Esempio n. 1
0
cv::Mat readCSV(const string & filename, int datatype)
{
    // read CSV data
    CvMLData mlData;
    int err = mlData.read_csv(filename.c_str());
    if (err != 0)
    {
        cerr << "error: failed to load " << filename << endl;
        exit(-1);
    }

    // convert data to matrix
    cv::Mat values(mlData.get_values());
    cv::Mat data;
    values.convertTo(data, datatype);

    // display info
    cout << "filename: " << filename << endl;
    cout << "size: " << data.rows << " " << data.cols << endl;

    // display first lines
    cv::Mat subData(data, cv::Rect(0, 0, data.cols, 3));
    displayMat(subData);
    cout << "  ..." << endl;

    return data;
}
Esempio n. 2
0
int main() {
    // load codebook
    cout << "load codebook ... ..." << endl;
    string cbpath = "data/cluster/clst.npy";
    CvMLData mlData;
    mlData.read_csv(cbpath.c_str());
    Mat codebook(mlData.get_values());

    // load flann
    cout << "build flann ... ... " << endl;
    string flannpath = "data/cache/flann.index";
    cv::flann::IndexParams *indexParams;
    cv::flann::Index *flannIndex;
    if (exists(flannpath)) {
        indexParams = new cv::flann::SavedIndexParams(flannpath);
        flannIndex = new cv::flann::Index(codebook, *indexParams);
    }
    else {
        indexParams = new cv::flann::AutotunedIndexParams(); 
        flannIndex = new cv::flann::Index(codebook, *indexParams);
        flannIndex->save(flannpath);
    }

    // create the inverted index
    vector<string> siftpaths = readlines("data/featlist");
    string savepath = "data/cache/ivindex.txt";
    if (!exists(savepath)) {
        cerr << "index file doesn't exist ... ..." << endl;
        exit(-1);
    }
    IvIndex ivindex(savepath, codebook, siftpaths.size());

    // prepare the context and sockets
    zmq::context_t context(1);
    zmq::socket_t socket(context, ZMQ_REP);
    socket.bind("tcp://*:5555");

    cout << "start to receive request ... ..." << endl;
    // query 
    while (true) {
        // Wait for next request from client
        string recvStr = s_recv(socket);
        // ???? transform recvStr ukbench00000.th.jpg to data/Images/ukbench00000.jpg.sift
        char path[128];
        sprintf(path, "data/Images/ukbench%s.jpg.sift", recvStr.substr(7, 5).c_str());
        cout << "process request: " << recvStr << endl;
        vector<size_t> ret = ivindex.score(path, 15, flannIndex);

        sleep(1);
        // Send reply back to client
        string reply;
        for (auto x: ret) {
            reply += to_string(x) + " ";
        }
        s_send(socket, reply);
    }

    delete indexParams;
    indexParams = nullptr;
    delete flannIndex;
    flannIndex = nullptr;

    return 0;
}
Esempio n. 3
0
int main()
{
    const int train_sample_count = 300;
    bool is_regression = false;

    const char* filename = "data/waveform.data";
    int response_idx = 21;

    CvMLData data;

    CvTrainTestSplit spl( train_sample_count );
    
    if(data.read_csv(filename) != 0)
    {
        printf("couldn't read %s\n", filename);
        exit(0);
    }

    data.set_response_idx(response_idx);
    data.change_var_type(response_idx, CV_VAR_CATEGORICAL);
    data.set_train_test_split( &spl );

    const CvMat* values = data.get_values();
    const CvMat* response = data.get_responses();
    const CvMat* missing = data.get_missing();
    const CvMat* var_types = data.get_var_types();
    const CvMat* train_sidx = data.get_train_sample_idx();
    const CvMat* var_idx = data.get_var_idx();
    CvMat*response_map;
    CvMat*ordered_response = cv_preprocess_categories(response, var_idx, response->rows, &response_map, NULL);
    int num_classes = response_map->cols;
    
    CvDTree dtree;
    printf("======DTREE=====\n");
    CvDTreeParams cvd_params( 10, 1, 0, false, 16, 0, false, false, 0);
    dtree.train( &data, cvd_params);
    print_result( dtree.calc_error( &data, CV_TRAIN_ERROR), dtree.calc_error( &data, CV_TEST_ERROR ), dtree.get_var_importance() );

#if 0
    /* boosted trees are only implemented for two classes */
    printf("======BOOST=====\n");
    CvBoost boost;
    boost.train( &data, CvBoostParams(CvBoost::DISCRETE, 100, 0.95, 2, false, 0));
    print_result( boost.calc_error( &data, CV_TRAIN_ERROR ), boost.calc_error( &data, CV_TEST_ERROR), 0 );
#endif

    printf("======RTREES=====\n");
    CvRTrees rtrees;
    rtrees.train( &data, CvRTParams( 10, 2, 0, false, 16, 0, true, 0, 100, 0, CV_TERMCRIT_ITER ));
    print_result( rtrees.calc_error( &data, CV_TRAIN_ERROR), rtrees.calc_error( &data, CV_TEST_ERROR ), rtrees.get_var_importance() );

    printf("======ERTREES=====\n");
    CvERTrees ertrees;
    ertrees.train( &data, CvRTParams( 10, 2, 0, false, 16, 0, true, 0, 100, 0, CV_TERMCRIT_ITER ));
    print_result( ertrees.calc_error( &data, CV_TRAIN_ERROR), ertrees.calc_error( &data, CV_TEST_ERROR ), ertrees.get_var_importance() );

    printf("======GBTREES=====\n");
    CvGBTrees gbtrees;
    CvGBTreesParams gbparams;
    gbparams.loss_function_type = CvGBTrees::DEVIANCE_LOSS; // classification, not regression
    gbtrees.train( &data, gbparams);
    
    //gbt_print_error(&gbtrees, values, response, response_idx, train_sidx);
    print_result( gbtrees.calc_error( &data, CV_TRAIN_ERROR), gbtrees.calc_error( &data, CV_TEST_ERROR ), 0);

    printf("======KNEAREST=====\n");
    CvKNearest knearest;
    //bool CvKNearest::train( const Mat& _train_data, const Mat& _responses,
    //                const Mat& _sample_idx, bool _is_regression,
    //                int _max_k, bool _update_base )
    bool is_classifier = var_types->data.ptr[var_types->cols-1] == CV_VAR_CATEGORICAL;
    assert(is_classifier);
    int max_k = 10;
    knearest.train(values, response, train_sidx, is_regression, max_k, false);

    CvMat* new_response = cvCreateMat(response->rows, 1, values->type);
    //print_types();

    //const CvMat* train_sidx = data.get_train_sample_idx();
    knearest.find_nearest(values, max_k, new_response, 0, 0, 0);

    print_result(knearest_calc_error(values, response, new_response, train_sidx, is_regression, CV_TRAIN_ERROR),
                 knearest_calc_error(values, response, new_response, train_sidx, is_regression, CV_TEST_ERROR), 0);

    printf("======== RBF SVM =======\n");
    //printf("indexes: %d / %d, responses: %d\n", train_sidx->cols, var_idx->cols, values->rows);
    CvMySVM svm1;
    CvSVMParams params1 = CvSVMParams(CvSVM::C_SVC, CvSVM::RBF,
                                     /*degree*/0, /*gamma*/1, /*coef0*/0, /*C*/1,
                                     /*nu*/0, /*p*/0, /*class_weights*/0,
                                     cvTermCriteria(CV_TERMCRIT_ITER+CV_TERMCRIT_EPS, 1000, FLT_EPSILON));
    //svm1.train(values, response, train_sidx, var_idx, params1);
    svm1.train_auto(values, response, var_idx, train_sidx, params1);
    svm_print_error(&svm1, values, response, response_idx, train_sidx);

    printf("======== Linear SVM =======\n");
    CvMySVM svm2;
    CvSVMParams params2 = CvSVMParams(CvSVM::C_SVC, CvSVM::LINEAR,
                                     /*degree*/0, /*gamma*/1, /*coef0*/0, /*C*/1,
                                     /*nu*/0, /*p*/0, /*class_weights*/0,
                                     cvTermCriteria(CV_TERMCRIT_ITER+CV_TERMCRIT_EPS, 1000, FLT_EPSILON));
    //svm2.train(values, response, train_sidx, var_idx, params2);
    svm2.train_auto(values, response, var_idx, train_sidx, params2);
    svm_print_error(&svm2, values, response, response_idx, train_sidx);

    printf("======NEURONAL NETWORK=====\n");

    int num_layers = 3;
    CvMat layers = cvMat(1, num_layers, CV_32SC1, calloc(1, sizeof(double)*num_layers*1));
    cvmSetI(&layers, 0, 0, values->cols-1);
    cvmSetI(&layers, 0, 1, num_classes);
    cvmSetI(&layers, 0, 2, num_classes);
    CvANN_MLP ann(&layers, CvANN_MLP::SIGMOID_SYM, 0.0, 0.0);
    CvANN_MLP_TrainParams ann_params;
    //ann_params.train_method = CvANN_MLP_TrainParams::BACKPROP;
    CvMat ann_response = cvmat_make_boolean_class_columns(response, num_classes);

    CvMat values2 = cvmat_remove_column(values, response_idx);
    ann.train(&values2, &ann_response, NULL, train_sidx, ann_params, 0x0000);
    //ann.train(values, &ann_response, NULL, train_sidx, ann_params, 0x0000);

    ann_print_error(&ann, values, num_classes, &ann_response, response, response_idx, train_sidx);

#if 0 /* slow */

    printf("======== Polygonal SVM =======\n");
    //printf("indexes: %d / %d, responses: %d\n", train_sidx->cols, var_idx->cols, values->rows);
    CvMySVM svm3;
    CvSVMParams params3 = CvSVMParams(CvSVM::C_SVC, CvSVM::POLY,
                                     /*degree*/2, /*gamma*/1, /*coef0*/0, /*C*/1,
                                     /*nu*/0, /*p*/0, /*class_weights*/0,
                                     cvTermCriteria(CV_TERMCRIT_ITER+CV_TERMCRIT_EPS, 1000, FLT_EPSILON));
    //svm3.train(values, response, train_sidx, var_idx, params3);
    svm3.train_auto(values, response, var_idx, train_sidx, params3);
    svm_print_error(&svm3, values, response, response_idx, train_sidx);
#endif

    return 0;
}