bool computeCovarianceSquareRootFromSigmaPoints(const Type& mean, const SigmaPoints<Type>& sigmaPoints, 
                                                        const CovarianceSquareRoot<Type>& noiseCov, CovarianceSquareRoot<Type>& cov)
        {
            // Compute QR decomposition of (transposed) augmented matrix
            Matrix<T, 2*State::length + Type::length, Type::length> tmp;
            tmp.template topRows<2*State::length>() = std::sqrt(this->sigmaWeights_c[1]) * ( sigmaPoints.template rightCols<SigmaPointCount-1>().colwise() - mean).transpose();
            tmp.template bottomRows<Type::length>() = noiseCov.matrixU().toDenseMatrix();

            // TODO: Use ColPivHouseholderQR
            Eigen::HouseholderQR<decltype(tmp)> qr( tmp );
            
            // Set R matrix as upper triangular square root
            cov.setU(qr.matrixQR().template topRightCorner<Type::length, Type::length>());
            
            // Perform additional rank 1 update
            // TODO: According to the paper (Section 3, "Cholesky factor updating") the update
            //       is defined using the square root of the scalar, however the correct result
            //       is obtained when using the weight directly rather than using the square root
            //       It should be checked whether this is a bug in Eigen or in the Paper
            // T nu = std::copysign( std::sqrt(std::abs(sigmaWeights_c[0])), sigmaWeights_c[0]);
            T nu = this->sigmaWeights_c[0];
            cov.rankUpdate( sigmaPoints.template leftCols<1>() - mean, nu );
            
            return (cov.info() == Eigen::Success);
        }
 bool computeKalmanGain( const Measurement& y,
                         const SigmaPoints<Measurement>& sigmaMeasurementPoints,
                         const CovarianceSquareRoot<Measurement>& S_y,
                         KalmanGain<Measurement>& K)
 {
     // Note: The intermediate eval() is needed here (for now) due to a bug in Eigen that occurs
     // when Measurement::length == 1 AND State::length >= 8
     auto W = this->sigmaWeights_c.transpose().template replicate<State::length,1>();
     auto P = (sigmaStatePoints.colwise() - x).cwiseProduct( W ).eval()
            * (sigmaMeasurementPoints.colwise() - y).transpose();
     
     K = S_y.solve(P.transpose()).transpose();
     return true;
 }
 bool updateStateCovariance(const KalmanGain<Measurement>& K, const CovarianceSquareRoot<Measurement>& S_y)
 {
     auto U = K * S_y.matrixL();
     for(int i = 0; i < U.cols(); ++i)
     {
         S.rankUpdate( U.col(i), -1 );
         
         if( S.info() == Eigen::NumericalIssue )
         {
             // TODO: handle numerical issues in some sensible way
             return false;
         }
     }
     
     return true;
 }
Esempio n. 4
0
 SquareRootBase()
 {
     S.setIdentity();
 }
Esempio n. 5
0
 /**
  * @brief Set Covariance using Square Root
  *
  * @param covSquareRoot Lower triangular Matrix representing the covariance
  *                      square root (i.e. P = LLˆT)
  */
 bool setCovarianceSquareRoot(const Covariance<StateType>& covSquareRoot)
 {
     S.setL(covSquareRoot);
     return true;
 }
Esempio n. 6
0
 /**
  * Set Covariance
  */
 bool setCovariance(const Covariance<StateType>& covariance)
 {
     S.compute(covariance);
     return (S.info() == Eigen::Success);
 }
Esempio n. 7
0
 /**
  * Get covariance reconstructed from square root
  */
 Covariance<StateType> getCovariance() const
 {
     return S.reconstructedMatrix();
 }