !ref.isClear();

	// Do we have info for the consistency test?
	const double std_0 = memFil.read_double("CONSISTENCY_TEST","std_0",0);
	bool  doConsistencyCheck = std_0>0;

	// Do we have the "reference uncertainty" matrix W^\star ??
	memFil.read_matrix("UNCERTAINTY","W_star",outInfoTemp.W_star);
	const bool doUncertaintyCovs = size(outInfoTemp.W_star,1)!=0;
	if (doUncertaintyCovs && (size(outInfoTemp.W_star,1)!=6 || size(outInfoTemp.W_star,2)!=6))
		THROW_EXCEPTION("ERROR: W_star matrix for uncertainty estimation is provided but it's not a 6x6 matrix.");

	// ------------------------------------------
	// Look for the 2 observations:
	// ------------------------------------------
#if MRPT_HAS_WXWIDGETS
	wxProgressDialog    *progDia=NULL;
	if (isGUI)
	{
		progDia = new wxProgressDialog(
			wxT("Building map"),
			wxT("Getting GPS observations..."),
			(int)(last-first+1), // range
			NULL, // parent
			wxPD_CAN_ABORT |
			wxPD_APP_MODAL |
			wxPD_SMOOTH |
			wxPD_AUTO_HIDE |
			wxPD_ELAPSED_TIME |
			wxPD_ESTIMATED_TIME |
			wxPD_REMAINING_TIME);
	}
#endif

	// The list with all time ordered gps's in valid RTK mode
	typedef std::map< mrpt::system::TTimeStamp, std::map<std::string,CObservationGPSPtr> > TListGPSs;
	TListGPSs	list_gps_obs;

	map<string,size_t>  GPS_RTK_reads;	// label-># of RTK readings
	map<string,TPoint3D> GPS_local_coords_on_vehicle;  // label -> local pose on the vehicle

    for (i=first;!abort && i<=last;i++)
    {
        switch ( rawlog.getType(i) )
		{
		default:
			break;

        case CRawlog::etObservation:
            {
                CObservationPtr o = rawlog.getAsObservation(i);

				if (o->GetRuntimeClass()==CLASS_ID(CObservationGPS))
				{
					CObservationGPSPtr obs = CObservationGPSPtr(o);

					if (obs->has_GGA_datum && obs->GGA_datum.fix_quality==4)
					{
						// Add to the list:
						list_gps_obs[obs->timestamp][obs->sensorLabel] = obs;

						lstGPSLabels.insert(obs->sensorLabel);
					}

					// Save to GPS paths:
					if (obs->has_GGA_datum && (obs->GGA_datum.fix_quality==4 || obs->GGA_datum.fix_quality==5))
					{
						GPS_RTK_reads[obs->sensorLabel]++;

						// map<string,TPoint3D> GPS_local_coords_on_vehicle;  // label -> local pose on the vehicle
						if (GPS_local_coords_on_vehicle.find(obs->sensorLabel)==GPS_local_coords_on_vehicle.end())
							GPS_local_coords_on_vehicle[obs->sensorLabel] = TPoint3D( obs->sensorPose );

						//map<string, map<TTimeStamp,TPoint3D> >	gps_paths;	// label -> (time -> 3D local coords)
						gps_paths[obs->sensorLabel][obs->timestamp] = TPoint3D(
							obs->GGA_datum.longitude_degrees,
							obs->GGA_datum.latitude_degrees,
							obs->GGA_datum.altitude_meters );
					}
                }
            }
            break;
        } // end switch type

		// Show progress:
        if ((count++ % 100)==0)
        {
#if MRPT_HAS_WXWIDGETS
        	if (progDia)
        	{
				if (!progDia->Update((int)(i-first)))
					abort = true;
				wxTheApp->Yield();
        	}
#endif
        }
    } // end for i

#if MRPT_HAS_WXWIDGETS
	if (progDia)
	{
		delete progDia;
		progDia=NULL;
	}
#endif

	// -----------------------------------------------------------
	// At this point we already have the sensor positions, thus
	//  we can estimate the covariance matrix D:
	//
	// TODO: Generalize equations for # of GPS > 3
	// -----------------------------------------------------------
	map< set<string>, double >  Ad_ij;  // InterGPS distances in 2D
	map< set<string>, double >  phi_ij; // Directions on XY of the lines between i-j
	map< string, size_t>  D_cov_indexes; // Sensor label-> index in the matrix (first=0, ...)
	map< size_t, string>  D_cov_rev_indexes; // Reverse of D_cov_indexes

	CMatrixDouble	  D_cov;   // square distances cov
	CMatrixDouble	  D_cov_1;   // square distances cov (inverse)
	vector_double	  D_mean;  // square distances mean

	if (doConsistencyCheck && GPS_local_coords_on_vehicle.size()==3)
	{
		unsigned int cnt = 0;
		for(map<string,TPoint3D>::iterator i=GPS_local_coords_on_vehicle.begin();i!=GPS_local_coords_on_vehicle.end();++i)
		{
			// Index tables:
			D_cov_indexes[i->first] = cnt;
			D_cov_rev_indexes[cnt] = i->first;
			cnt++;

			for(map<string,TPoint3D>::iterator j=i;j!=GPS_local_coords_on_vehicle.end();++j)
			{
				if (i!=j)
				{
					const TPoint3D  &pi = i->second;
					const TPoint3D  &pj = j->second;
					Ad_ij[ make_set(i->first,j->first) ]  = pi.distanceTo( pj );
					phi_ij[ make_set(i->first,j->first) ] = atan2( pj.y-pi.y, pj.x-pi.x );
				}
			}
		}
		ASSERT_( D_cov_indexes.size()==3  && D_cov_rev_indexes.size()==3 );

		D_cov.setSize( D_cov_indexes.size(), D_cov_indexes.size() );
		D_mean.resize( D_cov_indexes.size() );

		// See paper for the formulas!
		// TODO: generalize for N>3

		D_cov(0,0) = 2*square( Ad_ij[ make_set(D_cov_rev_indexes[0],D_cov_rev_indexes[1])] );
		D_cov(1,1) = 2*square( Ad_ij[ make_set(D_cov_rev_indexes[0],D_cov_rev_indexes[2])] );
		D_cov(2,2) = 2*square( Ad_ij[ make_set(D_cov_rev_indexes[1],D_cov_rev_indexes[2])] );

		D_cov(1,0) = Ad_ij[ make_set(D_cov_rev_indexes[0],D_cov_rev_indexes[1])] * Ad_ij[ make_set(D_cov_rev_indexes[0],D_cov_rev_indexes[2])]
					 * cos( phi_ij[ make_set(D_cov_rev_indexes[0],D_cov_rev_indexes[1])] - phi_ij[ make_set(D_cov_rev_indexes[0],D_cov_rev_indexes[2])] );
		D_cov(0,1) = D_cov(1,0);

		D_cov(2,0) =-Ad_ij[ make_set(D_cov_rev_indexes[0],D_cov_rev_indexes[1])] * Ad_ij[ make_set(D_cov_rev_indexes[1],D_cov_rev_indexes[2])]
					 * cos( phi_ij[ make_set(D_cov_rev_indexes[0],D_cov_rev_indexes[1])] - phi_ij[ make_set(D_cov_rev_indexes[1],D_cov_rev_indexes[2])] );
		D_cov(0,2) = D_cov(2,0);

		D_cov(2,1) = Ad_ij[ make_set(D_cov_rev_indexes[0],D_cov_rev_indexes[2])] * Ad_ij[ make_set(D_cov_rev_indexes[1],D_cov_rev_indexes[2])]
					 * cos( phi_ij[ make_set(D_cov_rev_indexes[0],D_cov_rev_indexes[2])] - phi_ij[ make_set(D_cov_rev_indexes[1],D_cov_rev_indexes[2])] );
		D_cov(1,2) = D_cov(2,1);

		D_cov *= 4*square(std_0);

		D_cov_1 = D_cov.inv();

		//cout << D_cov.inMatlabFormat() << endl;

		D_mean[0] = square( Ad_ij[ make_set(D_cov_rev_indexes[0],D_cov_rev_indexes[1])] );
		D_mean[1] = square( Ad_ij[ make_set(D_cov_rev_indexes[0],D_cov_rev_indexes[2])] );
		D_mean[2] = square( Ad_ij[ make_set(D_cov_rev_indexes[1],D_cov_rev_indexes[2])] );

	}
	else doConsistencyCheck =false;


	// ------------------------------------------
	// Look for the 2 observations:
	// ------------------------------------------
	int N_GPSs = list_gps_obs.size();

	if (N_GPSs)
	{
		// loop interpolate 1-out-of-5: this solves the issue with JAVAD GPSs
		//  that skip some readings at some times .0 .2 .4 .6 .8
		if (list_gps_obs.size()>4)
		{
			TListGPSs::iterator F = list_gps_obs.begin();
			++F; ++F;
			TListGPSs::iterator E = list_gps_obs.end();
			--E; --E;

			for (TListGPSs::iterator i=F;i!=E;++i)
			{
				// Now check if we have 3 gps with the same time stamp:
				//const size_t N = i->second.size();
				std::map<std::string, CObservationGPSPtr> & GPS = i->second;

				// Check if any in "lstGPSLabels" is missing here:
				for (set<string>::iterator l=lstGPSLabels.begin();l!=lstGPSLabels.end();++l)
				{
					// For each GPS in the current timestamp:
					bool fnd = ( GPS.find(*l)!=GPS.end() );

					if (fnd) continue; // this one is present.

					// Ok, we have "*l" missing in the set "*i".
					// Try to interpolate from neighbors:
					TListGPSs::iterator	i_b1 = i; --i_b1;
					TListGPSs::iterator	i_a1 = i; ++i_a1;

					CObservationGPSPtr	GPS_b1, GPS_a1;

					if (i_b1->second.find( *l )!=i_b1->second.end())
						GPS_b1 = i_b1->second.find( *l )->second;

					if (i_a1->second.find( *l )!=i_a1->second.end())
						GPS_a1 = i_a1->second.find( *l )->second;

					if (!disableGPSInterp && GPS_a1 && GPS_b1)
					{
						if ( mrpt::system::timeDifference( GPS_b1->timestamp, GPS_a1->timestamp ) < 0.5 )
						{
							CObservationGPSPtr	new_gps = CObservationGPSPtr( new CObservationGPS(*GPS_a1) );
							new_gps->sensorLabel = *l;

							//cout << mrpt::system::timeLocalToString(GPS_b1->timestamp) << " " << mrpt::system::timeLocalToString(GPS_a1->timestamp) << " " << *l;
							//cout << endl;

							new_gps->GGA_datum.longitude_degrees = 0.5 * ( GPS_a1->GGA_datum.longitude_degrees + GPS_b1->GGA_datum.longitude_degrees );
							new_gps->GGA_datum.latitude_degrees  = 0.5 * ( GPS_a1->GGA_datum.latitude_degrees + GPS_b1->GGA_datum.latitude_degrees );
							new_gps->GGA_datum.altitude_meters   = 0.5 * ( GPS_a1->GGA_datum.altitude_meters + GPS_b1->GGA_datum.altitude_meters );

							new_gps->timestamp = (GPS_a1->timestamp + GPS_b1->timestamp) / 2;

							i->second[new_gps->sensorLabel] = new_gps;
						}
					}
				}
			} // end loop interpolate 1-out-of-5
		}



#if MRPT_HAS_WXWIDGETS
	wxProgressDialog    *progDia3=NULL;
	if (isGUI)
	{
		progDia3 = new wxProgressDialog(
			wxT("Building map"),
			wxT("Estimating 6D path..."),
			N_GPSs, // range
			NULL, // parent
			wxPD_CAN_ABORT |
			wxPD_APP_MODAL |
			wxPD_SMOOTH |
			wxPD_AUTO_HIDE |
			wxPD_ELAPSED_TIME |
			wxPD_ESTIMATED_TIME |
			wxPD_REMAINING_TIME);
	}
#endif

		int	idx_in_GPSs = 0;

		for (TListGPSs::iterator i=list_gps_obs.begin();i!=list_gps_obs.end();++i, idx_in_GPSs++)
		{
			// Now check if we have 3 gps with the same time stamp:
			if (i->second.size()>=3)
			{
				const size_t N = i->second.size();
				std::map<std::string, CObservationGPSPtr> & GPS = i->second;
				vector_double X(N),Y(N),Z(N); 	// Global XYZ coordinates
				std::map<string,size_t> XYZidxs;  // Sensor label -> indices in X Y Z

				if (!ref_valid)	// get the reference lat/lon, if it's not set from rawlog configuration block.
				{
					ref_valid 	= true;
					ref = GPS.begin()->second->GGA_datum.getAsStruct<TGeodeticCoords>();
				}

				// Compute the XYZ coordinates of all sensors:
				TMatchingPairList corrs;
				unsigned int k;
				std::map<std::string, CObservationGPSPtr>::iterator g_it;

				for (k=0,g_it=GPS.begin();g_it!=GPS.end();g_it++,k++)
				{
					TPoint3D P;
					mrpt::topography::geodeticToENU_WGS84(
						g_it->second->GGA_datum.getAsStruct<TGeodeticCoords>(),
						P,
						ref );

					// Correction of offsets:
					const string sect = string("OFFSET_")+g_it->second->sensorLabel;
					P.x += memFil.read_double( sect, "x", 0 );
					P.y += memFil.read_double( sect, "y", 0 );
					P.z += memFil.read_double( sect, "z", 0 );

					XYZidxs[g_it->second->sensorLabel] = k; // Save index correspondence

					// Create the correspondence:
					corrs.push_back( TMatchingPair(
						k,k, 	// Indices
						P.x,P.y,P.z, // "This"/Global coords
						g_it->second->sensorPose.x(),g_it->second->sensorPose.y(),g_it->second->sensorPose.z() // "other"/local coordinates
						));

					X[k] = P.x;
					Y[k] = P.y;
					Z[k] = P.z;
				}

				if (doConsistencyCheck && GPS.size()==3)
				{
					// XYZ[k] have the k'd final coordinates of each GPS
					// GPS[k] are the CObservations:

					// Compute the inter-GPS square distances:
					vector_double iGPSdist2(3);

					// [0]: sq dist between: D_cov_rev_indexes[0],D_cov_rev_indexes[1]
					TPoint3D   P0( X[XYZidxs[D_cov_rev_indexes[0]]], Y[XYZidxs[D_cov_rev_indexes[0]]], Z[XYZidxs[D_cov_rev_indexes[0]]] );
					TPoint3D   P1( X[XYZidxs[D_cov_rev_indexes[1]]], Y[XYZidxs[D_cov_rev_indexes[1]]], Z[XYZidxs[D_cov_rev_indexes[1]]] );
					TPoint3D   P2( X[XYZidxs[D_cov_rev_indexes[2]]], Y[XYZidxs[D_cov_rev_indexes[2]]], Z[XYZidxs[D_cov_rev_indexes[2]]] );

					iGPSdist2[0] = P0.sqrDistanceTo(P1);
					iGPSdist2[1] = P0.sqrDistanceTo(P2);
					iGPSdist2[2] = P1.sqrDistanceTo(P2);

					double mahaD = mrpt::math::mahalanobisDistance( iGPSdist2, D_mean, D_cov_1 );
					outInfoTemp.mahalabis_quality_measure[i->first] = mahaD;

					//cout << "x: " << iGPSdist2 << " MU: " <<  D_mean << " -> " << mahaD  << endl;
				} // end consistency

				// Use a 6D matching method to estimate the location of the vehicle:
				CPose3D optimal_pose;
				double  optimal_scale;

				// "this" (reference map) -> GPS global coordinates
				// "other" -> GPS local coordinates on the vehicle
				mrpt::scanmatching::leastSquareErrorRigidTransformation6D( corrs,optimal_pose,optimal_scale, true ); // Force scale=1
				//cout << "optimal pose: " << optimal_pose << " " << optimal_scale << endl;

				// Final vehicle pose:
				CPose3D	&veh_pose= optimal_pose;


				// Add to the interpolator:
				MRPT_CHECK_NORMAL_NUMBER( veh_pose.x() );
				MRPT_CHECK_NORMAL_NUMBER( veh_pose.y() );
				MRPT_CHECK_NORMAL_NUMBER( veh_pose.z() );
				MRPT_CHECK_NORMAL_NUMBER( veh_pose.yaw() );
				MRPT_CHECK_NORMAL_NUMBER( veh_pose.pitch() );
				MRPT_CHECK_NORMAL_NUMBER( veh_pose.roll() );

				robot_path.insert( i->first, veh_pose );

				// If we have W_star, compute the pose uncertainty:
				if (doUncertaintyCovs)
				{
					CPose3DPDFGaussian	final_veh_uncert;
					final_veh_uncert.mean.setFromValues(0,0,0,0,0,0);
					final_veh_uncert.cov = outInfoTemp.W_star;

					// Rotate the covariance according to the real vehicle pose:
					final_veh_uncert.changeCoordinatesReference(veh_pose);

					outInfoTemp.vehicle_uncertainty[ i->first ] = final_veh_uncert.cov;
				}
			}

			// Show progress:
			if ((count++ % 100)==0)
			{
#if MRPT_HAS_WXWIDGETS
				if (progDia3)
				{
					if (!progDia3->Update(idx_in_GPSs))
						abort = true;
					wxTheApp->Yield();
				}
#endif
			}
		} // end for i

#if MRPT_HAS_WXWIDGETS
	if (progDia3)
	{
		delete progDia3;
		progDia3=NULL;
	}
#endif

		if (PATH_SMOOTH_FILTER>0 && robot_path.size()>1)
		{
			CPose3DInterpolator	filtered_robot_path = robot_path;

			// Do Angles smoother filter of the path:
			// ---------------------------------------------
			const double MAX_DIST_TO_FILTER = 4.0;

			for (CPose3DInterpolator::iterator i=robot_path.begin();i!=robot_path.end();++i)
			{
				CPose3D   p = i->second;

				vector_double pitchs, rolls;	// The elements to average

				pitchs.push_back(p.pitch());
				rolls.push_back(p.roll());

				CPose3DInterpolator::iterator q=i;
				for (int k=0;k<PATH_SMOOTH_FILTER && q!=robot_path.begin();k++)
				{
					--q;
					if (abs( mrpt::system::timeDifference(q->first,i->first))<MAX_DIST_TO_FILTER )
					{
						pitchs.push_back( q->second.pitch() );
						rolls.push_back( q->second.roll() );
					}
				}
				q=i;
				for (int k=0;k<PATH_SMOOTH_FILTER && q!=(--robot_path.end()) ;k++)
				{
					++q;
					if (abs( mrpt::system::timeDifference(q->first,i->first))<MAX_DIST_TO_FILTER )
					{
						pitchs.push_back( q->second.pitch() );
						rolls.push_back( q->second.roll() );
					}
				}

				p.setYawPitchRoll(p.yaw(), mrpt::math::averageWrap2Pi(pitchs), mrpt::math::averageWrap2Pi(rolls) );

				// save in filtered path:
				filtered_robot_path.insert( i->first, p );
			}
			// Replace:
			robot_path = filtered_robot_path;

		} // end PATH_SMOOTH_FILTER

	} // end step generate 6D path


	// Here we can set best_gps_path  (that with the max. number of RTK fixed/foat readings):
	if (outInfo)
	{
		string bestLabel;
		size_t bestNum = 0;
		for (map<string,size_t>::iterator i=GPS_RTK_reads.begin();i!=GPS_RTK_reads.end();++i)
		{
			if (i->second>bestNum)
			{
				bestNum = i->second;
				bestLabel = i->first;
			}
		}
		outInfoTemp.best_gps_path = gps_paths[bestLabel];

		// and transform to XYZ:
		// Correction of offsets:
		const string sect = string("OFFSET_")+bestLabel;
		const double off_X = memFil.read_double( sect, "x", 0 );
		const double off_Y = memFil.read_double( sect, "y", 0 );
		const double off_Z = memFil.read_double( sect, "z", 0 );

		// map<TTimeStamp,TPoint3D> best_gps_path;		// time -> 3D local coords
		for (map<TTimeStamp,TPoint3D>::iterator i=outInfoTemp.best_gps_path.begin();i!=outInfoTemp.best_gps_path.end();++i)
		{
			TPoint3D P;
			mrpt::topography::geodeticToENU_WGS84(
				TGeodeticCoords(i->second.x,i->second.y,i->second.z),  // i->second.x,i->second.y,i->second.z, // lat, lon, heigh
				P, // X Y Z
				ref );

			i->second.x = P.x + off_X;
			i->second.y = P.y + off_Y;
			i->second.z = P.z + off_Z;
		}
	} // end best_gps_path

	if (outInfo) *outInfo = outInfoTemp;


    MRPT_END
}