Esempio n. 1
0
bool DeBruijnNode::isNodeConnected(DeBruijnNode * node) const
{
    for (size_t i = 0; i < m_edges.size(); ++i)
    {
        DeBruijnEdge * edge = m_edges[i];
        if (edge->getStartingNode() == node || edge->getEndingNode() == node)
            return true;
    }
    return false;
}
Esempio n. 2
0
//This function checks to see if the passed node leads away from
//this node.  If so, it returns the connecting edge.  If not,
//it returns a null pointer.
DeBruijnEdge * DeBruijnNode::doesNodeLeadAway(DeBruijnNode * node) const
{
    for (size_t i = 0; i < m_edges.size(); ++i)
    {
        DeBruijnEdge * edge = m_edges[i];
        if (edge->getStartingNode() == this && edge->getEndingNode() == node)
            return edge;
    }
    return 0;
}
Esempio n. 3
0
std::vector<DeBruijnEdge *> DeBruijnNode::getLeavingEdges() const
{
    std::vector<DeBruijnEdge *> returnVector;
    for (size_t i = 0; i < m_edges.size(); ++i)
    {
        DeBruijnEdge * edge = m_edges[i];
        if (this == edge->getStartingNode())
            returnVector.push_back(edge);
    }
    return returnVector;
}
Esempio n. 4
0
//If the node has an edge which leads to itself (creating a loop), this function
//will return it.  Otherwise, it returns 0.
DeBruijnEdge * DeBruijnNode::getSelfLoopingEdge() const
{
    for (size_t i = 0; i < m_edges.size(); ++i)
    {
        DeBruijnEdge * edge = m_edges[i];
        if (edge->getStartingNode() == this && edge->getEndingNode() == this)
            return edge;
    }

    return 0;
}
Esempio n. 5
0
//This function checks whether this node has any path leading outward that
//unambiguously leads to the given node.
//It checks a number of steps as set by the contiguitySearchSteps setting.
//If includeReverseComplement is true, then this function returns true if
//all paths lead either to the node or its reverse complement node.
bool DeBruijnNode::doesPathLeadOnlyToNode(DeBruijnNode * node, bool includeReverseComplement)
{
    for (size_t i = 0; i < m_edges.size(); ++i)
    {
        DeBruijnEdge * edge = m_edges[i];
        bool outgoingEdge = (this == edge->getStartingNode());

        std::vector<DeBruijnNode *> pathSoFar;
        pathSoFar.push_back(this);
        if (edge->leadsOnlyToNode(outgoingEdge, g_settings->contiguitySearchSteps, node, pathSoFar, includeReverseComplement))
            return true;
    }

    return false;
}
Esempio n. 6
0
//This function determines the contiguity of nodes relative to this one.
//It has two steps:
// -First, for each edge leaving this node, all paths outward are found.
//  Any nodes in any path are MAYBE_CONTIGUOUS, and nodes in all of the
//  paths are CONTIGUOUS.
// -Second, it is necessary to check in the opposite direction - for each
//  of the MAYBE_CONTIGUOUS nodes, do they have a path that unambiguously
//  leads to this node?  If so, then they are CONTIGUOUS.
void DeBruijnNode::determineContiguity()
{
    upgradeContiguityStatus(STARTING);

    //A set is used to store all nodes found in the paths, as the nodes
    //that show up as MAYBE_CONTIGUOUS will have their paths checked
    //to this node.
    std::set<DeBruijnNode *> allCheckedNodes;

    //For each path leaving this node, find all possible paths
    //outward.  Nodes in any of the paths for an edge are
    //MAYBE_CONTIGUOUS.  Nodes in all of the paths for an edge
    //are CONTIGUOUS.
    for (size_t i = 0; i < m_edges.size(); ++i)
    {
        DeBruijnEdge * edge = m_edges[i];
        bool outgoingEdge = (this == edge->getStartingNode());

        std::vector< std::vector <DeBruijnNode *> > allPaths;
        edge->tracePaths(outgoingEdge, g_settings->contiguitySearchSteps, &allPaths, this);

        //Set all nodes in the paths as MAYBE_CONTIGUOUS
        for (size_t j = 0; j < allPaths.size(); ++j)
        {
            QApplication::processEvents();
            for (size_t k = 0; k < allPaths[j].size(); ++k)
            {
                DeBruijnNode * node = allPaths[j][k];
                node->upgradeContiguityStatus(MAYBE_CONTIGUOUS);
                allCheckedNodes.insert(node);
            }
        }

        //Set all common nodes as CONTIGUOUS_STRAND_SPECIFIC
        std::vector<DeBruijnNode *> commonNodesStrandSpecific = getNodesCommonToAllPaths(&allPaths, false);
        for (size_t j = 0; j < commonNodesStrandSpecific.size(); ++j)
            (commonNodesStrandSpecific[j])->upgradeContiguityStatus(CONTIGUOUS_STRAND_SPECIFIC);

        //Set all common nodes (when including reverse complement nodes)
        //as CONTIGUOUS_EITHER_STRAND
        std::vector<DeBruijnNode *> commonNodesEitherStrand = getNodesCommonToAllPaths(&allPaths, true);
        for (size_t j = 0; j < commonNodesEitherStrand.size(); ++j)
        {
            DeBruijnNode * node = commonNodesEitherStrand[j];
            node->upgradeContiguityStatus(CONTIGUOUS_EITHER_STRAND);
            node->getReverseComplement()->upgradeContiguityStatus(CONTIGUOUS_EITHER_STRAND);
        }
    }

    //For each node that was checked, then we check to see if any
    //of its paths leads unambiuously back to the starting node (this node).
    for (std::set<DeBruijnNode *>::iterator i = allCheckedNodes.begin(); i != allCheckedNodes.end(); ++i)
    {
        QApplication::processEvents();
        DeBruijnNode * node = *i;
        ContiguityStatus status = node->getContiguityStatus();

        //First check without reverse complement target for
        //strand-specific contiguity.
        if (status != CONTIGUOUS_STRAND_SPECIFIC &&
                node->doesPathLeadOnlyToNode(this, false))
            node->upgradeContiguityStatus(CONTIGUOUS_STRAND_SPECIFIC);

        //Now check including the reverse complement target for
        //either strand contiguity.
        if (status != CONTIGUOUS_STRAND_SPECIFIC &&
                status != CONTIGUOUS_EITHER_STRAND &&
                node->doesPathLeadOnlyToNode(this, true))
        {
            node->upgradeContiguityStatus(CONTIGUOUS_EITHER_STRAND);
            node->getReverseComplement()->upgradeContiguityStatus(CONTIGUOUS_EITHER_STRAND);
        }
    }
}