int StructuralEngngModel :: packDofManagers(FloatArray *src, ProcessCommunicator &processComm, bool prescribedEquations) { int result = 1; int i, size; int j, ndofs, eqNum; Domain *domain = this->giveDomain(1); IntArray const *toSendMap = processComm.giveToSendMap(); ProcessCommunicatorBuff *pcbuff = processComm.giveProcessCommunicatorBuff(); DofManager *dman; Dof *jdof; size = toSendMap->giveSize(); for ( i = 1; i <= size; i++ ) { dman = domain->giveDofManager( toSendMap->at(i) ); ndofs = dman->giveNumberOfDofs(); for ( j = 1; j <= ndofs; j++ ) { jdof = dman->giveDof(j); if ( prescribedEquations ) { eqNum = jdof->__givePrescribedEquationNumber(); } else { eqNum = jdof->__giveEquationNumber(); } if ( jdof->isPrimaryDof() && eqNum ) { result &= pcbuff->packDouble( src->at(eqNum) ); } } } return result; }
void IncrementalLinearStatic :: updateDofUnknownsDictionary(DofManager *inode, TimeStep *tStep) { // update DOF unknowns dictionary, where // unknowns are hold instead of keeping them in global unknowns // vectors in engng instances // this is necessary, because during solution equation numbers for // particular DOFs may changed, and it is necessary to keep them // in DOF level. int ndofs = inode->giveNumberOfDofs(); Dof *iDof; double val; for ( int i = 1; i <= ndofs; i++ ) { iDof = inode->giveDof(i); // skip slave DOFs (only master (primary) DOFs have to be updated). if (!iDof->isPrimaryDof()) continue; val = iDof->giveUnknown(VM_Total, tStep); if ( !iDof->hasBc(tStep) ) { val += this->incrementOfDisplacementVector.at( iDof->__giveEquationNumber() ); } iDof->updateUnknownsDictionary(tStep, VM_Total_Old, val); iDof->updateUnknownsDictionary(tStep, VM_Total, val); } }
int StructuralEngngModel :: unpackDofManagers(FloatArray *dest, ProcessCommunicator &processComm, bool prescribedEquations) { int result = 1; int i, size; int j, ndofs, eqNum; Domain *domain = this->giveDomain(1); dofManagerParallelMode dofmanmode; IntArray const *toRecvMap = processComm.giveToRecvMap(); ProcessCommunicatorBuff *pcbuff = processComm.giveProcessCommunicatorBuff(); DofManager *dman; Dof *jdof; double value; size = toRecvMap->giveSize(); for ( i = 1; i <= size; i++ ) { dman = domain->giveDofManager( toRecvMap->at(i) ); ndofs = dman->giveNumberOfDofs(); dofmanmode = dman->giveParallelMode(); for ( j = 1; j <= ndofs; j++ ) { jdof = dman->giveDof(j); if ( prescribedEquations ) { eqNum = jdof->__givePrescribedEquationNumber(); } else { eqNum = jdof->__giveEquationNumber(); } if ( jdof->isPrimaryDof() && eqNum ) { result &= pcbuff->unpackDouble(value); if ( dofmanmode == DofManager_shared ) { dest->at(eqNum) += value; } else if ( dofmanmode == DofManager_remote ) { dest->at(eqNum) = value; } else { _error("unpackReactions: unknown dof namager parallel mode"); } } } } return result; }
int NonLinearDynamic :: estimateMaxPackSize(IntArray &commMap, CommunicationBuffer &buff, int packUnpackType) { int mapSize = commMap.giveSize(); int i, j, ndofs, count = 0, pcount = 0; IntArray locationArray; Domain *domain = this->giveDomain(1); DofManager *dman; Dof *jdof; if ( packUnpackType == ProblemCommMode__ELEMENT_CUT ) { for ( i = 1; i <= mapSize; i++ ) { count += domain->giveDofManager( commMap.at(i) )->giveNumberOfDofs(); } return ( buff.givePackSize(MPI_DOUBLE, 1) * count ); } else if ( packUnpackType == ProblemCommMode__NODE_CUT ) { for ( i = 1; i <= mapSize; i++ ) { ndofs = ( dman = domain->giveDofManager( commMap.at(i) ) )->giveNumberOfDofs(); for ( j = 1; j <= ndofs; j++ ) { jdof = dman->giveDof(j); if ( jdof->isPrimaryDof() && ( jdof->__giveEquationNumber() ) ) { count++; } else { pcount++; } } } //printf ("\nestimated count is %d\n",count); return ( buff.givePackSize(MPI_DOUBLE, 1) * max(count, pcount) ); } else if ( packUnpackType == ProblemCommMode__REMOTE_ELEMENT_MODE ) { for ( i = 1; i <= mapSize; i++ ) { count += domain->giveElement( commMap.at(i) )->estimatePackSize(buff); } return count; } return 0; }
void NonStationaryTransportProblem :: applyIC(TimeStep *stepWhenIcApply) { Domain *domain = this->giveDomain(1); int neq = this->giveNumberOfEquations(EID_ConservationEquation); FloatArray *solutionVector; double val; #ifdef VERBOSE OOFEM_LOG_INFO("Applying initial conditions\n"); #endif int nDofs, j, k, jj; int nman = domain->giveNumberOfDofManagers(); DofManager *node; Dof *iDof; UnknownsField->advanceSolution(stepWhenIcApply); solutionVector = UnknownsField->giveSolutionVector(stepWhenIcApply); solutionVector->resize(neq); solutionVector->zero(); for ( j = 1; j <= nman; j++ ) { node = domain->giveDofManager(j); nDofs = node->giveNumberOfDofs(); for ( k = 1; k <= nDofs; k++ ) { // ask for initial values obtained from // bc (boundary conditions) and ic (initial conditions) iDof = node->giveDof(k); if ( !iDof->isPrimaryDof() ) { continue; } jj = iDof->__giveEquationNumber(); if ( jj ) { val = iDof->giveUnknown(EID_ConservationEquation, VM_Total, stepWhenIcApply); solutionVector->at(jj) = val; //update in dictionary, if the problem is growing/decreasing if ( this->changingProblemSize ) { iDof->updateUnknownsDictionary(stepWhenIcApply, EID_MomentumBalance, VM_Total, val); } } } } int nelem = domain->giveNumberOfElements(); //project initial temperature to integration points // for ( j = 1; j <= nelem; j++ ) { // domain->giveElement(j)->updateInternalState(stepWhenIcApply); // } #ifdef __CEMHYD_MODULE // Not relevant in linear case, but needed for CemhydMat for temperature averaging before solving balance equations // Update element state according to given ic TransportElement *element; CemhydMat *cem; for ( j = 1; j <= nelem; j++ ) { element = ( TransportElement * ) domain->giveElement(j); //assign status to each integration point on each element if ( element->giveMaterial()->giveClassID() == CemhydMatClass ) { element->giveMaterial()->initMaterial(element); //create microstructures and statuses on specific GPs element->updateInternalState(stepWhenIcApply); //store temporary unequilibrated temperature element->updateYourself(stepWhenIcApply); //store equilibrated temperature cem = ( CemhydMat * ) element->giveMaterial(); cem->clearWeightTemperatureProductVolume(element); cem->storeWeightTemperatureProductVolume(element, stepWhenIcApply); } } //perform averaging on each material instance of CemhydMatClass int nmat = domain->giveNumberOfMaterialModels(); for ( j = 1; j <= nmat; j++ ) { if ( domain->giveMaterial(j)->giveClassID() == CemhydMatClass ) { cem = ( CemhydMat * ) domain->giveMaterial(j); cem->averageTemperature(); } } #endif //__CEMHYD_MODULE }
void DEIDynamic :: solveYourselfAt(TimeStep *tStep) { // // creates system of governing eq's and solves them at given time step // // this is an explicit problem: we assemble governing equating at time t // and solution is obtained for time t+dt // // first assemble problem at current time step to obtain results in following // time step. // and then print results for this step also. // for first time step we need special start code Domain *domain = this->giveDomain(1); int nelem = domain->giveNumberOfElements(); int nman = domain->giveNumberOfDofManagers(); IntArray loc; Element *element; DofManager *node; Dof *iDof; int nDofs, neq; int i, k, n, j, jj, kk, init = 0; double coeff, maxDt, maxOmi, maxOm = 0., maxOmEl, c1, c2, c3; FloatMatrix charMtrx, charMtrx2; FloatArray previousDisplacementVector; neq = this->giveNumberOfEquations(EID_MomentumBalance); if ( tStep->giveNumber() == giveNumberOfFirstStep() ) { init = 1; #ifdef VERBOSE OOFEM_LOG_INFO("Assembling mass matrix\n"); #endif // // first step assemble mass Matrix // massMatrix.resize(neq); massMatrix.zero(); EModelDefaultEquationNumbering dn; for ( i = 1; i <= nelem; i++ ) { element = domain->giveElement(i); element->giveLocationArray(loc, EID_MomentumBalance, dn); element->giveCharacteristicMatrix(charMtrx, LumpedMassMatrix, tStep); // charMtrx.beLumpedOf(fullCharMtrx); element->giveCharacteristicMatrix(charMtrx2, StiffnessMatrix, tStep); // // assemble it manually // #ifdef DEBUG if ( ( n = loc.giveSize() ) != charMtrx.giveNumberOfRows() ) { _error("solveYourselfAt : dimension mismatch"); } #endif n = loc.giveSize(); maxOmEl = 0.; for ( j = 1; j <= n; j++ ) { if ( charMtrx.at(j, j) > ZERO_MASS ) { maxOmi = charMtrx2.at(j, j) / charMtrx.at(j, j); if ( init ) { maxOmEl = ( maxOmEl > maxOmi ) ? ( maxOmEl ) : ( maxOmi ); } } } maxOm = ( maxOm > maxOmEl ) ? ( maxOm ) : ( maxOmEl ); for ( j = 1; j <= n; j++ ) { jj = loc.at(j); if ( ( jj ) && ( charMtrx.at(j, j) <= ZERO_MASS ) ) { charMtrx.at(j, j) = charMtrx2.at(j, j) / maxOmEl; } } for ( j = 1; j <= n; j++ ) { jj = loc.at(j); if ( jj ) { massMatrix.at(jj) += charMtrx.at(j, j); } } } // if init - try to determine the best deltaT if ( init ) { maxDt = 2 / sqrt(maxOm); if ( deltaT > maxDt ) { OOFEM_LOG_RELEVANT("DEIDynamic: deltaT reduced to %e\n", maxDt); deltaT = maxDt; tStep->setTimeIncrement(deltaT); } } // // special init step - compute displacements at tstep 0 // displacementVector.resize(neq); displacementVector.zero(); nextDisplacementVector.resize(neq); nextDisplacementVector.zero(); velocityVector.resize(neq); velocityVector.zero(); accelerationVector.resize(neq); accelerationVector.zero(); for ( j = 1; j <= nman; j++ ) { node = domain->giveDofManager(j); nDofs = node->giveNumberOfDofs(); for ( k = 1; k <= nDofs; k++ ) { // ask for initial values obtained from // bc (boundary conditions) and ic (initial conditions) // now we are setting initial cond. for step -1. iDof = node->giveDof(k); if ( !iDof->isPrimaryDof() ) { continue; } jj = iDof->__giveEquationNumber(); if ( jj ) { nextDisplacementVector.at(jj) = iDof->giveUnknown(EID_MomentumBalance, VM_Total, tStep); // become displacementVector after init velocityVector.at(jj) = iDof->giveUnknown(EID_MomentumBalance, VM_Velocity, tStep); // accelerationVector = iDof->giveUnknown(AccelerartionVector,tStep) ; } } } for ( j = 1; j <= neq; j++ ) { nextDisplacementVector.at(j) -= velocityVector.at(j) * ( deltaT ); } return; } // end of init step #ifdef VERBOSE OOFEM_LOG_INFO("Assembling right hand side\n"); #endif c1 = ( 1. / ( deltaT * deltaT ) ); c2 = ( 1. / ( 2. * deltaT ) ); c3 = ( 2. / ( deltaT * deltaT ) ); previousDisplacementVector = displacementVector; displacementVector = nextDisplacementVector; // // assembling the element part of load vector // loadVector.resize( this->giveNumberOfEquations(EID_MomentumBalance) ); loadVector.zero(); this->assembleVector(loadVector, tStep, EID_MomentumBalance, ExternalForcesVector, VM_Total, EModelDefaultEquationNumbering(), domain); // // assembling additional parts of right hand side // EModelDefaultEquationNumbering dn; for ( i = 1; i <= nelem; i++ ) { element = domain->giveElement(i); element->giveLocationArray(loc, EID_MomentumBalance, dn); element->giveCharacteristicMatrix(charMtrx, StiffnessMatrix, tStep); n = loc.giveSize(); for ( j = 1; j <= n; j++ ) { jj = loc.at(j); if ( jj ) { for ( k = 1; k <= n; k++ ) { kk = loc.at(k); if ( kk ) { loadVector.at(jj) -= charMtrx.at(j, k) * displacementVector.at(kk); } } // // if init step - find minimum period of vibration in order to // determine maximal admissible time step // //maxOmi = charMtrx.at(j,j)/massMatrix.at(jj) ; //if (init) maxOm = (maxOm > maxOmi) ? (maxOm) : (maxOmi) ; } } } for ( j = 1; j <= neq; j++ ) { coeff = massMatrix.at(j); loadVector.at(j) += coeff * c3 * displacementVector.at(j) - coeff * ( c1 - dumpingCoef * c2 ) * previousDisplacementVector.at(j); } // // set-up numerical model // /* it is not necessary to call numerical method * approach used here is not good, but effective enough * inverse of diagonal mass matrix is done here */ // // call numerical model to solve arose problem - done locally here // #ifdef VERBOSE OOFEM_LOG_RELEVANT( "Solving [step number %8d, time %15e]\n", tStep->giveNumber(), tStep->giveTargetTime() ); #endif double prevD; for ( i = 1; i <= neq; i++ ) { prevD = previousDisplacementVector.at(i); nextDisplacementVector.at(i) = loadVector.at(i) / ( massMatrix.at(i) * ( c1 + dumpingCoef * c2 ) ); velocityVector.at(i) = nextDisplacementVector.at(i) - prevD; accelerationVector.at(i) = nextDisplacementVector.at(i) - 2. * displacementVector.at(i) + prevD; } accelerationVector.times(c1); velocityVector.times(c2); }
void NonLinearDynamic :: proceedStep(int di, TimeStep *tStep) { // creates system of governing eq's and solves them at given time step // first assemble problem at current time step int neq = this->giveNumberOfDomainEquations(1, EModelDefaultEquationNumbering()); // Time-stepping constants this->determineConstants(tStep); if ( ( tStep->giveNumber() == giveNumberOfFirstStep() ) && initFlag ) { // Initialization incrementOfDisplacement.resize(neq); incrementOfDisplacement.zero(); totalDisplacement.resize(neq); totalDisplacement.zero(); velocityVector.resize(neq); velocityVector.zero(); accelerationVector.resize(neq); accelerationVector.zero(); internalForces.resize(neq); internalForces.zero(); previousIncrementOfDisplacement.resize(neq); previousIncrementOfDisplacement.zero(); previousTotalDisplacement.resize(neq); previousTotalDisplacement.zero(); previousVelocityVector.resize(neq); previousVelocityVector.zero(); previousAccelerationVector.resize(neq); previousAccelerationVector.zero(); previousInternalForces.resize(neq); previousInternalForces.zero(); TimeStep *stepWhenIcApply = new TimeStep(giveNumberOfTimeStepWhenIcApply(), this, 0, -deltaT, deltaT, 0); int nDofs, j, k, jj; int nman = this->giveDomain(di)->giveNumberOfDofManagers(); DofManager *node; Dof *iDof; // Considering initial conditions. for ( j = 1; j <= nman; j++ ) { node = this->giveDomain(di)->giveDofManager(j); nDofs = node->giveNumberOfDofs(); for ( k = 1; k <= nDofs; k++ ) { // Ask for initial values obtained from // bc (boundary conditions) and ic (initial conditions). iDof = node->giveDof(k); if ( !iDof->isPrimaryDof() ) { continue; } jj = iDof->__giveEquationNumber(); if ( jj ) { totalDisplacement.at(jj) = iDof->giveUnknown(VM_Total, stepWhenIcApply); velocityVector.at(jj) = iDof->giveUnknown(VM_Velocity, stepWhenIcApply); accelerationVector.at(jj) = iDof->giveUnknown(VM_Acceleration, stepWhenIcApply); } } } this->giveInternalForces(internalForces, true, di, tStep); } if ( initFlag ) { // First assemble problem at current time step. // Option to take into account initial conditions. if ( !effectiveStiffnessMatrix ) { effectiveStiffnessMatrix = classFactory.createSparseMtrx(sparseMtrxType); massMatrix = classFactory.createSparseMtrx(sparseMtrxType); } if ( effectiveStiffnessMatrix == NULL || massMatrix == NULL ) { _error("proceedStep: sparse matrix creation failed"); } if ( nonlocalStiffnessFlag ) { if ( !effectiveStiffnessMatrix->isAsymmetric() ) { _error("proceedStep: effectiveStiffnessMatrix does not support asymmetric storage"); } } effectiveStiffnessMatrix->buildInternalStructure( this, di, EID_MomentumBalance, EModelDefaultEquationNumbering() ); massMatrix->buildInternalStructure( this, di, EID_MomentumBalance, EModelDefaultEquationNumbering() ); // Assemble mass matrix this->assemble(massMatrix, tStep, EID_MomentumBalance, MassMatrix, EModelDefaultEquationNumbering(), this->giveDomain(di)); // Initialize vectors help.resize(neq); help.zero(); rhs.resize(neq); rhs.zero(); rhs2.resize(neq); rhs2.zero(); previousIncrementOfDisplacement.resize(neq); previousTotalDisplacement.resize(neq); previousVelocityVector.resize(neq); previousAccelerationVector.resize(neq); previousInternalForces.resize(neq); for ( int i = 1; i <= neq; i++ ) { previousIncrementOfDisplacement.at(i) = incrementOfDisplacement.at(i); previousTotalDisplacement.at(i) = totalDisplacement.at(i); previousVelocityVector.at(i) = velocityVector.at(i); previousAccelerationVector.at(i) = accelerationVector.at(i); previousInternalForces.at(i) = internalForces.at(i); } forcesVector.resize(neq); forcesVector.zero(); totIterations = 0; initFlag = 0; } #ifdef VERBOSE OOFEM_LOG_DEBUG("Assembling load\n"); #endif // Assemble the incremental reference load vector. this->assembleIncrementalReferenceLoadVectors(incrementalLoadVector, incrementalLoadVectorOfPrescribed, refLoadInputMode, this->giveDomain(di), EID_MomentumBalance, tStep); // Assembling the effective load vector for ( int i = 1; i <= neq; i++ ) { help.at(i) = a2 * previousVelocityVector.at(i) + a3 * previousAccelerationVector.at(i) + eta * ( a4 * previousVelocityVector.at(i) + a5 * previousAccelerationVector.at(i) + a6 * previousIncrementOfDisplacement.at(i) ); } massMatrix->times(help, rhs); if ( delta != 0 ) { for ( int i = 1; i <= neq; i++ ) { help.at(i) = delta * ( a4 * previousVelocityVector.at(i) + a5 * previousAccelerationVector.at(i) + a6 * previousIncrementOfDisplacement.at(i) ); } this->timesMtrx(help, rhs2, TangentStiffnessMatrix, this->giveDomain(di), tStep); help.zero(); for ( int i = 1; i <= neq; i++ ) { rhs.at(i) += rhs2.at(i); } } for ( int i = 1; i <= neq; i++ ) { rhs.at(i) += incrementalLoadVector.at(i) - previousInternalForces.at(i); } // // Set-up numerical model. // this->giveNumericalMethod( this->giveCurrentMetaStep() ); // // Call numerical model to solve problem. // double loadLevel = 1.0; if ( totIterations == 0 ) { incrementOfDisplacement.zero(); } if ( initialLoadVector.isNotEmpty() ) { numMetStatus = nMethod->solve(effectiveStiffnessMatrix, & rhs, & initialLoadVector, & totalDisplacement, & incrementOfDisplacement, & forcesVector, internalForcesEBENorm, loadLevel, refLoadInputMode, currentIterations, tStep); } else { numMetStatus = nMethod->solve(effectiveStiffnessMatrix, & rhs, NULL, & totalDisplacement, & incrementOfDisplacement, & forcesVector, internalForcesEBENorm, loadLevel, refLoadInputMode, currentIterations, tStep); } for ( int i = 1; i <= neq; i++ ) { rhs.at(i) = previousVelocityVector.at(i); rhs2.at(i) = previousAccelerationVector.at(i); accelerationVector.at(i) = a0 * incrementOfDisplacement.at(i) - a2 * rhs.at(i) - a3 * rhs2.at(i); velocityVector.at(i) = a1 * incrementOfDisplacement.at(i) - a4 * rhs.at(i) - a5 * rhs2.at(i) - a6 * previousIncrementOfDisplacement.at(i); } totIterations += currentIterations; }
void NlDEIDynamic :: solveYourselfAt(TimeStep *tStep) { // // Creates system of governing eq's and solves them at given time step. // Domain *domain = this->giveDomain(1); int neq = this->giveNumberOfEquations(EID_MomentumBalance); int nman = domain->giveNumberOfDofManagers(); DofManager *node; Dof *iDof; int nDofs; int i, k, j, jj; double coeff, maxDt, maxOm = 0.; double prevIncrOfDisplacement, incrOfDisplacement; if ( initFlag ) { #ifdef VERBOSE OOFEM_LOG_DEBUG("Assembling mass matrix\n"); #endif // // Assemble mass matrix. // this->computeMassMtrx(massMatrix, maxOm, tStep); if ( drFlag ) { // If dynamic relaxation: Assemble amplitude load vector. loadRefVector.resize(neq); loadRefVector.zero(); this->computeLoadVector(loadRefVector, VM_Total, tStep); #ifdef __PARALLEL_MODE // Compute the processor part of load vector norm pMp this->pMp = 0.0; double my_pMp = 0.0, coeff = 1.0; int eqNum, ndofs, ndofman = domain->giveNumberOfDofManagers(); dofManagerParallelMode dofmanmode; DofManager *dman; Dof *jdof; for ( int dm = 1; dm <= ndofman; dm++ ) { dman = domain->giveDofManager(dm); ndofs = dman->giveNumberOfDofs(); dofmanmode = dman->giveParallelMode(); // Skip all remote and null dofmanagers coeff = 1.0; if ( ( dofmanmode == DofManager_remote ) || ( ( dofmanmode == DofManager_null ) ) ) { continue; } else if ( dofmanmode == DofManager_shared ) { coeff = 1. / dman->givePartitionsConnectivitySize(); } // For shared nodes we add locally an average = 1/givePartitionsConnectivitySize()*contribution, for ( j = 1; j <= ndofs; j++ ) { jdof = dman->giveDof(j); if ( jdof->isPrimaryDof() && ( eqNum = jdof->__giveEquationNumber() ) ) { my_pMp += coeff * loadRefVector.at(eqNum) * loadRefVector.at(eqNum) / massMatrix.at(eqNum); } } } // Sum up the contributions from processors. MPI_Allreduce(& my_pMp, & pMp, 1, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD); #else this->pMp = 0.0; for ( i = 1; i <= neq; i++ ) { pMp += loadRefVector.at(i) * loadRefVector.at(i) / massMatrix.at(i); } #endif // Solve for rate of loading process (parameter "c") (undamped system assumed), if ( dumpingCoef < 1.e-3 ) { c = 3.0 * this->pyEstimate / pMp / Tau / Tau; } else { c = this->pyEstimate * Tau * dumpingCoef * dumpingCoef * dumpingCoef / pMp / ( -3.0 / 2.0 + dumpingCoef * Tau + 2.0 * exp(-dumpingCoef * Tau) - 0.5 * exp(-2.0 * dumpingCoef * Tau) ); } } initFlag = 0; } if ( tStep->giveNumber() == giveNumberOfFirstStep() ) { // // Special init step - Compute displacements at tstep 0. // displacementVector.resize(neq); displacementVector.zero(); previousIncrementOfDisplacementVector.resize(neq); previousIncrementOfDisplacementVector.zero(); velocityVector.resize(neq); velocityVector.zero(); accelerationVector.resize(neq); accelerationVector.zero(); for ( j = 1; j <= nman; j++ ) { node = domain->giveDofManager(j); nDofs = node->giveNumberOfDofs(); for ( k = 1; k <= nDofs; k++ ) { // Ask for initial values obtained from // bc (boundary conditions) and ic (initial conditions) // all dofs are expected to be DisplacementVector type. iDof = node->giveDof(k); if ( !iDof->isPrimaryDof() ) { continue; } jj = iDof->__giveEquationNumber(); if ( jj ) { displacementVector.at(jj) = iDof->giveUnknown(EID_MomentumBalance, VM_Total, tStep); velocityVector.at(jj) = iDof->giveUnknown(EID_MomentumBalance, VM_Velocity, tStep); accelerationVector.at(jj) = iDof->giveUnknown(EID_MomentumBalance, VM_Acceleration, tStep) ; } } } // // Set-up numerical model. // // Try to determine the best deltaT, maxDt = 2.0 / sqrt(maxOm); if ( deltaT > maxDt ) { // Print reduced time step increment and minimum period Tmin OOFEM_LOG_RELEVANT("deltaT reduced to %e, Tmin is %e\n", maxDt, maxDt * M_PI); deltaT = maxDt; tStep->setTimeIncrement(deltaT); } for ( j = 1; j <= neq; j++ ) { previousIncrementOfDisplacementVector.at(j) = velocityVector.at(j) * ( deltaT ); displacementVector.at(j) -= previousIncrementOfDisplacementVector.at(j); } #ifdef VERBOSE OOFEM_LOG_RELEVANT( "\n\nSolving [Step number %8d, Time %15e]\n", tStep->giveNumber(), tStep->giveTargetTime() ); #endif return; } // end of init step #ifdef VERBOSE OOFEM_LOG_DEBUG("Assembling right hand side\n"); #endif for ( i = 1; i <= neq; i++ ) { displacementVector.at(i) += previousIncrementOfDisplacementVector.at(i); } // Update solution state counter tStep->incrementStateCounter(); // Compute internal forces. this->giveInternalForces( internalForces, false, 1, tStep ); if ( !drFlag ) { // // Assembling the element part of load vector. // this->computeLoadVector(loadVector, VM_Total, tStep); // // Assembling additional parts of right hand side. // for ( k = 1; k <= neq; k++ ) { loadVector.at(k) -= internalForces.at(k); } } else { // Dynamic relaxation // compute load factor pt = 0.0; #ifdef __PARALLEL_MODE double my_pt = 0.0, coeff = 1.0; int eqNum, ndofs, ndofman = domain->giveNumberOfDofManagers(); dofManagerParallelMode dofmanmode; DofManager *dman; Dof *jdof; for ( int dm = 1; dm <= ndofman; dm++ ) { dman = domain->giveDofManager(dm); ndofs = dman->giveNumberOfDofs(); dofmanmode = dman->giveParallelMode(); // skip all remote and null dofmanagers coeff = 1.0; if ( ( dofmanmode == DofManager_remote ) || ( dofmanmode == DofManager_null ) ) { continue; } else if ( dofmanmode == DofManager_shared ) { coeff = 1. / dman->givePartitionsConnectivitySize(); } // For shared nodes we add locally an average= 1/givePartitionsConnectivitySize()*contribution. for ( j = 1; j <= ndofs; j++ ) { jdof = dman->giveDof(j); if ( jdof->isPrimaryDof() && ( eqNum = jdof->__giveEquationNumber() ) ) { my_pt += coeff * internalForces.at(eqNum) * loadRefVector.at(eqNum) / massMatrix.at(eqNum); } } } // Sum up the contributions from processors. MPI_Allreduce(& my_pt, & pt, 1, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD); #else for ( k = 1; k <= neq; k++ ) { pt += internalForces.at(k) * loadRefVector.at(k) / massMatrix.at(k); } #endif pt = pt / pMp; if ( dumpingCoef < 1.e-3 ) { pt += c * ( Tau - tStep->giveTargetTime() ) / Tau; } else { pt += c * ( 1.0 - exp( dumpingCoef * ( tStep->giveTargetTime() - Tau ) ) ) / dumpingCoef / Tau; } loadVector.resize( this->giveNumberOfEquations(EID_MomentumBalance) ); for ( k = 1; k <= neq; k++ ) { loadVector.at(k) = pt * loadRefVector.at(k) - internalForces.at(k); } // Compute relative error. double err = 0.0; #ifdef __PARALLEL_MODE double my_err = 0.0; for ( int dm = 1; dm <= ndofman; dm++ ) { dman = domain->giveDofManager(dm); ndofs = dman->giveNumberOfDofs(); dofmanmode = dman->giveParallelMode(); // Skip all remote and null dofmanagers. coeff = 1.0; if ( ( dofmanmode == DofManager_remote ) || ( dofmanmode == DofManager_null ) ) { continue; } else if ( dofmanmode == DofManager_shared ) { coeff = 1. / dman->givePartitionsConnectivitySize(); } // For shared nodes we add locally an average= 1/givePartitionsConnectivitySize()*contribution. for ( j = 1; j <= ndofs; j++ ) { jdof = dman->giveDof(j); if ( jdof->isPrimaryDof() && ( eqNum = jdof->__giveEquationNumber() ) ) { my_err += coeff * loadVector.at(eqNum) * loadVector.at(eqNum) / massMatrix.at(eqNum); } } } // Sum up the contributions from processors. MPI_Allreduce(& my_err, & err, 1, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD); #else for ( k = 1; k <= neq; k++ ) { err = loadVector.at(k) * loadVector.at(k) / massMatrix.at(k); } #endif err = err / ( pMp * pt * pt ); OOFEM_LOG_RELEVANT("Relative error is %e, loadlevel is %e\n", err, pt); } for ( j = 1; j <= neq; j++ ) { coeff = massMatrix.at(j); loadVector.at(j) += coeff * ( ( 1. / ( deltaT * deltaT ) ) - dumpingCoef * 1. / ( 2. * deltaT ) ) * previousIncrementOfDisplacementVector.at(j); } // // Set-up numerical model // /* it is not necesary to call numerical method * approach used here is not good, but effective enough * inverse of diagonal mass matrix is done here */ // // call numerical model to solve arised problem - done localy here // #ifdef VERBOSE OOFEM_LOG_RELEVANT( "\n\nSolving [Step number %8d, Time %15e]\n", tStep->giveNumber(), tStep->giveTargetTime() ); #endif for ( i = 1; i <= neq; i++ ) { prevIncrOfDisplacement = previousIncrementOfDisplacementVector.at(i); incrOfDisplacement = loadVector.at(i) / ( massMatrix.at(i) * ( 1. / ( deltaT * deltaT ) + dumpingCoef / ( 2. * deltaT ) ) ); accelerationVector.at(i) = ( incrOfDisplacement - prevIncrOfDisplacement ) / ( deltaT * deltaT ); velocityVector.at(i) = ( incrOfDisplacement + prevIncrOfDisplacement ) / ( 2. * deltaT ); previousIncrementOfDisplacementVector.at(i) = incrOfDisplacement; } }
void NonLinearDynamic :: proceedStep(int di, TimeStep *tStep) { // creates system of governing eq's and solves them at given time step // first assemble problem at current time step int neq = this->giveNumberOfEquations(EID_MomentumBalance); // Time-stepping constants double dt2 = deltaT * deltaT; if ( tStep->giveTimeDiscretization() == TD_Newmark ) { OOFEM_LOG_DEBUG("Solving using Newmark-beta method\n"); a0 = 1 / ( beta * dt2 ); a1 = gamma / ( beta * deltaT ); a2 = 1 / ( beta * deltaT ); a3 = 1 / ( 2 * beta ) - 1; a4 = ( gamma / beta ) - 1; a5 = deltaT / 2 * ( gamma / beta - 2 ); a6 = 0; } else if ( ( tStep->giveTimeDiscretization() == TD_TwoPointBackward ) || ( tStep->giveNumber() == giveNumberOfFirstStep() ) ) { if ( tStep->giveTimeDiscretization() != TD_ThreePointBackward ) { OOFEM_LOG_DEBUG("Solving using Backward Euler method\n"); } else { OOFEM_LOG_DEBUG("Solving initial step using Three-point Backward Euler method\n"); } a0 = 1 / dt2; a1 = 1 / deltaT; a2 = 1 / deltaT; a3 = 0; a4 = 0; a5 = 0; a6 = 0; } else if ( tStep->giveTimeDiscretization() == TD_ThreePointBackward ) { OOFEM_LOG_DEBUG("Solving using Three-point Backward Euler method\n"); a0 = 2 / dt2; a1 = 3 / ( 2 * deltaT ); a2 = 2 / deltaT; a3 = 0; a4 = 0; a5 = 0; a6 = 1 / ( 2 * deltaT ); } else { _error("NonLinearDynamic: Time-stepping scheme not found!\n") } if ( tStep->giveNumber() == giveNumberOfFirstStep() ) { // Initialization previousIncrementOfDisplacement.resize(neq); previousIncrementOfDisplacement.zero(); previousTotalDisplacement.resize(neq); previousTotalDisplacement.zero(); totalDisplacement.resize(neq); totalDisplacement.zero(); previousInternalForces.resize(neq); previousInternalForces.zero(); incrementOfDisplacement.resize(neq); incrementOfDisplacement.zero(); velocityVector.resize(neq); velocityVector.zero(); accelerationVector.resize(neq); accelerationVector.zero(); TimeStep *stepWhenIcApply = new TimeStep(giveNumberOfTimeStepWhenIcApply(), this, 0, -deltaT, deltaT, 0); int nDofs, j, k, jj; int nman = this->giveDomain(di)->giveNumberOfDofManagers(); DofManager *node; Dof *iDof; // Considering initial conditions. for ( j = 1; j <= nman; j++ ) { node = this->giveDomain(di)->giveDofManager(j); nDofs = node->giveNumberOfDofs(); for ( k = 1; k <= nDofs; k++ ) { // Ask for initial values obtained from // bc (boundary conditions) and ic (initial conditions). iDof = node->giveDof(k); if ( !iDof->isPrimaryDof() ) { continue; } jj = iDof->__giveEquationNumber(); if ( jj ) { incrementOfDisplacement.at(jj) = iDof->giveUnknown(EID_MomentumBalance, VM_Total, stepWhenIcApply); velocityVector.at(jj) = iDof->giveUnknown(EID_MomentumBalance, VM_Velocity, stepWhenIcApply); accelerationVector.at(jj) = iDof->giveUnknown(EID_MomentumBalance, VM_Acceleration, stepWhenIcApply); } } } } else { incrementOfDisplacement.resize(neq); incrementOfDisplacement.zero(); } if ( initFlag ) { // First assemble problem at current time step. // Option to take into account initial conditions. if ( !stiffnessMatrix ) { stiffnessMatrix = CreateUsrDefSparseMtrx(sparseMtrxType); } if ( stiffnessMatrix == NULL ) { _error("proceedStep: sparse matrix creation failed"); } if ( nonlocalStiffnessFlag ) { if ( !stiffnessMatrix->isAsymmetric() ) { _error("proceedStep: stiffnessMatrix does not support asymmetric storage"); } } stiffnessMatrix->buildInternalStructure( this, di, EID_MomentumBalance, EModelDefaultEquationNumbering() ); // Initialize vectors help.resize(neq); rhs.resize(neq); rhs2.resize(neq); internalForces.resize(neq); help.zero(); rhs.zero(); rhs2.zero(); previousTotalDisplacement.resize(neq); for ( int i = 1; i <= neq; i++ ) { previousTotalDisplacement.at(i) = totalDisplacement.at(i); } initFlag = 0; } #ifdef VERBOSE OOFEM_LOG_DEBUG("Assembling load\n"); #endif // Assemble the incremental reference load vector. this->assembleIncrementalReferenceLoadVectors(incrementalLoadVector, incrementalLoadVectorOfPrescribed, refLoadInputMode, this->giveDomain(di), EID_MomentumBalance, tStep); // Assembling the effective load vector for ( int i = 1; i <= neq; i++ ) { help.at(i) = a2 * velocityVector.at(i) + a3 * accelerationVector.at(i) + eta * ( a4 * velocityVector.at(i) + a5 * accelerationVector.at(i) + a6 * previousIncrementOfDisplacement.at(i) ); } this->timesMtrx(help, rhs, MassMatrix, this->giveDomain(di), tStep); if ( delta != 0 ) { for ( int i = 1; i <= neq; i++ ) { help.at(i) = delta * ( a4 * velocityVector.at(i) + a5 * accelerationVector.at(i) + a6 * previousIncrementOfDisplacement.at(i) ); } this->timesMtrx(help, rhs2, StiffnessMatrix, this->giveDomain(di), tStep); help.zero(); for ( int i = 1; i <= neq; i++ ) { rhs.at(i) += rhs2.at(i); } } for ( int i = 1; i <= neq; i++ ) { rhs.at(i) += incrementalLoadVector.at(i) - previousInternalForces.at(i); totalDisplacement.at(i) = previousTotalDisplacement.at(i); } // // Set-up numerical model. // this->giveNumericalMethod( this->giveCurrentMetaStep() ); // // Call numerical model to solve problem. // double loadLevel = 1.0; if ( initialLoadVector.isNotEmpty() ) { numMetStatus = nMethod->solve(stiffnessMatrix, & rhs, & initialLoadVector, & totalDisplacement, & incrementOfDisplacement, & internalForces, internalForcesEBENorm, loadLevel, refLoadInputMode, currentIterations, tStep); } else { numMetStatus = nMethod->solve(stiffnessMatrix, & rhs, NULL, & totalDisplacement, & incrementOfDisplacement, & internalForces, internalForcesEBENorm, loadLevel, refLoadInputMode, currentIterations, tStep); } OOFEM_LOG_INFO("Equilibrium reached in %d iterations\n", currentIterations); }