CGBitFieldInfo CGBitFieldInfo::MakeInfo(CodeGenTypes &Types,
                                        const FieldDecl *FD,
                                        uint64_t Offset, uint64_t Size,
                                        uint64_t StorageSize,
                                        uint64_t StorageAlignment) {
  llvm::Type *Ty = Types.ConvertTypeForMem(FD->getType());
  CharUnits TypeSizeInBytes =
    CharUnits::fromQuantity(Types.getDataLayout().getTypeAllocSize(Ty));
  uint64_t TypeSizeInBits = Types.getContext().toBits(TypeSizeInBytes);

  bool IsSigned = FD->getType()->isSignedIntegerOrEnumerationType();

  if (Size > TypeSizeInBits) {
    // We have a wide bit-field. The extra bits are only used for padding, so
    // if we have a bitfield of type T, with size N:
    //
    // T t : N;
    //
    // We can just assume that it's:
    //
    // T t : sizeof(T);
    //
    Size = TypeSizeInBits;
  }

  // Reverse the bit offsets for big endian machines. Because we represent
  // a bitfield as a single large integer load, we can imagine the bits
  // counting from the most-significant-bit instead of the
  // least-significant-bit.
  if (Types.getDataLayout().isBigEndian()) {
    Offset = StorageSize - (Offset + Size);
  }

  return CGBitFieldInfo(Offset, Size, IsSigned, StorageSize, StorageAlignment);
}
CGRecordLowering::CGRecordLowering(CodeGenTypes &Types, const RecordDecl *D,
                                   bool Packed)
    : Types(Types), Context(Types.getContext()), D(D),
      RD(dyn_cast<CXXRecordDecl>(D)),
      Layout(Types.getContext().getASTRecordLayout(D)),
      DataLayout(Types.getDataLayout()), IsZeroInitializable(true),
      IsZeroInitializableAsBase(true), Packed(Packed) {}
CGBitFieldInfo CGBitFieldInfo::MakeInfo(CodeGenTypes &Types,
                                        const FieldDecl *FD,
                                        uint64_t Offset, uint64_t Size,
                                        uint64_t StorageSize,
                                        CharUnits StorageOffset) {
  // This function is vestigial from CGRecordLayoutBuilder days but is still 
  // used in GCObjCRuntime.cpp.  That usage has a "fixme" attached to it that
  // when addressed will allow for the removal of this function.
  llvm::Type *Ty = Types.ConvertTypeForMem(FD->getType());
  CharUnits TypeSizeInBytes =
    CharUnits::fromQuantity(Types.getDataLayout().getTypeAllocSize(Ty));
  uint64_t TypeSizeInBits = Types.getContext().toBits(TypeSizeInBytes);

  bool IsSigned = FD->getType()->isSignedIntegerOrEnumerationType();

  if (Size > TypeSizeInBits) {
    // We have a wide bit-field. The extra bits are only used for padding, so
    // if we have a bitfield of type T, with size N:
    //
    // T t : N;
    //
    // We can just assume that it's:
    //
    // T t : sizeof(T);
    //
    Size = TypeSizeInBits;
  }

  // Reverse the bit offsets for big endian machines. Because we represent
  // a bitfield as a single large integer load, we can imagine the bits
  // counting from the most-significant-bit instead of the
  // least-significant-bit.
  if (Types.getDataLayout().isBigEndian()) {
    Offset = StorageSize - (Offset + Size);
  }

  return CGBitFieldInfo(Offset, Size, IsSigned, StorageSize, StorageOffset);
}