bool StructuredModuleEditor::replaceFunc(Function *OldFunc, Function *NewFunc) {

	if (OldFunc == NULL || NewFunc == NULL)
		return false;

	if (!signaturesMatch(OldFunc, NewFunc)) {
		OS << "Cannot replace '" << OldFunc->getName() << "' with '"
				<< NewFunc->getName()
				<< "' because they don't have identical signatures\n";
		return false;
	}

// Gathers all the calls to the function we want to bypass
	InstList Calls = getCallsToFunction(OldFunc);

// Iterates over each call to the function we want to bypass and sets the callee
// to the function we want to hook
	for (InstList::iterator I = Calls.begin(), E = Calls.end(); I != E; ++I) {
		CallSite CS(cast<Value>(*I));
		CS.setCalledFunction(NewFunc);

// Creates an edge from the calling node to its new destination node
		CallGraphNode *CallingNode = (*CG)[CS.getCaller()];
		CallGraphNode *NewCalleeNode = (*CG)[NewFunc];
		CallingNode->replaceCallEdge(CS, CS, NewCalleeNode);
	}

// Replace all remaining uses of OldFunc with NewFunc (e.g. pointers)
	OldFunc->replaceAllUsesWith(NewFunc);

	return true;
}
Esempio n. 2
0
bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) {
  if (skipSCC(SCC))
    return false;

  // Get the callgraph information that we need to update to reflect our
  // changes.
  CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();

  LegacyAARGetter AARGetter(*this);

  bool Changed = false, LocalChange;

  // Iterate until we stop promoting from this SCC.
  do {
    LocalChange = false;
    // Attempt to promote arguments from all functions in this SCC.
    for (CallGraphNode *OldNode : SCC) {
      Function *OldF = OldNode->getFunction();
      if (!OldF)
        continue;

      auto ReplaceCallSite = [&](CallSite OldCS, CallSite NewCS) {
        Function *Caller = OldCS.getInstruction()->getParent()->getParent();
        CallGraphNode *NewCalleeNode =
            CG.getOrInsertFunction(NewCS.getCalledFunction());
        CallGraphNode *CallerNode = CG[Caller];
        CallerNode->replaceCallEdge(OldCS, NewCS, NewCalleeNode);
      };

      if (Function *NewF = promoteArguments(OldF, AARGetter, MaxElements,
                                            {ReplaceCallSite})) {
        LocalChange = true;

        // Update the call graph for the newly promoted function.
        CallGraphNode *NewNode = CG.getOrInsertFunction(NewF);
        NewNode->stealCalledFunctionsFrom(OldNode);
        if (OldNode->getNumReferences() == 0)
          delete CG.removeFunctionFromModule(OldNode);
        else
          OldF->setLinkage(Function::ExternalLinkage);

        // And updat ethe SCC we're iterating as well.
        SCC.ReplaceNode(OldNode, NewNode);
      }
    }
    // Remember that we changed something.
    Changed |= LocalChange;
  } while (LocalChange);

  return Changed;
}
Esempio n. 3
0
/// DoPromotion - This method actually performs the promotion of the specified
/// arguments, and returns the new function.  At this point, we know that it's
/// safe to do so.
CallGraphNode *ArgPromotion::DoPromotion(Function *F,
                               SmallPtrSet<Argument*, 8> &ArgsToPromote,
                              SmallPtrSet<Argument*, 8> &ByValArgsToTransform) {

  // Start by computing a new prototype for the function, which is the same as
  // the old function, but has modified arguments.
  const FunctionType *FTy = F->getFunctionType();
  std::vector<const Type*> Params;

  typedef std::set<IndicesVector> ScalarizeTable;

  // ScalarizedElements - If we are promoting a pointer that has elements
  // accessed out of it, keep track of which elements are accessed so that we
  // can add one argument for each.
  //
  // Arguments that are directly loaded will have a zero element value here, to
  // handle cases where there are both a direct load and GEP accesses.
  //
  std::map<Argument*, ScalarizeTable> ScalarizedElements;

  // OriginalLoads - Keep track of a representative load instruction from the
  // original function so that we can tell the alias analysis implementation
  // what the new GEP/Load instructions we are inserting look like.
  std::map<IndicesVector, LoadInst*> OriginalLoads;

  // Attributes - Keep track of the parameter attributes for the arguments
  // that we are *not* promoting. For the ones that we do promote, the parameter
  // attributes are lost
  SmallVector<AttributeWithIndex, 8> AttributesVec;
  const AttrListPtr &PAL = F->getAttributes();

  // Add any return attributes.
  if (Attributes attrs = PAL.getRetAttributes())
    AttributesVec.push_back(AttributeWithIndex::get(0, attrs));

  // First, determine the new argument list
  unsigned ArgIndex = 1;
  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
       ++I, ++ArgIndex) {
    if (ByValArgsToTransform.count(I)) {
      // Simple byval argument? Just add all the struct element types.
      const Type *AgTy = cast<PointerType>(I->getType())->getElementType();
      const StructType *STy = cast<StructType>(AgTy);
      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
        Params.push_back(STy->getElementType(i));
      ++NumByValArgsPromoted;
    } else if (!ArgsToPromote.count(I)) {
      // Unchanged argument
      Params.push_back(I->getType());
      if (Attributes attrs = PAL.getParamAttributes(ArgIndex))
        AttributesVec.push_back(AttributeWithIndex::get(Params.size(), attrs));
    } else if (I->use_empty()) {
      // Dead argument (which are always marked as promotable)
      ++NumArgumentsDead;
    } else {
      // Okay, this is being promoted. This means that the only uses are loads
      // or GEPs which are only used by loads

      // In this table, we will track which indices are loaded from the argument
      // (where direct loads are tracked as no indices).
      ScalarizeTable &ArgIndices = ScalarizedElements[I];
      for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
           ++UI) {
        Instruction *User = cast<Instruction>(*UI);
        assert(isa<LoadInst>(User) || isa<GetElementPtrInst>(User));
        IndicesVector Indices;
        Indices.reserve(User->getNumOperands() - 1);
        // Since loads will only have a single operand, and GEPs only a single
        // non-index operand, this will record direct loads without any indices,
        // and gep+loads with the GEP indices.
        for (User::op_iterator II = User->op_begin() + 1, IE = User->op_end();
             II != IE; ++II)
          Indices.push_back(cast<ConstantInt>(*II)->getSExtValue());
        // GEPs with a single 0 index can be merged with direct loads
        if (Indices.size() == 1 && Indices.front() == 0)
          Indices.clear();
        ArgIndices.insert(Indices);
        LoadInst *OrigLoad;
        if (LoadInst *L = dyn_cast<LoadInst>(User))
          OrigLoad = L;
        else
          // Take any load, we will use it only to update Alias Analysis
          OrigLoad = cast<LoadInst>(User->use_back());
        OriginalLoads[Indices] = OrigLoad;
      }

      // Add a parameter to the function for each element passed in.
      for (ScalarizeTable::iterator SI = ArgIndices.begin(),
             E = ArgIndices.end(); SI != E; ++SI) {
        // not allowed to dereference ->begin() if size() is 0
        Params.push_back(GetElementPtrInst::getIndexedType(I->getType(),
                                                           SI->begin(),
                                                           SI->end()));
        assert(Params.back());
      }

      if (ArgIndices.size() == 1 && ArgIndices.begin()->empty())
        ++NumArgumentsPromoted;
      else
        ++NumAggregatesPromoted;
    }
  }

  // Add any function attributes.
  if (Attributes attrs = PAL.getFnAttributes())
    AttributesVec.push_back(AttributeWithIndex::get(~0, attrs));

  const Type *RetTy = FTy->getReturnType();

  // Work around LLVM bug PR56: the CWriter cannot emit varargs functions which
  // have zero fixed arguments.
  bool ExtraArgHack = false;
  if (Params.empty() && FTy->isVarArg()) {
    ExtraArgHack = true;
    Params.push_back(Type::getInt32Ty(F->getContext()));
  }

  // Construct the new function type using the new arguments.
  FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());

  // Create the new function body and insert it into the module.
  Function *NF = Function::Create(NFTy, F->getLinkage(), F->getName());
  NF->copyAttributesFrom(F);

  
  DEBUG(dbgs() << "ARG PROMOTION:  Promoting to:" << *NF << "\n"
        << "From: " << *F);
  
  // Recompute the parameter attributes list based on the new arguments for
  // the function.
  NF->setAttributes(AttrListPtr::get(AttributesVec.begin(),
                                     AttributesVec.end()));
  AttributesVec.clear();

  F->getParent()->getFunctionList().insert(F, NF);
  NF->takeName(F);

  // Get the alias analysis information that we need to update to reflect our
  // changes.
  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();

  // Get the callgraph information that we need to update to reflect our
  // changes.
  CallGraph &CG = getAnalysis<CallGraph>();
  
  // Get a new callgraph node for NF.
  CallGraphNode *NF_CGN = CG.getOrInsertFunction(NF);
  

  // Loop over all of the callers of the function, transforming the call sites
  // to pass in the loaded pointers.
  //
  SmallVector<Value*, 16> Args;
  while (!F->use_empty()) {
    CallSite CS = CallSite::get(F->use_back());
    assert(CS.getCalledFunction() == F);
    Instruction *Call = CS.getInstruction();
    const AttrListPtr &CallPAL = CS.getAttributes();

    // Add any return attributes.
    if (Attributes attrs = CallPAL.getRetAttributes())
      AttributesVec.push_back(AttributeWithIndex::get(0, attrs));

    // Loop over the operands, inserting GEP and loads in the caller as
    // appropriate.
    CallSite::arg_iterator AI = CS.arg_begin();
    ArgIndex = 1;
    for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
         I != E; ++I, ++AI, ++ArgIndex)
      if (!ArgsToPromote.count(I) && !ByValArgsToTransform.count(I)) {
        Args.push_back(*AI);          // Unmodified argument

        if (Attributes Attrs = CallPAL.getParamAttributes(ArgIndex))
          AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));

      } else if (ByValArgsToTransform.count(I)) {
        // Emit a GEP and load for each element of the struct.
        const Type *AgTy = cast<PointerType>(I->getType())->getElementType();
        const StructType *STy = cast<StructType>(AgTy);
        Value *Idxs[2] = {
              ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), 0 };
        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
          Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
          Value *Idx = GetElementPtrInst::Create(*AI, Idxs, Idxs+2,
                                                 (*AI)->getName()+"."+utostr(i),
                                                 Call);
          // TODO: Tell AA about the new values?
          Args.push_back(new LoadInst(Idx, Idx->getName()+".val", Call));
        }
      } else if (!I->use_empty()) {
        // Non-dead argument: insert GEPs and loads as appropriate.
        ScalarizeTable &ArgIndices = ScalarizedElements[I];
        // Store the Value* version of the indices in here, but declare it now
        // for reuse.
        std::vector<Value*> Ops;
        for (ScalarizeTable::iterator SI = ArgIndices.begin(),
               E = ArgIndices.end(); SI != E; ++SI) {
          Value *V = *AI;
          LoadInst *OrigLoad = OriginalLoads[*SI];
          if (!SI->empty()) {
            Ops.reserve(SI->size());
            const Type *ElTy = V->getType();
            for (IndicesVector::const_iterator II = SI->begin(),
                 IE = SI->end(); II != IE; ++II) {
              // Use i32 to index structs, and i64 for others (pointers/arrays).
              // This satisfies GEP constraints.
              const Type *IdxTy = (ElTy->isStructTy() ?
                    Type::getInt32Ty(F->getContext()) : 
                    Type::getInt64Ty(F->getContext()));
              Ops.push_back(ConstantInt::get(IdxTy, *II));
              // Keep track of the type we're currently indexing.
              ElTy = cast<CompositeType>(ElTy)->getTypeAtIndex(*II);
            }
            // And create a GEP to extract those indices.
            V = GetElementPtrInst::Create(V, Ops.begin(), Ops.end(),
                                          V->getName()+".idx", Call);
            Ops.clear();
            AA.copyValue(OrigLoad->getOperand(0), V);
          }
          // Since we're replacing a load make sure we take the alignment
          // of the previous load.
          LoadInst *newLoad = new LoadInst(V, V->getName()+".val", Call);
          newLoad->setAlignment(OrigLoad->getAlignment());
          Args.push_back(newLoad);
          AA.copyValue(OrigLoad, Args.back());
        }
      }

    if (ExtraArgHack)
      Args.push_back(Constant::getNullValue(Type::getInt32Ty(F->getContext())));

    // Push any varargs arguments on the list.
    for (; AI != CS.arg_end(); ++AI, ++ArgIndex) {
      Args.push_back(*AI);
      if (Attributes Attrs = CallPAL.getParamAttributes(ArgIndex))
        AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
    }

    // Add any function attributes.
    if (Attributes attrs = CallPAL.getFnAttributes())
      AttributesVec.push_back(AttributeWithIndex::get(~0, attrs));

    Instruction *New;
    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
      New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
                               Args.begin(), Args.end(), "", Call);
      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
      cast<InvokeInst>(New)->setAttributes(AttrListPtr::get(AttributesVec.begin(),
                                                          AttributesVec.end()));
    } else {
      New = CallInst::Create(NF, Args.begin(), Args.end(), "", Call);
      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
      cast<CallInst>(New)->setAttributes(AttrListPtr::get(AttributesVec.begin(),
                                                        AttributesVec.end()));
      if (cast<CallInst>(Call)->isTailCall())
        cast<CallInst>(New)->setTailCall();
    }
    Args.clear();
    AttributesVec.clear();

    // Update the alias analysis implementation to know that we are replacing
    // the old call with a new one.
    AA.replaceWithNewValue(Call, New);

    // Update the callgraph to know that the callsite has been transformed.
    CallGraphNode *CalleeNode = CG[Call->getParent()->getParent()];
    CalleeNode->replaceCallEdge(Call, New, NF_CGN);

    if (!Call->use_empty()) {
      Call->replaceAllUsesWith(New);
      New->takeName(Call);
    }

    // Finally, remove the old call from the program, reducing the use-count of
    // F.
    Call->eraseFromParent();
  }

  // Since we have now created the new function, splice the body of the old
  // function right into the new function, leaving the old rotting hulk of the
  // function empty.
  NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());

  // Loop over the argument list, transfering uses of the old arguments over to
  // the new arguments, also transfering over the names as well.
  //
  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
       I2 = NF->arg_begin(); I != E; ++I) {
    if (!ArgsToPromote.count(I) && !ByValArgsToTransform.count(I)) {
      // If this is an unmodified argument, move the name and users over to the
      // new version.
      I->replaceAllUsesWith(I2);
      I2->takeName(I);
      AA.replaceWithNewValue(I, I2);
      ++I2;
      continue;
    }

    if (ByValArgsToTransform.count(I)) {
      // In the callee, we create an alloca, and store each of the new incoming
      // arguments into the alloca.
      Instruction *InsertPt = NF->begin()->begin();

      // Just add all the struct element types.
      const Type *AgTy = cast<PointerType>(I->getType())->getElementType();
      Value *TheAlloca = new AllocaInst(AgTy, 0, "", InsertPt);
      const StructType *STy = cast<StructType>(AgTy);
      Value *Idxs[2] = {
            ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), 0 };

      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
        Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
        Value *Idx = 
          GetElementPtrInst::Create(TheAlloca, Idxs, Idxs+2,
                                    TheAlloca->getName()+"."+Twine(i), 
                                    InsertPt);
        I2->setName(I->getName()+"."+Twine(i));
        new StoreInst(I2++, Idx, InsertPt);
      }

      // Anything that used the arg should now use the alloca.
      I->replaceAllUsesWith(TheAlloca);
      TheAlloca->takeName(I);
      AA.replaceWithNewValue(I, TheAlloca);
      continue;
    }

    if (I->use_empty()) {
      AA.deleteValue(I);
      continue;
    }

    // Otherwise, if we promoted this argument, then all users are load
    // instructions (or GEPs with only load users), and all loads should be
    // using the new argument that we added.
    ScalarizeTable &ArgIndices = ScalarizedElements[I];

    while (!I->use_empty()) {
      if (LoadInst *LI = dyn_cast<LoadInst>(I->use_back())) {
        assert(ArgIndices.begin()->empty() &&
               "Load element should sort to front!");
        I2->setName(I->getName()+".val");
        LI->replaceAllUsesWith(I2);
        AA.replaceWithNewValue(LI, I2);
        LI->eraseFromParent();
        DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName()
              << "' in function '" << F->getName() << "'\n");
      } else {
        GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->use_back());
        IndicesVector Operands;
        Operands.reserve(GEP->getNumIndices());
        for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
             II != IE; ++II)
          Operands.push_back(cast<ConstantInt>(*II)->getSExtValue());

        // GEPs with a single 0 index can be merged with direct loads
        if (Operands.size() == 1 && Operands.front() == 0)
          Operands.clear();

        Function::arg_iterator TheArg = I2;
        for (ScalarizeTable::iterator It = ArgIndices.begin();
             *It != Operands; ++It, ++TheArg) {
          assert(It != ArgIndices.end() && "GEP not handled??");
        }

        std::string NewName = I->getName();
        for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
            NewName += "." + utostr(Operands[i]);
        }
        NewName += ".val";
        TheArg->setName(NewName);

        DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName()
              << "' of function '" << NF->getName() << "'\n");

        // All of the uses must be load instructions.  Replace them all with
        // the argument specified by ArgNo.
        while (!GEP->use_empty()) {
          LoadInst *L = cast<LoadInst>(GEP->use_back());
          L->replaceAllUsesWith(TheArg);
          AA.replaceWithNewValue(L, TheArg);
          L->eraseFromParent();
        }
        AA.deleteValue(GEP);
        GEP->eraseFromParent();
      }
    }

    // Increment I2 past all of the arguments added for this promoted pointer.
    for (unsigned i = 0, e = ArgIndices.size(); i != e; ++i)
      ++I2;
  }

  // Notify the alias analysis implementation that we inserted a new argument.
  if (ExtraArgHack)
    AA.copyValue(Constant::getNullValue(Type::getInt32Ty(F->getContext())), 
                 NF->arg_begin());


  // Tell the alias analysis that the old function is about to disappear.
  AA.replaceWithNewValue(F, NF);

  
  NF_CGN->stealCalledFunctionsFrom(CG[F]);
  
  // Now that the old function is dead, delete it.  If there is a dangling
  // reference to the CallgraphNode, just leave the dead function around for
  // someone else to nuke.
  CallGraphNode *CGN = CG[F];
  if (CGN->getNumReferences() == 0)
    delete CG.removeFunctionFromModule(CGN);
  else
    F->setLinkage(Function::ExternalLinkage);
  
  return NF_CGN;
}
void StructuredModuleEditor::instrumentCallsToFunction(Function *Callee) {
	if (Callee == NULL) {
		OS << "Function not found!\n";
		return;
	}

	InstList Calls = getCallsToFunction(Callee);

	FuncList Callers;
	for (InstList::iterator II = Calls.begin(), IE = Calls.end(); II != IE;
			++II) {
		Function *Caller = (*II)->getParent()->getParent();
		if (std::find(Callers.begin(), Callers.end(), Caller) == Callers.end())
			Callers.push_back(Caller);
	}

	OS << Callers.size() << " functions call '" << Callee->getName()
			<< "'...\n";
	OS << "=================================\n";
	for (FuncList::iterator FI = Callers.begin(), FE = Callers.end(); FI != FE;
			++FI) {
		OS << (*FI)->getName() << "\n";
	}
	OS << "=================================\n";

	std::vector<Value*> PreArgs;
	std::vector<Type*> PreArgTypes;
	for (Function::arg_iterator I = Callee->arg_begin(), E = Callee->arg_end();
			I != E; ++I) {
		PreArgTypes.push_back(I->getType());
		PreArgs.push_back(I);
	}

	std::vector<Type*> PostArgTypes;
	if (!Callee->getReturnType()->isVoidTy()) {
		PostArgTypes.push_back(Callee->getReturnType());
	}

	FuncList Clones;

	Clones.push_back(Callee);
	for (uint64_t i = 0; i < Callers.size() - 1; i++) {
		Function *Clone = cloneFunc(Callee);
		Clones.push_back(Clone);
	}

	for (uint64_t i = 0; i < Clones.size(); i++) {
		Constant *PreConst = M->getOrInsertFunction("",
				FunctionType::get(Type::getVoidTy(getGlobalContext()),
						PreArgTypes, false));
		Function *Pre = cast<Function>(PreConst);
		Pre->setName("pre");
		CG->getOrInsertFunction(Pre);

		Constant *PostConst = M->getOrInsertFunction("",
				FunctionType::get(Type::getVoidTy(getGlobalContext()),
						PostArgTypes, false));
		Function *Post = cast<Function>(PostConst);
		Post->setName("post");
		CG->getOrInsertFunction(Post);

		/*
		 OS << "\n";
		 OS << "Wrapping '" << Clones.at(i)->getName() << "'...\n\n";
		 OS << "Pre-invocation function = " << Pre->getName() << "\n";
		 OS << *Pre;
		 OS << "Post-invocation function = " << Post->getName() << "\n";
		 OS << *Post;
		 OS << "**************************************\n";*/

		Function *Wrapper = wrapFunc(Clones.at(i), Pre, Post);
		if (i == 0)
			Callee = Wrapper;

		Function *Caller = Callers.at(i);
		for (Function::iterator BBI = Caller->begin(), BBE = Caller->end();
				BBI != BBE; ++BBI) {
			for (BasicBlock::iterator II = BBI->begin(), IE = BBI->end();
					II != IE; ++II) {
				CallSite CS(cast<Value>(II));
				// If this isn't a call, or it is a call to an intrinsic...
				if (!CS || isa<IntrinsicInst>(II))
					continue;

				if (Callee == CS.getCalledFunction()) {
					CS.setCalledFunction(Wrapper);

					// Creates an edge from the calling node to its new destination node
					CallGraphNode *CallingNode = (*CG)[CS.getCaller()];
					CallGraphNode *NewCalleeNode = (*CG)[Wrapper];
					CallingNode->replaceCallEdge(CS, CS, NewCalleeNode);
				}
			}
		}
	}

	OS << "Functions successfully wrapped!\n";
}
Esempio n. 5
0
CallGraphNode* ArgumentRecovery::recoverArguments(llvm::CallGraphNode *node)
{
	Function* fn = node->getFunction();
	if (fn == nullptr)
	{
		// "theoretical nodes", whatever that is
		return nullptr;
	}
	
	// quick exit if there isn't exactly one argument
	if (fn->arg_size() != 1)
	{
		return nullptr;
	}
	
	Argument* fnArg = fn->arg_begin();
	if (!isStructType(fnArg))
	{
		return nullptr;
	}
	
	// This is a nasty NASTY hack that relies on the AA pass being RegisterUse.
	// The data should be moved to a separate helper pass that can be queried from both the AA pass and this one.
	RegisterUse& regUse = getAnalysis<RegisterUse>();
	CallGraph& cg = getAnalysis<CallGraphWrapperPass>().getCallGraph();
	
	const auto* modRefInfo = regUse.getModRefInfo(fn);
	assert(modRefInfo != nullptr);
	
	// At this point we pretty much know that we're going to modify the function, so start doing that.
	// Get register offsets from the old function before we start mutilating it.
	auto& registerMap = exposeAllRegisters(fn);
	
	// Create a new function prototype, asking RegisterUse for which registers should be passed in, and how.
	
	LLVMContext& ctx = fn->getContext();
	SmallVector<pair<const char*, Type*>, 16> parameters;
	Type* int64 = Type::getInt64Ty(ctx);
	Type* int64ptr = Type::getInt64PtrTy(ctx);
	for (const auto& pair : *modRefInfo)
	{
		if (pair.second != RegisterUse::NoModRef)
		{
			Type* paramType = (pair.second & RegisterUse::Mod) == RegisterUse::Mod ? int64ptr : int64;
			parameters.push_back({pair.first, paramType});
		}
	}
	
	// Order parameters.
	// FIXME: This could use an ABI-specific sort routine. For now, use a lexicographical sort.
	sort(parameters.begin(), parameters.end(), [](const pair<const char*, Type*>& a, const pair<const char*, Type*>& b) {
		return strcmp(a.first, b.first) < 0;
	});
	
	// Extract parameter types.
	SmallVector<Type*, 16> parameterTypes;
	for (const auto& pair : parameters)
	{
		parameterTypes.push_back(pair.second);
	}
	
	// Ideally, we would also do caller analysis here to figure out which output registers are never read, such that
	// we can either eliminate them from the parameter list or pass them by value instead of by address.
	// We would also pick a return value.
	FunctionType* newFunctionType = FunctionType::get(Type::getVoidTy(ctx), parameterTypes, false);

	Function* newFunc = Function::Create(newFunctionType, fn->getLinkage());
	newFunc->copyAttributesFrom(fn);
	fn->getParent()->getFunctionList().insert(fn, newFunc);
	newFunc->takeName(fn);
	fn->setName("__hollow_husk__" + newFunc->getName());
	
	// Set argument names
	size_t i = 0;
	
	for (Argument& arg : newFunc->args())
	{
		arg.setName(parameters[i].first);
		i++;
	}
	
	// update call graph
	CallGraphNode* newFuncNode = cg.getOrInsertFunction(newFunc);
	CallGraphNode* oldFuncNode = cg[fn];
	
	// loop over callers and transform call sites.
	while (!fn->use_empty())
	{
		CallSite cs(fn->user_back());
		Instruction* call = cast<CallInst>(cs.getInstruction());
		Function* caller = call->getParent()->getParent();
		
		auto& registerPositions = exposeAllRegisters(caller);
		SmallVector<Value*, 16> callParameters;
		for (const auto& pair : parameters)
		{
			// HACKHACK: find a pointer to a 64-bit int in the set.
			Value* registerPointer = nullptr;
			auto range = registerPositions.equal_range(pair.first);
			for (auto iter = range.first; iter != range.second; iter++)
			{
				if (auto gep = dyn_cast<GetElementPtrInst>(iter->second))
				if (gep->getResultElementType() == int64)
				{
					registerPointer = gep;
					break;
				}
			}
			
			assert(registerPointer != nullptr);
			
			if (isa<PointerType>(pair.second))
			{
				callParameters.push_back(registerPointer);
			}
			else
			{
				// Create a load instruction. GVN will get rid of it if it's unnecessary.
				LoadInst* load = new LoadInst(registerPointer, pair.first, call);
				callParameters.push_back(load);
			}
		}
		
		CallInst* newCall = CallInst::Create(newFunc, callParameters, "", call);
		
		// Update AA
		regUse.replaceWithNewValue(call, newCall);
		
		// Update call graph
		CallGraphNode* calleeNode = cg[caller];
		calleeNode->replaceCallEdge(cs, CallSite(newCall), newFuncNode);
		
		// Finish replacing
		if (!call->use_empty())
		{
			call->replaceAllUsesWith(newCall);
			newCall->takeName(call);
		}
		
		call->eraseFromParent();
	}
	
	// Do not fix functions without a body.
	if (!fn->isDeclaration())
	{
		// Fix up function code. Start by moving everything into the new function.
		newFunc->getBasicBlockList().splice(newFunc->begin(), fn->getBasicBlockList());
		newFuncNode->stealCalledFunctionsFrom(oldFuncNode);
		
		// Change register uses
		size_t argIndex = 0;
		auto& argList = newFunc->getArgumentList();
		
		// Create a temporary insertion point. We don't want an existing instruction since chances are that we'll remove it.
		Instruction* insertionPoint = BinaryOperator::CreateAdd(ConstantInt::get(int64, 0), ConstantInt::get(int64, 0), "noop", newFunc->begin()->begin());
		for (auto iter = argList.begin(); iter != argList.end(); iter++, argIndex++)
		{
			Value* replaceWith = iter;
			const auto& paramTuple = parameters[argIndex];
			if (!isa<PointerType>(paramTuple.second))
			{
				// Create an alloca, copy value from parameter, replace GEP with alloca.
				// This is ugly code gen, but it will optimize easily, and still work if
				// we need a pointer reference to the register.
				auto alloca = new AllocaInst(paramTuple.second, paramTuple.first, insertionPoint);
				new StoreInst(iter, alloca, insertionPoint);
				replaceWith = alloca;
			}
			
			// Replace all uses with new instance.
			auto iterPair = registerMap.equal_range(paramTuple.first);
			for (auto registerMapIter = iterPair.first; registerMapIter != iterPair.second; registerMapIter++)
			{
				auto& registerValue = registerMapIter->second;
				registerValue->replaceAllUsesWith(replaceWith);
				cast<Instruction>(registerValue)->eraseFromParent();
				registerValue = replaceWith;
			}
		}
		
		// At this point, the uses of the argument struct left should be:
		// * preserved registers
		// * indirect jumps
		const auto& target = getAnalysis<TargetInfo>();
		while (!fnArg->use_empty())
		{
			auto lastUser = fnArg->user_back();
			if (auto user = dyn_cast<GetElementPtrInst>(lastUser))
			{
				// Promote register to alloca.
				const char* maybeName = target.registerName(*user);
				const char* regName = target.largestOverlappingRegister(maybeName);
				assert(regName != nullptr);
				
				auto alloca = new AllocaInst(user->getResultElementType(), regName, insertionPoint);
				user->replaceAllUsesWith(alloca);
				user->eraseFromParent();
			}
			else
			{
				auto call = cast<CallInst>(lastUser);
				
				Function* intrin = nullptr;
				StringRef intrinName = call->getCalledFunction()->getName();
				if (intrinName == "x86_jump_intrin")
				{
					intrin = indirectJump;
				}
				else if (intrinName == "x86_call_intrin")
				{
					intrin = indirectCall;
				}
				else
				{
					assert(false);
					// Can't decompile this function. Delete its body.
					newFunc->deleteBody();
					insertionPoint = nullptr;
					break;
				}
				
				// Replace intrinsic with another intrinsic.
				Value* jumpTarget = call->getOperand(2);
				SmallVector<Value*, 16> callArgs;
				callArgs.push_back(jumpTarget);
				for (Argument& arg : argList)
				{
					callArgs.push_back(&arg);
				}
				
				CallInst* varargCall = CallInst::Create(intrin, callArgs, "", call);
				newFuncNode->replaceCallEdge(CallSite(call), CallSite(varargCall), cg[intrin]);
				regUse.replaceWithNewValue(call, varargCall);
				
				varargCall->takeName(call);
				call->eraseFromParent();
			}
		}
		if (insertionPoint != nullptr)
		{
			// no longer needed
			insertionPoint->eraseFromParent();
		}
	}
	
	// At this point nothing should be using the old register argument anymore. (Pray!)
	// Leave the hollow husk of the old function in place to be erased by global DCE.
	registerAddresses[newFunc] = move(registerMap);
	registerAddresses.erase(fn);
	
	// Should be all.
	return newFuncNode;
}