mitk::SemanticRelationsDataStorageAccess::DataNodeVector mitk::SemanticRelationsDataStorageAccess::GetAllImagesOfLesion(const SemanticTypes::CaseID& caseID, const SemanticTypes::Lesion& lesion) const
{
  if (m_DataStorage.IsExpired())
  {
    mitkThrowException(SemanticRelationException) << "Not a valid data storage.";
  }

  DataNodeVector allImagesOfLesion;
  // 1. get all segmentations that define the lesion
  // 2. retrieve the parent node (source) of the found segmentation node
  DataNodeVector allSegmentationsOfLesion = GetAllSegmentationsOfLesion(caseID, lesion);
  for (const auto& segmentationNode : allSegmentationsOfLesion)
  {
    // get parent node of the current segmentation node with the node predicate
    DataStorage::SetOfObjects::ConstPointer parentNodes = m_DataStorage.Lock()->GetSources(segmentationNode, NodePredicates::GetImagePredicate(), false);
    for (auto it = parentNodes->Begin(); it != parentNodes->End(); ++it)
    {
      DataNode::Pointer dataNode = it->Value();
      allImagesOfLesion.push_back(it->Value());
    }
  }

  std::sort(allImagesOfLesion.begin(), allImagesOfLesion.end());
  allImagesOfLesion.erase(std::unique(allImagesOfLesion.begin(), allImagesOfLesion.end()), allImagesOfLesion.end());
  return allImagesOfLesion;
}
mitk::SemanticRelationsDataStorageAccess::DataNodeVector mitk::SemanticRelationsDataStorageAccess::GetAllSegmentationsOfLesion(const SemanticTypes::CaseID& caseID, const SemanticTypes::Lesion& lesion) const
{
  if (SemanticRelationsInference::InstanceExists(caseID, lesion))
  {
    // lesion exists, retrieve all case segmentations from the storage
    DataNodeVector allSegmentationsOfLesion = GetAllSegmentationsOfCase(caseID);

    // filter all segmentations: check for semantic relation with the given lesion using a lambda function
    auto lambda = [&lesion, this](DataNode::Pointer segmentation)
    {
      try
      {
        SemanticTypes::Lesion representedLesion = SemanticRelationsInference::GetLesionOfSegmentation(segmentation);
        return lesion.UID != representedLesion.UID;
      }
      catch (const SemanticRelationException&)
      {
        return true;
      }
    };
    allSegmentationsOfLesion.erase(std::remove_if(allSegmentationsOfLesion.begin(), allSegmentationsOfLesion.end(), lambda), allSegmentationsOfLesion.end());

    return allSegmentationsOfLesion;
  }
  else
  {
    mitkThrowException(SemanticRelationException) << "Could not find an existing lesion instance for the given caseID " << caseID << " and lesion " << lesion.UID << ".";
  }
}
mitk::SemanticRelationsDataStorageAccess::DataNodeVector mitk::SemanticRelationsDataStorageAccess::GetAllSpecificImages(const SemanticTypes::CaseID& caseID, const SemanticTypes::ControlPoint& controlPoint, const SemanticTypes::InformationType& informationType) const
{
  if (SemanticRelationsInference::InstanceExists(caseID, controlPoint))
  {
    if (SemanticRelationsInference::InstanceExists(caseID, informationType))
    {
      // control point exists, information type exists, retrieve all images from the storage
      DataNodeVector allImagesOfCase = GetAllImagesOfCase(caseID);
      // filter all images to remove the ones with a different control point and information type using a lambda function
      auto lambda = [&controlPoint, &informationType, this](DataNode::Pointer imageNode)
      {
        return (informationType != SemanticRelationsInference::GetInformationTypeOfImage(imageNode))
            || (controlPoint.date != SemanticRelationsInference::GetControlPointOfImage(imageNode).date);
      };

      allImagesOfCase.erase(std::remove_if(allImagesOfCase.begin(), allImagesOfCase.end(), lambda), allImagesOfCase.end());

      return allImagesOfCase;
    }
    else
    {
      mitkThrowException(SemanticRelationException) << "Could not find an existing information type for the given caseID " << caseID << " and information type " << informationType;
    }
  }
  else
  {
    mitkThrowException(SemanticRelationException) << "Could not find an existing control point for the given caseID " << caseID << " and control point " << controlPoint.UID;
  }
}
Esempio n. 4
0
bool mitk::SceneReaderV1::LoadScene( TiXmlDocument& document, const std::string& workingDirectory, DataStorage* storage )
{
  assert(storage);
  bool error(false);

  // TODO prepare to detect errors (such as cycles) from wrongly written or edited xml files

  //Get number of elements to initialze progress bar
  //   1. if there is a <data type="..." file="..."> element,
    //        - construct a name for the appropriate serializer
    //        - try to instantiate this serializer via itk object factory
    //        - if serializer could be created, use it to read the file into a BaseData object
    //        - if successful, call the new node's SetData(..)

    // create a node for the tag "data" and test if node was created
  typedef std::vector<mitk::DataNode::Pointer> DataNodeVector;
  DataNodeVector DataNodes;
  unsigned int listSize = 0;
  for( TiXmlElement* element = document.FirstChildElement("node"); element != NULL; element = element->NextSiblingElement("node") )
  {
    ++listSize;
  }

  ProgressBar::GetInstance()->AddStepsToDo(listSize * 2);

  for (TiXmlElement* element = document.FirstChildElement("node"); element != NULL; element = element->NextSiblingElement("node"))
  {
      DataNodes.push_back(LoadBaseDataFromDataTag(element->FirstChildElement("data"), workingDirectory, error));
      ProgressBar::GetInstance()->Progress();
  }

  // iterate all nodes
  // first level nodes should be <node> elements
  DataNodeVector::iterator nit = DataNodes.begin();
  for( TiXmlElement* element = document.FirstChildElement("node"); element != NULL || nit != DataNodes.end(); element = element->NextSiblingElement("node"), ++nit )
  {
    mitk::DataNode::Pointer node = *nit;
    // in case dataXmlElement is valid test whether it containts the "properties" child tag
    // and process further if and only if yes
    TiXmlElement *dataXmlElement = element->FirstChildElement("data");
    if( dataXmlElement && dataXmlElement->FirstChildElement("properties") )
    {
      TiXmlElement *baseDataElement = dataXmlElement->FirstChildElement("properties");
      if ( node->GetData() )
      {
        DecorateBaseDataWithProperties( node->GetData(), baseDataElement, workingDirectory);
      }
      else
      {
        MITK_WARN << "BaseData properties stored in scene file, but BaseData could not be read" << std::endl;
      }
    }

    //   2. check child nodes
    const char* uida = element->Attribute("UID");
    std::string uid("");

    if (uida)
    {
      uid = uida;
      m_NodeForID[uid] = node.GetPointer();
      m_IDForNode[ node.GetPointer() ] = uid;
    }
    else
    {
      MITK_ERROR << "No UID found for current node. Node will have no parents.";
      error = true;
    }

    //   3. if there are <properties> nodes,
    //        - instantiate the appropriate PropertyListDeSerializer
    //        - use them to construct PropertyList objects
    //        - add these properties to the node (if necessary, use renderwindow name)
    bool success = DecorateNodeWithProperties(node, element, workingDirectory);
    if (!success)
    {
      MITK_ERROR << "Could not load properties for node.";
      error = true;
    }

    // remember node for later adding to DataStorage
    m_OrderedNodePairs.push_back( std::make_pair( node, std::list<std::string>() ) );

    //   4. if there are <source> elements, remember parent objects
    for( TiXmlElement* source = element->FirstChildElement("source"); source != NULL; source = source->NextSiblingElement("source") )
    {
      const char* sourceUID = source->Attribute("UID");
      if (sourceUID)
      {
        m_OrderedNodePairs.back().second.push_back( std::string(sourceUID) );
      }
    }

    ProgressBar::GetInstance()->Progress();
  } // end for all <node>

  // sort our nodes by their "layer" property
  // (to be inserted in that order)
  m_OrderedNodePairs.sort( &NodeSortByLayerIsLessThan );

  // remove all unknown parent UIDs
  for (OrderedNodesList::iterator nodesIter = m_OrderedNodePairs.begin();
       nodesIter != m_OrderedNodePairs.end();
       ++nodesIter)
  {
    for (std::list<std::string>::iterator parentsIter = nodesIter->second.begin();
         parentsIter != nodesIter->second.end();)
    {
      if (m_NodeForID.find( *parentsIter ) == m_NodeForID.end())
      {
        parentsIter = nodesIter->second.erase( parentsIter );
        MITK_WARN << "Found a DataNode with unknown parents. Will add it to DataStorage without any parent objects.";
        error = true;
      }
      else
      {
        ++parentsIter;
      }
    }
  }

  // repeat the following loop ...
  //   ... for all created nodes
  unsigned int lastMapSize(0);
  while ( lastMapSize != m_OrderedNodePairs.size()) // this is to prevent infinite loops; each iteration must at least add one node to DataStorage
  {
    lastMapSize = m_OrderedNodePairs.size();

    // iterate (layer) ordered nodes backwards
    // we insert the highest layers first
    for (OrderedNodesList::iterator nodesIter = m_OrderedNodePairs.begin();
         nodesIter != m_OrderedNodePairs.end();
         ++nodesIter)
    {
      bool addThisNode(true);

      // if any parent node is not yet in DataStorage, skip node for now and check later
      for (std::list<std::string>::iterator parentsIter = nodesIter->second.begin();
           parentsIter != nodesIter->second.end();
           ++parentsIter)
      {
        if ( !storage->Exists( m_NodeForID[ *parentsIter ] ) )
        {
          addThisNode = false;
          break;
        }
      }

      if (addThisNode)
      {
        DataStorage::SetOfObjects::Pointer parents = DataStorage::SetOfObjects::New();
        for ( std::list<std::string>::iterator parentsIter = nodesIter->second.begin();
              parentsIter != nodesIter->second.end();
              ++parentsIter )
        {
           parents->push_back(m_NodeForID[*parentsIter]);
        }

        // if all parents are found in datastorage (or are unknown), add node to DataStorage
        storage->Add(nodesIter->first, parents);

        // remove this node from m_OrderedNodePairs
        m_OrderedNodePairs.erase( nodesIter );

        // break this for loop because iterators are probably invalid
        break;
      }
    }
  }

  // All nodes that are still in m_OrderedNodePairs at this point are not part of a proper directed graph structure. We'll add such nodes without any parent information.
  for (OrderedNodesList::iterator nodesIter = m_OrderedNodePairs.begin();
       nodesIter != m_OrderedNodePairs.end();
       ++nodesIter)
  {
    storage->Add( nodesIter->first );
    MITK_WARN << "Encountered node that is not part of a directed graph structure. Will be added to DataStorage without parents.";
    error = true;
  }

  return !error;
}