void create(int query_number, int max_elements) { max_elems = max_elements; data.create (query_number * max_elems); if (max_elems != 1) sizes.create(query_number); }
void pcl::gpu::TsdfVolume::fetchNormals (const DeviceArray<PointType>& cloud, DeviceArray<NormalType>& normals) const { normals.create (cloud.size ()); const float3 device_volume_size = device_cast<const float3> (size_); device::extractNormals (volume_, device_volume_size, cloud, (device::float8*)normals.ptr ()); }
DeviceArray<Point> kfusion::cuda::TsdfVolume::fetchSliceAsCloud (DeviceArray<Point>& cloud_buffer, const kfusion::tsdf_buffer* buffer, const Vec3i minBounds, const Vec3i maxBounds, const Vec3i globalShift ) const { enum { DEFAULT_CLOUD_BUFFER_SIZE = 10 * 1000 * 1000 }; if (cloud_buffer.empty ()) cloud_buffer.create (DEFAULT_CLOUD_BUFFER_SIZE/2); DeviceArray<device::Point>& b = (DeviceArray<device::Point>&)cloud_buffer; device::Vec3i dims = device_cast<device::Vec3i>(dims_); device::Vec3i deviceGlobalShift; deviceGlobalShift.x = globalShift[0]; deviceGlobalShift.y = globalShift[1]; deviceGlobalShift.z = globalShift[2]; device::Vec3i minBounds_c; minBounds_c.x = minBounds[0]; minBounds_c.y = minBounds[1]; minBounds_c.z = minBounds[2]; device::Vec3i maxBounds_c; maxBounds_c.x = maxBounds[0]; maxBounds_c.y = maxBounds[1]; maxBounds_c.z = maxBounds[2]; device::Vec3f vsz = device_cast<device::Vec3f>(getVoxelSize()); device::Aff3f aff = device_cast<device::Aff3f>(pose_); device::TsdfVolume volume((ushort2*)data_.ptr<ushort2>(), dims, vsz, trunc_dist_, max_weight_); size_t size = extractSliceAsCloud (volume, buffer, minBounds_c, maxBounds_c, deviceGlobalShift, aff, b); return DeviceArray<Point>((Point*)cloud_buffer.ptr(), size); }
DeviceArray<pcl::gpu::MarchingCubes::PointType> pcl::gpu::MarchingCubes::run(const TsdfVolume& tsdf, DeviceArray<PointType>& triangles_buffer) { if (triangles_buffer.empty()) triangles_buffer.create(DEFAULT_TRIANGLES_BUFFER_SIZE); occupied_voxels_buffer_.create(3, triangles_buffer.size() / 3); device::bindTextures(edgeTable_, triTable_, numVertsTable_); int active_voxels = device::getOccupiedVoxels(tsdf.data(), occupied_voxels_buffer_); if(!active_voxels) { device::unbindTextures(); return DeviceArray<PointType>(); } DeviceArray2D<int> occupied_voxels(3, active_voxels, occupied_voxels_buffer_.ptr(), occupied_voxels_buffer_.step()); int total_vertexes = device::computeOffsetsAndTotalVertexes(occupied_voxels); float3 volume_size = device_cast<const float3>(tsdf.getSize()); device::generateTriangles(tsdf.data(), occupied_voxels, volume_size, (DeviceArray<device::PointType>&)triangles_buffer); device::unbindTextures(); return DeviceArray<PointType>(triangles_buffer.ptr(), total_vertexes); }
pcl::gpu::DeviceArray<pcl::gpu::TsdfVolume::PointType> pcl::gpu::TsdfVolume::fetchCloud (DeviceArray<PointType>& cloud_buffer) const { if (cloud_buffer.empty ()) cloud_buffer.create (DEFAULT_CLOUD_BUFFER_SIZE); float3 device_volume_size = device_cast<const float3> (size_); size_t size = device::extractCloud (volume_, device_volume_size, cloud_buffer); return (DeviceArray<PointType> (cloud_buffer.ptr (), size)); }
PCL_EXPORTS void mergePointNormal(const DeviceArray<PointXYZ>& cloud, const DeviceArray<Normal>& normals, DeviceArray<PointNormal>& output) { const size_t size = min(cloud.size(), normals.size()); output.create(size); const DeviceArray<float4>& c = (const DeviceArray<float4>&)cloud; const DeviceArray<float8>& n = (const DeviceArray<float8>&)normals; const DeviceArray<float12>& o = (const DeviceArray<float12>&)output; device::mergePointNormal(c, n, o); }
void kfusion::cuda::TsdfVolume::fetchNormals(const DeviceArray<Point>& cloud, const tsdf_buffer& buffer, DeviceArray<Normal>& normals) const { normals.create(cloud.size()); DeviceArray<device::Point>& c = (DeviceArray<device::Point>&)cloud; device::Vec3i dims = device_cast<device::Vec3i>(dims_); device::Vec3f vsz = device_cast<device::Vec3f>(getVoxelSize()); device::Aff3f aff = device_cast<device::Aff3f>(pose_); device::Mat3f Rinv = device_cast<device::Mat3f>(pose_.rotation().inv(cv::DECOMP_SVD)); device::TsdfVolume volume((ushort2*)data_.ptr<ushort2>(), dims, vsz, trunc_dist_, max_weight_); device::extractNormals(volume, buffer, c, aff, Rinv, gradient_delta_factor_, (float4*)normals.ptr()); }
DeviceArray<Point> kfusion::cuda::TsdfVolume::fetchCloud(DeviceArray<Point>& cloud_buffer, const tsdf_buffer& buffer) const { enum { DEFAULT_CLOUD_BUFFER_SIZE = 10 * 1000 * 1000 }; if (cloud_buffer.empty ()) cloud_buffer.create (DEFAULT_CLOUD_BUFFER_SIZE); DeviceArray<device::Point>& b = (DeviceArray<device::Point>&)cloud_buffer; device::Vec3i dims = device_cast<device::Vec3i>(dims_); device::Vec3f vsz = device_cast<device::Vec3f>(getVoxelSize()); device::Aff3f aff = device_cast<device::Aff3f>(pose_); device::TsdfVolume volume((ushort2*)data_.ptr<ushort2>(), dims, vsz, trunc_dist_, max_weight_); size_t size = extractCloud(volume, buffer, aff, b); return DeviceArray<Point>((Point*)cloud_buffer.ptr(), size); }
void copyFieldsEx(const DeviceArray<PointIn>& src, DeviceArray<PointOut>& dst, int rule1, int rule2 = NoCP, int rule3 = NoCP, int rule4 = NoCP) { int rules[4] = { rule1, rule2, rule3, rule4 }; dst.create(src.size()); copyFieldsImpl(sizeof(PointIn)/sizeof(int), sizeof(PointOut)/sizeof(int), rules, (int)src.size(), src.ptr(), dst.ptr()); }