Esempio n. 1
0
void AliasThis::semantic(Scope *sc)
{
    Dsymbol *parent = sc->parent;
    if (parent)
        parent = parent->pastMixin();
    AggregateDeclaration *ad = NULL;
    if (parent)
        ad = parent->isAggregateDeclaration();
    if (ad)
    {
        assert(ad->members);
        Dsymbol *s = ad->search(loc, ident, 0);
        if (!s)
        {   s = sc->search(loc, ident, 0);
            if (s)
                ::error(loc, "%s is not a member of %s", s->toChars(), ad->toChars());
            else
                ::error(loc, "undefined identifier %s", ident->toChars());
        }
        else if (ad->aliasthis && s != ad->aliasthis)
            error("there can be only one alias this");
        ad->aliasthis = s;
    }
    else
        error("alias this can only appear in struct or class declaration, not %s", parent ? parent->toChars() : "nowhere");
}
Esempio n. 2
0
File: dsymbol.c Progetto: Nishi/dmd
AggregateDeclaration *Dsymbol::isAggregateMember2()     // are we a member of an aggregate?
{
    Dsymbol *parent = toParent2();
    if (parent && parent->isAggregateDeclaration())
        return (AggregateDeclaration *)parent;
    return NULL;
}
Esempio n. 3
0
void AnonDeclaration::semantic(Scope *sc)
{
    //printf("\tAnonDeclaration::semantic %s %p\n", isunion ? "union" : "struct", this);

    assert(sc->parent);

    Dsymbol *p = sc->parent->pastMixin();
    AggregateDeclaration *ad = p->isAggregateDeclaration();
    if (!ad)
    {
        ::error(loc, "%s can only be a part of an aggregate, not %s %s",
            kind(), p->kind(), p->toChars());
        return;
    }

    alignment = sc->structalign;
    if (decl)
    {
        sc = sc->push();
        sc->stc &= ~(STCauto | STCscope | STCstatic | STCtls | STCgshared);
        sc->inunion = isunion;
        sc->flags = 0;

        for (size_t i = 0; i < decl->dim; i++)
        {
            Dsymbol *s = (*decl)[i];
            s->semantic(sc);
        }
        sc = sc->pop();
    }
}
Esempio n. 4
0
void AnonDeclaration::semantic(Scope *sc)
{
    //printf("\tAnonDeclaration::semantic %s %p\n", isunion ? "union" : "struct", this);

    assert(sc->parent);

    Dsymbol *parent = sc->parent->pastMixin();
    AggregateDeclaration *ad = parent->isAggregateDeclaration();

    if (!ad || (!ad->isStructDeclaration() && !ad->isClassDeclaration()))
    {
        error("can only be a part of an aggregate");
        return;
    }

    alignment = sc->structalign;
    if (decl)
    {
        sc = sc->push();
        sc->stc &= ~(STCauto | STCscope | STCstatic | STCtls | STCgshared);
        sc->inunion = isunion;
        sc->offset = 0;
        sc->flags = 0;

        for (size_t i = 0; i < decl->dim; i++)
        {
            Dsymbol *s = (*decl)[i];
            s->semantic(sc);
        }
        sc = sc->pop();
    }
}
Esempio n. 5
0
File: dsymbol.c Progetto: olgk/ldc
AggregateDeclaration *Dsymbol::isMember()       // is this a member of an AggregateDeclaration?
{
    //printf("Dsymbol::isMember() %s\n", toChars());
    Dsymbol *parent = toParent();
    //printf("parent is %s %s\n", parent->kind(), parent->toChars());
    return parent ? parent->isAggregateDeclaration() : NULL;
}
Esempio n. 6
0
void AliasThis::semantic(Scope *sc)
{
    Dsymbol *p = sc->parent->pastMixin();
    AggregateDeclaration *ad = p->isAggregateDeclaration();
    if (!ad)
    {
        ::error(loc, "alias this can only be a member of aggregate, not %s %s",
            p->kind(), p->toChars());
        return;
    }

    assert(ad->members);
    Dsymbol *s = ad->search(loc, ident);
    if (!s)
    {
        s = sc->search(loc, ident, NULL);
        if (s)
            ::error(loc, "%s is not a member of %s", s->toChars(), ad->toChars());
        else
            ::error(loc, "undefined identifier %s", ident->toChars());
        return;
    }
    else if (ad->aliasthis && s != ad->aliasthis)
    {
        ::error(loc, "there can be only one alias this");
        return;
    }

    if (ad->type->ty == Tstruct && ((TypeStruct *)ad->type)->sym != ad)
    {
        AggregateDeclaration *ad2 = ((TypeStruct *)ad->type)->sym;
        assert(ad2->type == Type::terror);
        ad->aliasthis = ad2->aliasthis;
        return;
    }

    /* disable the alias this conversion so the implicit conversion check
     * doesn't use it.
     */
    ad->aliasthis = NULL;

    Dsymbol *sx = s;
    if (sx->isAliasDeclaration())
        sx = sx->toAlias();
    Declaration *d = sx->isDeclaration();
    if (d && !d->isTupleDeclaration())
    {
        Type *t = d->type;
        assert(t);
        if (ad->type->implicitConvTo(t) > MATCHnomatch)
        {
            ::error(loc, "alias this is not reachable as %s already converts to %s", ad->toChars(), t->toChars());
        }
    }

    ad->aliasthis = s;
}
Esempio n. 7
0
void AggregateDeclaration::makeNested()
{
    if (!enclosing && sizeok != SIZEOKdone && !isUnionDeclaration() && !isInterfaceDeclaration())
    {
        // If nested struct, add in hidden 'this' pointer to outer scope
        if (!(storage_class & STCstatic))
        {
            Dsymbol *s = toParent2();
            if (s)
            {
                AggregateDeclaration *ad = s->isAggregateDeclaration();
                FuncDeclaration *fd = s->isFuncDeclaration();

                if (fd)
                {
                    enclosing = fd;
                }
                else if (isClassDeclaration() && ad && ad->isClassDeclaration())
                {
                    enclosing = ad;
                }
                else if (isStructDeclaration() && ad)
                {
                    if (TemplateInstance *ti = ad->parent->isTemplateInstance())
                    {
                        enclosing = ti->enclosing;
                    }
                }
                if (enclosing)
                {
                    //printf("makeNested %s, enclosing = %s\n", toChars(), enclosing->toChars());
                    Type *t;
                    if (ad)
                        t = ad->handleType();
                    else if (fd)
                    {
                        AggregateDeclaration *ad2 = fd->isMember2();
                        if (ad2)
                            t = ad2->handleType();
                        else
                            t = Type::tvoidptr;
                    }
                    else
                        assert(0);
                    if (t->ty == Tstruct)
                        t = Type::tvoidptr;     // t should not be a ref type
                    assert(!vthis);
                    vthis = new ThisDeclaration(loc, t);
                    //vthis->storage_class |= STCref;
                    members->push(vthis);
                }
            }
        }
    }
}
Esempio n. 8
0
File: struct.c Progetto: nrTQgc/ldc
void AggregateDeclaration::makeNested()
{
    if (enclosing)  // if already nested
        return;
    if (sizeok == SIZEOKdone)
        return;
    if (isUnionDeclaration() || isInterfaceDeclaration())
        return;
    if (storage_class & STCstatic)
        return;

    // If nested struct, add in hidden 'this' pointer to outer scope
    Dsymbol *s = toParent2();
    if (!s)
        return;
    AggregateDeclaration *ad = s->isAggregateDeclaration();
    FuncDeclaration *fd = s->isFuncDeclaration();
    Type *t = NULL;
    if (fd)
    {
        enclosing = fd;

        AggregateDeclaration *agg = fd->isMember2();
        t = agg ? agg->handleType() : Type::tvoidptr;
    }
    else if (ad)
    {
        if (isClassDeclaration() && ad->isClassDeclaration())
        {
            enclosing = ad;
        }
        else if (isStructDeclaration())
        {
            if (TemplateInstance *ti = ad->parent->isTemplateInstance())
            {
                enclosing = ti->enclosing;
            }
        }

        t = ad->handleType();
    }
    if (enclosing)
    {
        //printf("makeNested %s, enclosing = %s\n", toChars(), enclosing->toChars());
        assert(t);
        if (t->ty == Tstruct)
            t = Type::tvoidptr;     // t should not be a ref type
        assert(!vthis);
        vthis = new ThisDeclaration(loc, t);
        //vthis->storage_class |= STCref;
        members->push(vthis);
    }
}
Esempio n. 9
0
/**********************************
 * Determine if smember has access to private members of this declaration.
 */
bool hasPrivateAccess(AggregateDeclaration *ad, Dsymbol *smember)
{
    if (smember)
    {
        AggregateDeclaration *cd = NULL;
        Dsymbol *smemberparent = smember->toParent();
        if (smemberparent)
            cd = smemberparent->isAggregateDeclaration();

#if LOG
        printf("AggregateDeclaration::hasPrivateAccess(class %s, member %s)\n",
                ad->toChars(), smember->toChars());
#endif

        if (ad == cd)         // smember is a member of this class
        {
#if LOG
            printf("\tyes 1\n");
#endif
            return true;           // so we get private access
        }

        // If both are members of the same module, grant access
        while (1)
        {
            Dsymbol *sp = smember->toParent();
            if (sp->isFuncDeclaration() && smember->isFuncDeclaration())
                smember = sp;
            else
                break;
        }
        if (!cd && ad->toParent() == smember->toParent())
        {
#if LOG
            printf("\tyes 2\n");
#endif
            return true;
        }
        if (!cd && ad->getAccessModule() == smember->getAccessModule())
        {
#if LOG
            printf("\tyes 3\n");
#endif
            return true;
        }
    }
#if LOG
    printf("\tno\n");
#endif
    return false;
}
Esempio n. 10
0
File: dsymbol.c Progetto: olgk/ldc
const char *Dsymbol::toPrettyChars()
{   Dsymbol *p;
    char *s;
    char *q;
    size_t len;

    //printf("Dsymbol::toPrettyChars() '%s'\n", toChars());
    if (!parent)
        return toChars();

    len = 0;
    for (p = this; p; p = p->parent)
        len += strlen(p->toChars()) + 1;

    s = (char *)mem.malloc(len);
    q = s + len - 1;
    *q = 0;
    for (p = this; p; p = p->parent)
    {
        char *t = p->toChars();
        len = strlen(t);
        q -= len;
        memcpy(q, t, len);
        if (q == s)
            break;
        q--;
#if TARGET_NET
    if (AggregateDeclaration* ad = p->isAggregateDeclaration())
    {
        if (ad->isNested() && p->parent && p->parent->isAggregateDeclaration())
        {
            *q = '/';
            continue;
        }
    }
#endif
        *q = '.';
    }
    return s;
}
Esempio n. 11
0
File: struct.c Progetto: ikd734/dmd
void StructDeclaration::makeNested()
{
    if (!isnested && sizeok != SIZEOKdone && !isUnionDeclaration())
    {
        // If nested struct, add in hidden 'this' pointer to outer scope
        if (!(storage_class & STCstatic))
        {   Dsymbol *s = toParent2();
            if (s)
            {
                AggregateDeclaration *ad = s->isAggregateDeclaration();
                FuncDeclaration *fd = s->isFuncDeclaration();

                TemplateInstance *ti;
                if (ad && (ti = ad->parent->isTemplateInstance()) != NULL && ti->isnested || fd)
                {   isnested = true;
                    Type *t;
                    if (ad)
                        t = ad->handle;
                    else if (fd)
                    {   AggregateDeclaration *ad = fd->isMember2();
                        if (ad)
                            t = ad->handle;
                        else
                            t = Type::tvoidptr;
                    }
                    else
                        assert(0);
                    if (t->ty == Tstruct)
                        t = Type::tvoidptr;     // t should not be a ref type
                    assert(!vthis);
                    vthis = new ThisDeclaration(loc, t);
                    //vthis->storage_class |= STCref;
                    members->push(vthis);
                }
            }
        }
    }
}
Esempio n. 12
0
void ClassDeclaration::semantic(Scope *sc)
{
    //printf("ClassDeclaration::semantic(%s), type = %p, sizeok = %d, this = %p\n", toChars(), type, sizeok, this);
    //printf("\tparent = %p, '%s'\n", sc->parent, sc->parent ? sc->parent->toChars() : "");
    //printf("sc->stc = %x\n", sc->stc);

    //{ static int n;  if (++n == 20) *(char*)0=0; }

    if (!ident)         // if anonymous class
    {   const char *id = "__anonclass";

        ident = Identifier::generateId(id);
    }

    if (!sc)
        sc = scope;
    if (!parent && sc->parent && !sc->parent->isModule())
        parent = sc->parent;

    type = type->semantic(loc, sc);
    handle = type;

    if (!members)               // if opaque declaration
    {   //printf("\tclass '%s' is forward referenced\n", toChars());
        return;
    }
    if (symtab)
    {   if (sizeok == SIZEOKdone || !scope)
        {   //printf("\tsemantic for '%s' is already completed\n", toChars());
            return;             // semantic() already completed
        }
    }
    else
        symtab = new DsymbolTable();

    Scope *scx = NULL;
    if (scope)
    {   sc = scope;
        scx = scope;            // save so we don't make redundant copies
        scope = NULL;
    }
    unsigned dprogress_save = Module::dprogress;
    int errors = global.errors;

    if (sc->stc & STCdeprecated)
    {
        isdeprecated = true;
    }
    userAttributes = sc->userAttributes;

    if (sc->linkage == LINKcpp)
        error("cannot create C++ classes");

    // Expand any tuples in baseclasses[]
    for (size_t i = 0; i < baseclasses->dim; )
    {   BaseClass *b = (*baseclasses)[i];
        b->type = b->type->semantic(loc, sc);
        Type *tb = b->type->toBasetype();

        if (tb->ty == Ttuple)
        {   TypeTuple *tup = (TypeTuple *)tb;
            enum PROT protection = b->protection;
            baseclasses->remove(i);
            size_t dim = Parameter::dim(tup->arguments);
            for (size_t j = 0; j < dim; j++)
            {   Parameter *arg = Parameter::getNth(tup->arguments, j);
                b = new BaseClass(arg->type, protection);
                baseclasses->insert(i + j, b);
            }
        }
        else
            i++;
    }

    // See if there's a base class as first in baseclasses[]
    if (baseclasses->dim)
    {   TypeClass *tc;
        BaseClass *b;
        Type *tb;

        b = (*baseclasses)[0];
        //b->type = b->type->semantic(loc, sc);
        tb = b->type->toBasetype();
        if (tb->ty != Tclass)
        {   if (b->type != Type::terror)
                error("base type must be class or interface, not %s", b->type->toChars());
            baseclasses->remove(0);
        }
        else
        {
            tc = (TypeClass *)(tb);

            if (tc->sym->isDeprecated())
            {
                if (!isDeprecated())
                {
                    // Deriving from deprecated class makes this one deprecated too
                    isdeprecated = true;

                    tc->checkDeprecated(loc, sc);
                }
            }

            if (tc->sym->isInterfaceDeclaration())
                ;
            else
            {
                for (ClassDeclaration *cdb = tc->sym; cdb; cdb = cdb->baseClass)
                {
                    if (cdb == this)
                    {
                        error("circular inheritance");
                        baseclasses->remove(0);
                        goto L7;
                    }
                }
                if (!tc->sym->symtab || tc->sym->sizeok == SIZEOKnone)
                {   // Try to resolve forward reference
                    if (/*doAncestorsSemantic == SemanticIn &&*/ tc->sym->scope)
                        tc->sym->semantic(NULL);
                }
                if (!tc->sym->symtab || tc->sym->scope || tc->sym->sizeok == SIZEOKnone)
                {
                    //printf("%s: forward reference of base class %s\n", toChars(), tc->sym->toChars());
                    //error("forward reference of base class %s", baseClass->toChars());
                    // Forward reference of base class, try again later
                    //printf("\ttry later, forward reference of base class %s\n", tc->sym->toChars());
                    scope = scx ? scx : new Scope(*sc);
                    scope->setNoFree();
                    if (tc->sym->scope)
                        tc->sym->scope->module->addDeferredSemantic(tc->sym);
                    scope->module->addDeferredSemantic(this);
                    return;
                }
                else
                {   baseClass = tc->sym;
                    b->base = baseClass;
                }
             L7: ;
            }
        }
    }

    // Treat the remaining entries in baseclasses as interfaces
    // Check for errors, handle forward references
    for (size_t i = (baseClass ? 1 : 0); i < baseclasses->dim; )
    {   TypeClass *tc;
        BaseClass *b;
        Type *tb;

        b = (*baseclasses)[i];
        b->type = b->type->semantic(loc, sc);
        tb = b->type->toBasetype();
        if (tb->ty == Tclass)
            tc = (TypeClass *)tb;
        else
            tc = NULL;
        if (!tc || !tc->sym->isInterfaceDeclaration())
        {   if (b->type != Type::terror)
                error("base type must be interface, not %s", b->type->toChars());
            baseclasses->remove(i);
            continue;
        }
        else
        {
            if (tc->sym->isDeprecated())
            {
                if (!isDeprecated())
                {
                    // Deriving from deprecated class makes this one deprecated too
                    isdeprecated = true;

                    tc->checkDeprecated(loc, sc);
                }
            }

            // Check for duplicate interfaces
            for (size_t j = (baseClass ? 1 : 0); j < i; j++)
            {
                BaseClass *b2 = (*baseclasses)[j];
                if (b2->base == tc->sym)
                    error("inherits from duplicate interface %s", b2->base->toChars());
            }

            if (!tc->sym->symtab)
            {   // Try to resolve forward reference
                if (/*doAncestorsSemantic == SemanticIn &&*/ tc->sym->scope)
                    tc->sym->semantic(NULL);
            }

            b->base = tc->sym;
            if (!b->base->symtab || b->base->scope)
            {
                //error("forward reference of base class %s", baseClass->toChars());
                // Forward reference of base, try again later
                //printf("\ttry later, forward reference of base %s\n", baseClass->toChars());
                scope = scx ? scx : new Scope(*sc);
                scope->setNoFree();
                if (tc->sym->scope)
                    tc->sym->scope->module->addDeferredSemantic(tc->sym);
                scope->module->addDeferredSemantic(this);
                return;
            }
        }
        i++;
    }
    if (doAncestorsSemantic == SemanticIn)
        doAncestorsSemantic = SemanticDone;


    // If no base class, and this is not an Object, use Object as base class
    if (!baseClass && ident != Id::Object)
    {
        if (!object)
        {
            error("missing or corrupt object.d");
            fatal();
        }

        Type *t = object->type;
        t = t->semantic(loc, sc)->toBasetype();
        assert(t->ty == Tclass);
        TypeClass *tc = (TypeClass *)t;

        BaseClass *b = new BaseClass(tc, PROTpublic);
        baseclasses->shift(b);

        baseClass = tc->sym;
        assert(!baseClass->isInterfaceDeclaration());
        b->base = baseClass;
    }

    interfaces_dim = baseclasses->dim;
    interfaces = baseclasses->tdata();


    if (baseClass)
    {
        if (baseClass->storage_class & STCfinal)
            error("cannot inherit from final class %s", baseClass->toChars());

        interfaces_dim--;
        interfaces++;

        // Copy vtbl[] from base class
        vtbl.setDim(baseClass->vtbl.dim);
        memcpy(vtbl.tdata(), baseClass->vtbl.tdata(), sizeof(void *) * vtbl.dim);

        // Inherit properties from base class
        com = baseClass->isCOMclass();
        isscope = baseClass->isscope;
        vthis = baseClass->vthis;
        enclosing = baseClass->enclosing;
        storage_class |= baseClass->storage_class & STC_TYPECTOR;
    }
    else
    {
        // No base class, so this is the root of the class hierarchy
        vtbl.setDim(0);
        vtbl.push(this);                // leave room for classinfo as first member
    }

    protection = sc->protection;
    storage_class |= sc->stc;

    if (sizeok == SIZEOKnone)
    {
        interfaceSemantic(sc);

        for (size_t i = 0; i < members->dim; i++)
        {
            Dsymbol *s = (*members)[i];
            s->addMember(sc, this, 1);
        }

        /* If this is a nested class, add the hidden 'this'
         * member which is a pointer to the enclosing scope.
         */
        if (vthis)              // if inheriting from nested class
        {   // Use the base class's 'this' member
            if (storage_class & STCstatic)
                error("static class cannot inherit from nested class %s", baseClass->toChars());
            if (toParent2() != baseClass->toParent2() &&
                (!toParent2() ||
                 !baseClass->toParent2()->getType() ||
                 !baseClass->toParent2()->getType()->isBaseOf(toParent2()->getType(), NULL)))
            {
                if (toParent2())
                {
                    error("is nested within %s, but super class %s is nested within %s",
                        toParent2()->toChars(),
                        baseClass->toChars(),
                        baseClass->toParent2()->toChars());
                }
                else
                {
                    error("is not nested, but super class %s is nested within %s",
                        baseClass->toChars(),
                        baseClass->toParent2()->toChars());
                }
                enclosing = NULL;
            }
        }
        else
            makeNested();
    }

    if (storage_class & STCauto)
        error("storage class 'auto' is invalid when declaring a class, did you mean to use 'scope'?");
    if (storage_class & STCscope)
        isscope = 1;
    if (storage_class & STCabstract)
        isabstract = 1;

    sc = sc->push(this);
    //sc->stc &= ~(STCfinal | STCauto | STCscope | STCstatic | STCabstract | STCdeprecated | STC_TYPECTOR | STCtls | STCgshared);
    //sc->stc |= storage_class & STC_TYPECTOR;
    sc->stc &= STCsafe | STCtrusted | STCsystem;
    sc->parent = this;
    sc->inunion = 0;

    if (isCOMclass())
    {
#if IN_LLVM
        if (global.params.targetTriple.isOSWindows())
#else
        if (global.params.isWindows)
#endif
            sc->linkage = LINKwindows;
        else
            /* This enables us to use COM objects under Linux and
             * work with things like XPCOM
             */
            sc->linkage = LINKc;
    }
    sc->protection = PROTpublic;
    sc->explicitProtection = 0;
    sc->structalign = STRUCTALIGN_DEFAULT;
    if (baseClass)
    {   sc->offset = baseClass->structsize;
        alignsize = baseClass->alignsize;
//      if (enclosing)
//          sc->offset += Target::ptrsize;      // room for uplevel context pointer
    }
    else
    {   sc->offset = Target::ptrsize * 2;       // allow room for __vptr and __monitor
        alignsize = Target::ptrsize;
    }
    sc->userAttributes = NULL;
    structsize = sc->offset;
    Scope scsave = *sc;
    size_t members_dim = members->dim;
    sizeok = SIZEOKnone;

    /* Set scope so if there are forward references, we still might be able to
     * resolve individual members like enums.
     */
    for (size_t i = 0; i < members_dim; i++)
    {   Dsymbol *s = (*members)[i];
        /* There are problems doing this in the general case because
         * Scope keeps track of things like 'offset'
         */
        if (s->isEnumDeclaration() ||
            (s->isAggregateDeclaration() && s->ident) ||
            s->isTemplateMixin() ||
            s->isAttribDeclaration() ||
            s->isAliasDeclaration())
        {
            //printf("[%d] setScope %s %s, sc = %p\n", i, s->kind(), s->toChars(), sc);
            s->setScope(sc);
        }
    }

    for (size_t i = 0; i < members_dim; i++)
    {   Dsymbol *s = (*members)[i];
        s->semantic(sc);
    }

    // Set the offsets of the fields and determine the size of the class

    unsigned offset = structsize;
    bool isunion = isUnionDeclaration() != NULL;
    for (size_t i = 0; i < members->dim; i++)
    {   Dsymbol *s = (*members)[i];
        s->setFieldOffset(this, &offset, false);
    }
    sc->offset = structsize;

    if (global.errors != errors)
    {   // The type is no good.
        type = Type::terror;
    }

    if (sizeok == SIZEOKfwd)            // failed due to forward references
    {   // semantic() failed due to forward references
        // Unwind what we did, and defer it for later

        for (size_t i = 0; i < fields.dim; i++)
        {   Dsymbol *s = fields[i];
            VarDeclaration *vd = s->isVarDeclaration();
            if (vd)
                vd->offset = 0;
        }
        fields.setDim(0);
        structsize = 0;
        alignsize = 0;
//        structalign = 0;

        sc = sc->pop();

        scope = scx ? scx : new Scope(*sc);
        scope->setNoFree();
        scope->module->addDeferredSemantic(this);

        Module::dprogress = dprogress_save;

        //printf("\tsemantic('%s') failed due to forward references\n", toChars());
        return;
    }

    //printf("\tsemantic('%s') successful\n", toChars());

    //members->print();

    /* Look for special member functions.
     * They must be in this class, not in a base class.
     */
    ctor = search(Loc(), Id::ctor, 0);
#if DMDV1
    if (ctor && (ctor->toParent() != this || !ctor->isCtorDeclaration()))
        ctor = NULL;
#else
    if (ctor && (ctor->toParent() != this || !(ctor->isCtorDeclaration() || ctor->isTemplateDeclaration())))
        ctor = NULL;    // search() looks through ancestor classes
    if (!ctor && noDefaultCtor)
    {
        // A class object is always created by constructor, so this check is legitimate.
        for (size_t i = 0; i < fields.dim; i++)
        {
            VarDeclaration *v = fields[i]->isVarDeclaration();
            if (v->storage_class & STCnodefaultctor)
                ::error(v->loc, "field %s must be initialized in constructor", v->toChars());
        }
    }
#endif

//    dtor = (DtorDeclaration *)search(Id::dtor, 0);
//    if (dtor && dtor->toParent() != this)
//      dtor = NULL;

    inv = buildInv(sc);

    // Can be in base class
    aggNew    = (NewDeclaration *)search(Loc(), Id::classNew, 0);
    aggDelete = (DeleteDeclaration *)search(Loc(), Id::classDelete, 0);

    // If this class has no constructor, but base class has a default
    // ctor, create a constructor:
    //    this() { }
    if (!ctor && baseClass && baseClass->ctor)
    {
        if (resolveFuncCall(loc, sc, baseClass->ctor, NULL, NULL, NULL, 1))
        {
            //printf("Creating default this(){} for class %s\n", toChars());
            Type *tf = new TypeFunction(NULL, NULL, 0, LINKd, 0);
            CtorDeclaration *ctor = new CtorDeclaration(loc, Loc(), 0, tf);
            ctor->fbody = new CompoundStatement(Loc(), new Statements());
            members->push(ctor);
            ctor->addMember(sc, this, 1);
            *sc = scsave;   // why? What about sc->nofree?
            ctor->semantic(sc);
            this->ctor = ctor;
            defaultCtor = ctor;
        }
        else
        {
            error("Cannot implicitly generate a default ctor when base class %s is missing a default ctor", baseClass->toPrettyChars());
        }
    }

#if 0
    if (baseClass)
    {   if (!aggDelete)
            aggDelete = baseClass->aggDelete;
        if (!aggNew)
            aggNew = baseClass->aggNew;
    }
#endif

    // Allocate instance of each new interface
    sc->offset = structsize;
    for (size_t i = 0; i < vtblInterfaces->dim; i++)
    {
        BaseClass *b = (*vtblInterfaces)[i];
        unsigned thissize = Target::ptrsize;

        alignmember(STRUCTALIGN_DEFAULT, thissize, &sc->offset);
        assert(b->offset == 0);
        b->offset = sc->offset;

        // Take care of single inheritance offsets
        while (b->baseInterfaces_dim)
        {
            b = &b->baseInterfaces[0];
            b->offset = sc->offset;
        }

        sc->offset += thissize;
        if (alignsize < thissize)
            alignsize = thissize;
    }
    structsize = sc->offset;
#if IN_LLVM
    if (sc->structalign == STRUCTALIGN_DEFAULT)
        structsize = (structsize + alignsize - 1) & ~(alignsize - 1);
    else
        structsize = (structsize + sc->structalign - 1) & ~(sc->structalign - 1);
#endif

    sizeok = SIZEOKdone;
    Module::dprogress++;

    dtor = buildDtor(sc);
    if (FuncDeclaration *f = hasIdentityOpAssign(sc))
    {
        if (!(f->storage_class & STCdisable))
            error("identity assignment operator overload is illegal");
    }
    sc->pop();

#if 0 // Do not call until toObjfile() because of forward references
    // Fill in base class vtbl[]s
    for (i = 0; i < vtblInterfaces->dim; i++)
    {
        BaseClass *b = (*vtblInterfaces)[i];

        //b->fillVtbl(this, &b->vtbl, 1);
    }
#endif
    //printf("-ClassDeclaration::semantic(%s), type = %p\n", toChars(), type);

    if (deferred && !global.gag)
    {
        deferred->semantic2(sc);
        deferred->semantic3(sc);
    }

#if 0
    if (type->ty == Tclass && ((TypeClass *)type)->sym != this)
    {
        printf("this = %p %s\n", this, this->toChars());
        printf("type = %d sym = %p\n", type->ty, ((TypeClass *)type)->sym);
    }
#endif
    assert(type->ty != Tclass || ((TypeClass *)type)->sym == this);
}
Esempio n. 13
0
/*******************************
 * Do access check for member of this class, this class being the
 * type of the 'this' pointer used to access smember.
 * Returns true if the member is not accessible.
 */
bool checkAccess(AggregateDeclaration *ad, Loc loc, Scope *sc, Dsymbol *smember)
{
    FuncDeclaration *f = sc->func;
    AggregateDeclaration *cdscope = sc->getStructClassScope();

#if LOG
    printf("AggregateDeclaration::checkAccess() for %s.%s in function %s() in scope %s\n",
        ad->toChars(), smember->toChars(),
        f ? f->toChars() : NULL,
        cdscope ? cdscope->toChars() : NULL);
#endif

    Dsymbol *smemberparent = smember->toParent();
    if (!smemberparent || !smemberparent->isAggregateDeclaration())
    {
#if LOG
        printf("not an aggregate member\n");
#endif
        return false;                   // then it is accessible
    }

    // BUG: should enable this check
    //assert(smember->parent->isBaseOf(this, NULL));

    bool result;
    Prot access;
    if (smemberparent == ad)
    {
        Prot access2 = smember->prot();
        result = access2.kind >= PROTpublic ||
                hasPrivateAccess(ad, f) ||
                isFriendOf(ad, cdscope) ||
                (access2.kind == PROTpackage && hasPackageAccess(sc, ad)) ||
                ad->getAccessModule() == sc->module;
#if LOG
        printf("result1 = %d\n", result);
#endif
    }
    else if ((access = getAccess(ad, smember)).kind >= PROTpublic)
    {
        result = true;
#if LOG
        printf("result2 = %d\n", result);
#endif
    }
    else if (access.kind == PROTpackage && hasPackageAccess(sc, ad))
    {
        result = true;
#if LOG
        printf("result3 = %d\n", result);
#endif
    }
    else
    {
        result = isAccessible(smember, f, ad, cdscope);
#if LOG
        printf("result4 = %d\n", result);
#endif
    }
    if (!result)
    {
        ad->error(loc, "member %s is not accessible", smember->toChars());
        //printf("smember = %s %s, prot = %d, semanticRun = %d\n",
        //        smember->kind(), smember->toPrettyChars(), smember->prot(), smember->semanticRun);
        return true;
    }
    return false;
}
Esempio n. 14
0
Expression *TraitsExp::semantic(Scope *sc)
{
#if LOGSEMANTIC
    printf("TraitsExp::semantic() %s\n", toChars());
#endif
    if (ident != Id::compiles && ident != Id::isSame &&
        ident != Id::identifier)
    {
        TemplateInstance::semanticTiargs(loc, sc, args, 1);
    }
    size_t dim = args ? args->dim : 0;
    Declaration *d;

#define ISTYPE(cond) \
        for (size_t i = 0; i < dim; i++)        \
        {   Type *t = getType((*args)[i]);      \
            if (!t)                             \
                goto Lfalse;                    \
            if (!(cond))                        \
                goto Lfalse;                    \
        }                                       \
        if (!dim)                               \
            goto Lfalse;                        \
        goto Ltrue;

#define ISDSYMBOL(cond) \
        for (size_t i = 0; i < dim; i++)        \
        {   Dsymbol *s = getDsymbol((*args)[i]); \
            if (!s)                             \
                goto Lfalse;                    \
            if (!(cond))                        \
                goto Lfalse;                    \
        }                                       \
        if (!dim)                               \
            goto Lfalse;                        \
        goto Ltrue;



    if (ident == Id::isArithmetic)
    {
        ISTYPE(t->isintegral() || t->isfloating())
    }
    else if (ident == Id::isFloating)
    {
        ISTYPE(t->isfloating())
    }
    else if (ident == Id::isIntegral)
    {
        ISTYPE(t->isintegral())
    }
    else if (ident == Id::isScalar)
    {
        ISTYPE(t->isscalar())
    }
    else if (ident == Id::isUnsigned)
    {
        ISTYPE(t->isunsigned())
    }
    else if (ident == Id::isAssociativeArray)
    {
        ISTYPE(t->toBasetype()->ty == Taarray)
    }
    else if (ident == Id::isStaticArray)
    {
        ISTYPE(t->toBasetype()->ty == Tsarray)
    }
    else if (ident == Id::isAbstractClass)
    {
        ISTYPE(t->toBasetype()->ty == Tclass && ((TypeClass *)t->toBasetype())->sym->isAbstract())
    }
    else if (ident == Id::isFinalClass)
    {
        ISTYPE(t->toBasetype()->ty == Tclass && ((TypeClass *)t->toBasetype())->sym->storage_class & STCfinal)
    }
    else if (ident == Id::isPOD)
    {
        if (dim != 1)
            goto Ldimerror;
        Object *o = (*args)[0];
        Type *t = isType(o);
        StructDeclaration *sd;
        if (!t)
        {
            error("type expected as second argument of __traits %s instead of %s", ident->toChars(), o->toChars());
            goto Lfalse;
        }
        if (t->toBasetype()->ty == Tstruct
              && ((sd = (StructDeclaration *)(((TypeStruct *)t->toBasetype())->sym)) != NULL))
        {
            if (sd->isPOD())
                goto Ltrue;
            else
                goto Lfalse;
        }
        goto Ltrue;
    }
    else if (ident == Id::isNested)
    {
        if (dim != 1)
            goto Ldimerror;
        Object *o = (*args)[0];
        Dsymbol *s = getDsymbol(o);
        AggregateDeclaration *a;
        FuncDeclaration *f;

        if (!s) { }
        else if ((a = s->isAggregateDeclaration()) != NULL)
        {
            if (a->isNested())
                goto Ltrue;
            else
                goto Lfalse;
        }
        else if ((f = s->isFuncDeclaration()) != NULL)
        {
            if (f->isNested())
                goto Ltrue;
            else
                goto Lfalse;
        }

        error("aggregate or function expected instead of '%s'", o->toChars());
        goto Lfalse;
    }
    else if (ident == Id::isAbstractFunction)
    {
        FuncDeclaration *f;
        ISDSYMBOL((f = s->isFuncDeclaration()) != NULL && f->isAbstract())
    }
Esempio n. 15
0
void VarDeclaration::semantic(Scope *sc)
{
#if 0
    printf("VarDeclaration::semantic('%s', parent = '%s')\n", toChars(), sc->parent->toChars());
    printf(" type = %s\n", type ? type->toChars() : "null");
    printf(" stc = x%x\n", sc->stc);
    printf(" storage_class = x%x\n", storage_class);
    printf("linkage = %d\n", sc->linkage);
    //if (strcmp(toChars(), "mul") == 0) halt();
#endif

    storage_class |= sc->stc;
    if (storage_class & STCextern && init)
        error("extern symbols cannot have initializers");

    AggregateDeclaration *ad = isThis();
    if (ad)
        storage_class |= ad->storage_class & STC_TYPECTOR;

    /* If auto type inference, do the inference
     */
    int inferred = 0;
    if (!type)
    {   inuse++;
        type = init->inferType(sc);
        inuse--;
        inferred = 1;

        /* This is a kludge to support the existing syntax for RAII
         * declarations.
         */
        storage_class &= ~STCauto;
        originalType = type;
    }
    else
    {   if (!originalType)
            originalType = type;
        type = type->semantic(loc, sc);
    }
    //printf(" semantic type = %s\n", type ? type->toChars() : "null");

    type->checkDeprecated(loc, sc);
    linkage = sc->linkage;
    this->parent = sc->parent;
    //printf("this = %p, parent = %p, '%s'\n", this, parent, parent->toChars());
    protection = sc->protection;
    //printf("sc->stc = %x\n", sc->stc);
    //printf("storage_class = x%x\n", storage_class);

#if DMDV2
    if (storage_class & STCgshared && global.params.safe && !sc->module->safe)
    {
        error("__gshared not allowed in safe mode; use shared");
    }
#endif

    Dsymbol *parent = toParent();
    FuncDeclaration *fd = parent->isFuncDeclaration();

    Type *tb = type->toBasetype();
    if (tb->ty == Tvoid && !(storage_class & STClazy))
    {   error("voids have no value");
        type = Type::terror;
        tb = type;
    }
    if (tb->ty == Tfunction)
    {   error("cannot be declared to be a function");
        type = Type::terror;
        tb = type;
    }
    if (tb->ty == Tstruct)
    {   TypeStruct *ts = (TypeStruct *)tb;

        if (!ts->sym->members)
        {
            error("no definition of struct %s", ts->toChars());
        }
    }
    if ((storage_class & STCauto) && !inferred)
       error("storage class 'auto' has no effect if type is not inferred, did you mean 'scope'?");

    if (tb->ty == Ttuple)
    {   /* Instead, declare variables for each of the tuple elements
         * and add those.
         */
        TypeTuple *tt = (TypeTuple *)tb;
        size_t nelems = Parameter::dim(tt->arguments);
        Objects *exps = new Objects();
        exps->setDim(nelems);
        Expression *ie = init ? init->toExpression() : NULL;

        for (size_t i = 0; i < nelems; i++)
        {   Parameter *arg = Parameter::getNth(tt->arguments, i);

            OutBuffer buf;
            buf.printf("_%s_field_%zu", ident->toChars(), i);
            buf.writeByte(0);
            const char *name = (const char *)buf.extractData();
            Identifier *id = Lexer::idPool(name);

            Expression *einit = ie;
            if (ie && ie->op == TOKtuple)
            {   einit = (Expression *)((TupleExp *)ie)->exps->data[i];
            }
            Initializer *ti = init;
            if (einit)
            {   ti = new ExpInitializer(einit->loc, einit);
            }

            VarDeclaration *v = new VarDeclaration(loc, arg->type, id, ti);
            //printf("declaring field %s of type %s\n", v->toChars(), v->type->toChars());
            v->semantic(sc);

#if !IN_LLVM
// removed for LDC since TupleDeclaration::toObj already creates the fields;
// adding them to the scope again leads to duplicates
            if (sc->scopesym)
            {   //printf("adding %s to %s\n", v->toChars(), sc->scopesym->toChars());
                if (sc->scopesym->members)
                    sc->scopesym->members->push(v);
            }
#endif

            Expression *e = new DsymbolExp(loc, v);
            exps->data[i] = e;
        }
        TupleDeclaration *v2 = new TupleDeclaration(loc, ident, exps);
        v2->isexp = 1;
        aliassym = v2;
        return;
    }

    if (storage_class & STCconst && !init && !fd)
        // Initialize by constructor only
        storage_class = (storage_class & ~STCconst) | STCctorinit;

    if (isConst())
    {
    }
    else if (isStatic())
    {
    }
    else if (isSynchronized())
    {
        error("variable %s cannot be synchronized", toChars());
    }
    else if (isOverride())
    {
        error("override cannot be applied to variable");
    }
    else if (isAbstract())
    {
        error("abstract cannot be applied to variable");
    }
    else if (storage_class & STCtemplateparameter)
    {
    }
    else if (storage_class & STCctfe)
    {
    }
    else
    {
        AggregateDeclaration *aad = sc->anonAgg;
        if (!aad)
            aad = parent->isAggregateDeclaration();
        if (aad)
        {
#if DMDV2
            assert(!(storage_class & (STCextern | STCstatic | STCtls | STCgshared)));

            if (storage_class & (STCconst | STCimmutable) && init)
            {
                if (!type->toBasetype()->isTypeBasic())
                    storage_class |= STCstatic;
            }
            else
#endif
                aad->addField(sc, this);
        }

        InterfaceDeclaration *id = parent->isInterfaceDeclaration();
        if (id)
        {
            error("field not allowed in interface");
        }

        /* Templates cannot add fields to aggregates
         */
        TemplateInstance *ti = parent->isTemplateInstance();
        if (ti)
        {
            // Take care of nested templates
            while (1)
            {
                TemplateInstance *ti2 = ti->tempdecl->parent->isTemplateInstance();
                if (!ti2)
                    break;
                ti = ti2;
            }

            // If it's a member template
            AggregateDeclaration *ad = ti->tempdecl->isMember();
            if (ad && storage_class != STCundefined)
            {
                error("cannot use template to add field to aggregate '%s'", ad->toChars());
            }
        }
    }

#if DMDV2
    if ((storage_class & (STCref | STCparameter | STCforeach)) == STCref &&
        ident != Id::This)
    {
        error("only parameters or foreach declarations can be ref");
    }
#endif

    if (type->isscope() && !noscope)
    {
        if (storage_class & (STCfield | STCout | STCref | STCstatic) || !fd)
        {
            error("globals, statics, fields, ref and out parameters cannot be auto");
        }

        if (!(storage_class & STCscope))
        {
            if (!(storage_class & STCparameter) && ident != Id::withSym)
                error("reference to scope class must be scope");
        }
    }

    enum TOK op = TOKconstruct;
    if (!init && !sc->inunion && !isStatic() && !isConst() && fd &&
        !(storage_class & (STCfield | STCin | STCforeach)) &&
        type->size() != 0)
    {
        // Provide a default initializer
        //printf("Providing default initializer for '%s'\n", toChars());
        if (type->ty == Tstruct &&
            ((TypeStruct *)type)->sym->zeroInit == 1)
        {   /* If a struct is all zeros, as a special case
             * set it's initializer to the integer 0.
             * In AssignExp::toElem(), we check for this and issue
             * a memset() to initialize the struct.
             * Must do same check in interpreter.
             */
            Expression *e = new IntegerExp(loc, 0, Type::tint32);
            Expression *e1;
            e1 = new VarExp(loc, this);
            e = new AssignExp(loc, e1, e);
            e->op = TOKconstruct;
            e->type = e1->type;         // don't type check this, it would fail
            init = new ExpInitializer(loc, e);
            return;
        }
        else if (type->ty == Ttypedef)
        {   TypeTypedef *td = (TypeTypedef *)type;
            if (td->sym->init)
            {   init = td->sym->init;
                ExpInitializer *ie = init->isExpInitializer();
                if (ie)
                    // Make copy so we can modify it
                    init = new ExpInitializer(ie->loc, ie->exp);
            }
            else
                init = getExpInitializer();
        }
        else
        {
            init = getExpInitializer();
        }
        // Default initializer is always a blit
        op = TOKblit;
    }

    if (init)
    {
        sc = sc->push();
        sc->stc &= ~(STC_TYPECTOR | STCpure | STCnothrow | STCref);

        ArrayInitializer *ai = init->isArrayInitializer();
        if (ai && tb->ty == Taarray)
        {
            init = ai->toAssocArrayInitializer();
        }

        StructInitializer *si = init->isStructInitializer();
        ExpInitializer *ei = init->isExpInitializer();

        // See if initializer is a NewExp that can be allocated on the stack
        if (ei && isScope() && ei->exp->op == TOKnew)
        {   NewExp *ne = (NewExp *)ei->exp;
            if (!(ne->newargs && ne->newargs->dim))
            {   ne->onstack = 1;
                onstack = 1;
                if (type->isBaseOf(ne->newtype->semantic(loc, sc), NULL))
                    onstack = 2;
            }
        }

        // If inside function, there is no semantic3() call
        if (sc->func)
        {
            // If local variable, use AssignExp to handle all the various
            // possibilities.
            if (fd && !isStatic() && !isConst() && !init->isVoidInitializer())
            {
                //printf("fd = '%s', var = '%s'\n", fd->toChars(), toChars());
                if (!ei)
                {
                    Expression *e = init->toExpression();
                    if (!e)
                    {
                        init = init->semantic(sc, type);
                        e = init->toExpression();
                        if (!e)
                        {   error("is not a static and cannot have static initializer");
                            return;
                        }
                    }
                    ei = new ExpInitializer(init->loc, e);
                    init = ei;
                }

                Expression *e1 = new VarExp(loc, this);

                Type *t = type->toBasetype();
                if (t->ty == Tsarray && !(storage_class & (STCref | STCout)))
                {
                    ei->exp = ei->exp->semantic(sc);
                    if (!ei->exp->implicitConvTo(type))
                    {
                        int dim = ((TypeSArray *)t)->dim->toInteger();
                        // If multidimensional static array, treat as one large array
                        while (1)
                        {
                            t = t->nextOf()->toBasetype();
                            if (t->ty != Tsarray)
                                break;
                            dim *= ((TypeSArray *)t)->dim->toInteger();
                            e1->type = new TypeSArray(t->nextOf(), new IntegerExp(0, dim, Type::tindex));
                        }
                    }
                    e1 = new SliceExp(loc, e1, NULL, NULL);
                }
                else if (t->ty == Tstruct)
                {
                    ei->exp = ei->exp->semantic(sc);
                    ei->exp = resolveProperties(sc, ei->exp);
                    StructDeclaration *sd = ((TypeStruct *)t)->sym;
#if DMDV2
                    /* Look to see if initializer is a call to the constructor
                     */
                    if (sd->ctor &&             // there are constructors
                        ei->exp->type->ty == Tstruct && // rvalue is the same struct
                        ((TypeStruct *)ei->exp->type)->sym == sd &&
                        ei->exp->op == TOKstar)
                    {
                        /* Look for form of constructor call which is:
                         *    *__ctmp.ctor(arguments...)
                         */
                        PtrExp *pe = (PtrExp *)ei->exp;
                        if (pe->e1->op == TOKcall)
                        {   CallExp *ce = (CallExp *)pe->e1;
                            if (ce->e1->op == TOKdotvar)
                            {   DotVarExp *dve = (DotVarExp *)ce->e1;
                                if (dve->var->isCtorDeclaration())
                                {   /* It's a constructor call, currently constructing
                                     * a temporary __ctmp.
                                     */
                                    /* Before calling the constructor, initialize
                                     * variable with a bit copy of the default
                                     * initializer
                                     */
                                    Expression *e = new AssignExp(loc, new VarExp(loc, this), t->defaultInit(loc));
                                    e->op = TOKblit;
                                    e->type = t;
                                    ei->exp = new CommaExp(loc, e, ei->exp);

                                    /* Replace __ctmp being constructed with e1
                                     */
                                    dve->e1 = e1;
                                    return;
                                }
                            }
                        }
                    }
#endif
                    if (!ei->exp->implicitConvTo(type))
                    {
                        /* Look for opCall
                         * See bugzilla 2702 for more discussion
                         */
                        Type *ti = ei->exp->type->toBasetype();
                        // Don't cast away invariant or mutability in initializer
                        if (search_function(sd, Id::call) &&
                            /* Initializing with the same type is done differently
                             */
                            !(ti->ty == Tstruct && t->toDsymbol(sc) == ti->toDsymbol(sc)))
                        {   // Rewrite as e1.call(arguments)
                            Expression * eCall = new DotIdExp(loc, e1, Id::call);
                            ei->exp = new CallExp(loc, eCall, ei->exp);
                        }
                    }
                }
                ei->exp = new AssignExp(loc, e1, ei->exp);
                ei->exp->op = TOKconstruct;
                canassign++;
                ei->exp = ei->exp->semantic(sc);
                canassign--;
                ei->exp->optimize(WANTvalue);
            }
            else
            {
                init = init->semantic(sc, type);
                if (fd && isConst() && !isStatic())
                {   // Make it static
                    storage_class |= STCstatic;
                }
            }
        }
        else if (isConst() || isFinal() ||
                 parent->isAggregateDeclaration())
        {
            /* Because we may need the results of a const declaration in a
             * subsequent type, such as an array dimension, before semantic2()
             * gets ordinarily run, try to run semantic2() now.
             * Ignore failure.
             */

            if (!global.errors && !inferred)
            {
                unsigned errors = global.errors;
                global.gag++;
                //printf("+gag\n");
                Expression *e;
                Initializer *i2 = init;
                inuse++;
                if (ei)
                {
                    e = ei->exp->syntaxCopy();
                    e = e->semantic(sc);
                    e = e->implicitCastTo(sc, type);
                }
                else if (si || ai)
                {   i2 = init->syntaxCopy();
                    i2 = i2->semantic(sc, type);
                }
                inuse--;
                global.gag--;
                //printf("-gag\n");
                if (errors != global.errors)    // if errors happened
                {
                    if (global.gag == 0)
                        global.errors = errors; // act as if nothing happened
#if DMDV2
                    /* Save scope for later use, to try again
                     */
                    scope = new Scope(*sc);
                    scope->setNoFree();
#endif
                }
                else if (ei)
                {
                    if (isDataseg() || (storage_class & STCmanifest))
                        e = e->optimize(WANTvalue | WANTinterpret);
                    else
                        e = e->optimize(WANTvalue);
                    switch (e->op)
                    {
                        case TOKint64:
                        case TOKfloat64:
                        case TOKstring:
                        case TOKarrayliteral:
                        case TOKassocarrayliteral:
                        case TOKstructliteral:
                        case TOKnull:
                            ei->exp = e;            // no errors, keep result
                            break;

                        default:
#if DMDV2
                            /* Save scope for later use, to try again
                             */
                            scope = new Scope(*sc);
                            scope->setNoFree();
#endif
                            break;
                    }
                }
                else
                    init = i2;          // no errors, keep result
            }
        }
        sc = sc->pop();
    }
}
Esempio n. 16
0
/******************************************
 * Return elem that evaluates to the static frame pointer for function fd.
 * If fd is a member function, the returned expression will compute the value
 * of fd's 'this' variable.
 * This routine is critical for implementing nested functions.
 */
elem *getEthis(Loc loc, IRState *irs, Dsymbol *fd)
{
    elem *ethis;
    FuncDeclaration *thisfd = irs->getFunc();
    Dsymbol *fdparent = fd->toParent2();
    Dsymbol *fdp = fdparent;

    /* These two are compiler generated functions for the in and out contracts,
     * and are called from an overriding function, not just the one they're
     * nested inside, so this hack is so they'll pass
     */
    if (fdparent != thisfd && (fd->ident == Id::require || fd->ident == Id::ensure))
    {
        FuncDeclaration *fdthis = thisfd;
        for (size_t i = 0; ; )
        {
            if (i == fdthis->foverrides.dim)
            {
                if (i == 0)
                    break;
                fdthis = fdthis->foverrides[0];
                i = 0;
                continue;
            }
            if (fdthis->foverrides[i] == fdp)
            {
                fdparent = thisfd;
                break;
            }
            i++;
        }
    }

    //printf("[%s] getEthis(thisfd = '%s', fd = '%s', fdparent = '%s')\n", loc.toChars(), thisfd->toPrettyChars(), fd->toPrettyChars(), fdparent->toPrettyChars());
    if (fdparent == thisfd)
    {
        /* Going down one nesting level, i.e. we're calling
         * a nested function from its enclosing function.
         */
        if (irs->sclosure && !(fd->ident == Id::require || fd->ident == Id::ensure))
        {
            ethis = el_var(irs->sclosure);
        }
        else if (irs->sthis)
        {
            // We have a 'this' pointer for the current function

            /* If no variables in the current function's frame are
             * referenced by nested functions, then we can 'skip'
             * adding this frame into the linked list of stack
             * frames.
             */
            if (thisfd->hasNestedFrameRefs())
            {
                /* Local variables are referenced, can't skip.
                 * Address of 'sthis' gives the 'this' for the nested
                 * function
                 */
                ethis = el_ptr(irs->sthis);
            }
            else
            {
                ethis = el_var(irs->sthis);
            }
        }
        else
        {
            /* No 'this' pointer for current function,
             */
            if (thisfd->hasNestedFrameRefs())
            {
                /* OPframeptr is an operator that gets the frame pointer
                 * for the current function, i.e. for the x86 it gets
                 * the value of EBP
                 */
                ethis = el_long(TYnptr, 0);
                ethis->Eoper = OPframeptr;
            }
            else
            {
                /* Use NULL if no references to the current function's frame
                 */
                ethis = el_long(TYnptr, 0);
            }
        }
    }
    else
    {
        if (!irs->sthis)                // if no frame pointer for this function
        {
            fd->error(loc, "is a nested function and cannot be accessed from %s", irs->getFunc()->toPrettyChars());
            return el_long(TYnptr, 0); // error recovery
        }

        /* Go up a nesting level, i.e. we need to find the 'this'
         * of an enclosing function.
         * Our 'enclosing function' may also be an inner class.
         */
        ethis = el_var(irs->sthis);
        Dsymbol *s = thisfd;
        while (fd != s)
        {
            FuncDeclaration *fdp = s->toParent2()->isFuncDeclaration();

            //printf("\ts = '%s'\n", s->toChars());
            thisfd = s->isFuncDeclaration();
            if (thisfd)
            {
                /* Enclosing function is a function.
                 */
                // Error should have been caught by front end
                assert(thisfd->isNested() || thisfd->vthis);
            }
            else
            {
                /* Enclosed by an aggregate. That means the current
                 * function must be a member function of that aggregate.
                 */
                AggregateDeclaration *ad = s->isAggregateDeclaration();
                if (!ad)
                {
                  Lnoframe:
                    irs->getFunc()->error(loc, "cannot get frame pointer to %s", fd->toPrettyChars());
                    return el_long(TYnptr, 0);      // error recovery
                }
                ClassDeclaration *cd = ad->isClassDeclaration();
                ClassDeclaration *cdx = fd->isClassDeclaration();
                if (cd && cdx && cdx->isBaseOf(cd, NULL))
                    break;
                StructDeclaration *sd = ad->isStructDeclaration();
                if (fd == sd)
                    break;
                if (!ad->isNested() || !ad->vthis)
                    goto Lnoframe;

                ethis = el_bin(OPadd, TYnptr, ethis, el_long(TYsize_t, ad->vthis->offset));
                ethis = el_una(OPind, TYnptr, ethis);
            }
            if (fdparent == s->toParent2())
                break;

            /* Remember that frames for functions that have no
             * nested references are skipped in the linked list
             * of frames.
             */
            if (fdp && fdp->hasNestedFrameRefs())
                ethis = el_una(OPind, TYnptr, ethis);

            s = s->toParent2();
            assert(s);
        }
    }
#if 0
    printf("ethis:\n");
    elem_print(ethis);
    printf("\n");
#endif
    return ethis;
}
Esempio n. 17
0
void ClassDeclaration::semantic(Scope *sc)
{
    //printf("ClassDeclaration::semantic(%s), type = %p, sizeok = %d, this = %p\n", toChars(), type, sizeok, this);
    //printf("\tparent = %p, '%s'\n", sc->parent, sc->parent ? sc->parent->toChars() : "");
    //printf("sc->stc = %x\n", sc->stc);

    //{ static int n;  if (++n == 20) *(char*)0=0; }

    if (!ident)         // if anonymous class
    {   const char *id = "__anonclass";

        ident = Identifier::generateId(id);
    }

    if (!sc)
        sc = scope;
    if (!parent && sc->parent && !sc->parent->isModule())
        parent = sc->parent;

    type = type->semantic(loc, sc);
    handle = type;

    if (!members)                       // if forward reference
    {   //printf("\tclass '%s' is forward referenced\n", toChars());
        return;
    }
    if (symtab)
    {   if (sizeok == 1 || !scope)
        {   //printf("\tsemantic for '%s' is already completed\n", toChars());
            return;             // semantic() already completed
        }
    }
    else
        symtab = new DsymbolTable();

    Scope *scx = NULL;
    if (scope)
    {   sc = scope;
        scx = scope;            // save so we don't make redundant copies
        scope = NULL;
    }
    unsigned dprogress_save = Module::dprogress;
#ifdef IN_GCC
    if (attributes)
        attributes->append(sc->attributes);
    else
        attributes = sc->attributes;
    methods.setDim(0);
#endif

    if (sc->stc & STCdeprecated)
    {
        isdeprecated = 1;
    }

    if (sc->linkage == LINKcpp)
        error("cannot create C++ classes");

    // Expand any tuples in baseclasses[]
    for (size_t i = 0; i < baseclasses->dim; )
    {   BaseClass *b = baseclasses->tdata()[i];
//printf("test1 %s %s\n", toChars(), b->type->toChars());
        b->type = b->type->semantic(loc, sc);
//printf("test2\n");
        Type *tb = b->type->toBasetype();

        if (tb->ty == Ttuple)
        {   TypeTuple *tup = (TypeTuple *)tb;
            enum PROT protection = b->protection;
            baseclasses->remove(i);
            size_t dim = Parameter::dim(tup->arguments);
            for (size_t j = 0; j < dim; j++)
            {   Parameter *arg = Parameter::getNth(tup->arguments, j);
                b = new BaseClass(arg->type, protection);
                baseclasses->insert(i + j, b);
            }
        }
        else
            i++;
    }

    // See if there's a base class as first in baseclasses[]
    if (baseclasses->dim)
    {   TypeClass *tc;
        BaseClass *b;
        Type *tb;

        b = baseclasses->tdata()[0];
        //b->type = b->type->semantic(loc, sc);
        tb = b->type->toBasetype();
        if (tb->ty != Tclass)
        {   error("base type must be class or interface, not %s", b->type->toChars());
            baseclasses->remove(0);
        }
        else
        {
            tc = (TypeClass *)(tb);

            if (tc->sym->isDeprecated())
            {
                if (!isDeprecated())
                {
                    // Deriving from deprecated class makes this one deprecated too
                    isdeprecated = 1;

                    tc->checkDeprecated(loc, sc);
                }
            }

            if (tc->sym->isInterfaceDeclaration())
                ;
            else
            {
                for (ClassDeclaration *cdb = tc->sym; cdb; cdb = cdb->baseClass)
                {
                    if (cdb == this)
                    {
                        error("circular inheritance");
                        baseclasses->remove(0);
                        goto L7;
                    }
                }
                if (!tc->sym->symtab || tc->sym->sizeok == 0)
                {   // Try to resolve forward reference
                    if (/*sc->mustsemantic &&*/ tc->sym->scope)
                        tc->sym->semantic(NULL);
                }
                if (!tc->sym->symtab || tc->sym->scope || tc->sym->sizeok == 0)
                {
                    //printf("%s: forward reference of base class %s\n", toChars(), tc->sym->toChars());
                    //error("forward reference of base class %s", baseClass->toChars());
                    // Forward reference of base class, try again later
                    //printf("\ttry later, forward reference of base class %s\n", tc->sym->toChars());
                    scope = scx ? scx : new Scope(*sc);
                    scope->setNoFree();
                    if (tc->sym->scope)
                        tc->sym->scope->module->addDeferredSemantic(tc->sym);
                    scope->module->addDeferredSemantic(this);
                    return;
                }
                else
                {   baseClass = tc->sym;
                    b->base = baseClass;
                }
             L7: ;
            }
        }
    }

    // Treat the remaining entries in baseclasses as interfaces
    // Check for errors, handle forward references
    for (size_t i = (baseClass ? 1 : 0); i < baseclasses->dim; )
    {   TypeClass *tc;
        BaseClass *b;
        Type *tb;

        b = baseclasses->tdata()[i];
        b->type = b->type->semantic(loc, sc);
        tb = b->type->toBasetype();
        if (tb->ty == Tclass)
            tc = (TypeClass *)tb;
        else
            tc = NULL;
        if (!tc || !tc->sym->isInterfaceDeclaration())
        {
            error("base type must be interface, not %s", b->type->toChars());
            baseclasses->remove(i);
            continue;
        }
        else
        {
            if (tc->sym->isDeprecated())
            {
                if (!isDeprecated())
                {
                    // Deriving from deprecated class makes this one deprecated too
                    isdeprecated = 1;

                    tc->checkDeprecated(loc, sc);
                }
            }

            // Check for duplicate interfaces
            for (size_t j = (baseClass ? 1 : 0); j < i; j++)
            {
                BaseClass *b2 = baseclasses->tdata()[j];
                if (b2->base == tc->sym)
                    error("inherits from duplicate interface %s", b2->base->toChars());
            }

            if (!tc->sym->symtab)
            {   // Try to resolve forward reference
                if (/*sc->mustsemantic &&*/ tc->sym->scope)
                    tc->sym->semantic(NULL);
            }

            b->base = tc->sym;
            if (!b->base->symtab || b->base->scope)
            {
                //error("forward reference of base class %s", baseClass->toChars());
                // Forward reference of base, try again later
                //printf("\ttry later, forward reference of base %s\n", baseClass->toChars());
                scope = scx ? scx : new Scope(*sc);
                scope->setNoFree();
                if (tc->sym->scope)
                    tc->sym->scope->module->addDeferredSemantic(tc->sym);
                scope->module->addDeferredSemantic(this);
                return;
            }
        }
        i++;
    }


    // If no base class, and this is not an Object, use Object as base class
    if (!baseClass && ident != Id::Object)
    {
        // BUG: what if Object is redefined in an inner scope?
        Type *tbase = new TypeIdentifier(0, Id::Object);
        BaseClass *b;
        TypeClass *tc;
        Type *bt;

        if (!object)
        {
            error("missing or corrupt object.d");
            fatal();
        }
        bt = tbase->semantic(loc, sc)->toBasetype();
        b = new BaseClass(bt, PROTpublic);
        baseclasses->shift(b);
        assert(b->type->ty == Tclass);
        tc = (TypeClass *)(b->type);
        baseClass = tc->sym;
        assert(!baseClass->isInterfaceDeclaration());
        b->base = baseClass;
    }

    interfaces_dim = baseclasses->dim;
    interfaces = baseclasses->tdata();


    if (baseClass)
    {
        if (baseClass->storage_class & STCfinal)
            error("cannot inherit from final class %s", baseClass->toChars());

        interfaces_dim--;
        interfaces++;

        // Copy vtbl[] from base class
        vtbl.setDim(baseClass->vtbl.dim);
        memcpy(vtbl.tdata(), baseClass->vtbl.tdata(), sizeof(void *) * vtbl.dim);

        // Inherit properties from base class
        com = baseClass->isCOMclass();
        isscope = baseClass->isscope;
        vthis = baseClass->vthis;
        storage_class |= baseClass->storage_class & STC_TYPECTOR;
    }
    else
    {
        // No base class, so this is the root of the class hierarchy
        vtbl.setDim(0);
        vtbl.push(this);                // leave room for classinfo as first member
    }

    protection = sc->protection;
    storage_class |= sc->stc;

    if (sizeok == 0)
    {
        interfaceSemantic(sc);

        for (size_t i = 0; i < members->dim; i++)
        {
            Dsymbol *s = members->tdata()[i];
            s->addMember(sc, this, 1);
        }

        /* If this is a nested class, add the hidden 'this'
         * member which is a pointer to the enclosing scope.
         */
        if (vthis)              // if inheriting from nested class
        {   // Use the base class's 'this' member
            isnested = 1;
            if (storage_class & STCstatic)
                error("static class cannot inherit from nested class %s", baseClass->toChars());
            if (toParent2() != baseClass->toParent2())
            {
                if (toParent2())
                {
                    error("is nested within %s, but super class %s is nested within %s",
                        toParent2()->toChars(),
                        baseClass->toChars(),
                        baseClass->toParent2()->toChars());
                }
                else
                {
                    error("is not nested, but super class %s is nested within %s",
                        baseClass->toChars(),
                        baseClass->toParent2()->toChars());
                }
                isnested = 0;
            }
        }
        else if (!(storage_class & STCstatic))
        {   Dsymbol *s = toParent2();
            if (s)
            {
                AggregateDeclaration *ad = s->isClassDeclaration();
                FuncDeclaration *fd = s->isFuncDeclaration();


                if (ad || fd)
                {   isnested = 1;
                    Type *t;
                    if (ad)
                        t = ad->handle;
                    else if (fd)
                    {   AggregateDeclaration *ad2 = fd->isMember2();
                        if (ad2)
                            t = ad2->handle;
                        else
                        {
                            t = Type::tvoidptr;
                        }
                    }
                    else
                        assert(0);
                    if (t->ty == Tstruct)       // ref to struct
                        t = Type::tvoidptr;
                    assert(!vthis);
                    vthis = new ThisDeclaration(loc, t);
                    members->push(vthis);
                }
            }
        }
    }

    if (storage_class & STCauto)
        error("storage class 'auto' is invalid when declaring a class, did you mean to use 'scope'?");
    if (storage_class & STCscope)
        isscope = 1;
    if (storage_class & STCabstract)
        isabstract = 1;

    if (storage_class & STCimmutable)
        type = type->addMod(MODimmutable);
    if (storage_class & STCconst)
        type = type->addMod(MODconst);
    if (storage_class & STCshared)
        type = type->addMod(MODshared);

    sc = sc->push(this);
    //sc->stc &= ~(STCfinal | STCauto | STCscope | STCstatic | STCabstract | STCdeprecated | STC_TYPECTOR | STCtls | STCgshared);
    //sc->stc |= storage_class & STC_TYPECTOR;
    sc->stc &= STCsafe | STCtrusted | STCsystem;
#if IN_GCC
    sc->attributes = NULL;
#endif
    sc->parent = this;
    sc->inunion = 0;

    if (isCOMclass())
    {
#if _WIN32
        sc->linkage = LINKwindows;
#else
        /* This enables us to use COM objects under Linux and
         * work with things like XPCOM
         */
        sc->linkage = LINKc;
#endif
    }
    sc->protection = PROTpublic;
    sc->explicitProtection = 0;
    sc->structalign = 8;
    structalign = sc->structalign;
    if (baseClass)
    {   sc->offset = baseClass->structsize;
        alignsize = baseClass->alignsize;
//      if (isnested)
//          sc->offset += PTRSIZE;      // room for uplevel context pointer
    }
    else
    {   sc->offset = PTRSIZE * 2;       // allow room for __vptr and __monitor
        alignsize = PTRSIZE;
    }
    structsize = sc->offset;
    Scope scsave = *sc;
    size_t members_dim = members->dim;
    sizeok = 0;

    /* Set scope so if there are forward references, we still might be able to
     * resolve individual members like enums.
     */
    for (size_t i = 0; i < members_dim; i++)
    {   Dsymbol *s = members->tdata()[i];
        /* There are problems doing this in the general case because
         * Scope keeps track of things like 'offset'
         */
        if (s->isEnumDeclaration() || (s->isAggregateDeclaration() && s->ident))
        {
            //printf("setScope %s %s\n", s->kind(), s->toChars());
            s->setScope(sc);
        }
    }

    for (size_t i = 0; i < members_dim; i++)
    {   Dsymbol *s = members->tdata()[i];
        s->semantic(sc);
    }

    if (sizeok == 2)
    {   // semantic() failed because of forward references.
        // Unwind what we did, and defer it for later
        fields.setDim(0);
        structsize = 0;
        alignsize = 0;
        structalign = 0;

        sc = sc->pop();

        scope = scx ? scx : new Scope(*sc);
        scope->setNoFree();
        scope->module->addDeferredSemantic(this);

        Module::dprogress = dprogress_save;

        //printf("\tsemantic('%s') failed due to forward references\n", toChars());
        return;
    }

    //printf("\tsemantic('%s') successful\n", toChars());

    structsize = sc->offset;
    //members->print();

    /* Look for special member functions.
     * They must be in this class, not in a base class.
     */
    ctor = (CtorDeclaration *)search(0, Id::ctor, 0);
    if (ctor && (ctor->toParent() != this || !ctor->isCtorDeclaration()))
        ctor = NULL;

//    dtor = (DtorDeclaration *)search(Id::dtor, 0);
//    if (dtor && dtor->toParent() != this)
//      dtor = NULL;

//    inv = (InvariantDeclaration *)search(Id::classInvariant, 0);
//    if (inv && inv->toParent() != this)
//      inv = NULL;

    // Can be in base class
    aggNew    = (NewDeclaration *)search(0, Id::classNew, 0);
    aggDelete = (DeleteDeclaration *)search(0, Id::classDelete, 0);

    // If this class has no constructor, but base class does, create
    // a constructor:
    //    this() { }
    if (!ctor && baseClass && baseClass->ctor)
    {
        //printf("Creating default this(){} for class %s\n", toChars());
                Type *tf = new TypeFunction(NULL, NULL, 0, LINKd, 0);
        CtorDeclaration *ctor = new CtorDeclaration(loc, 0, 0, tf);
        ctor->fbody = new CompoundStatement(0, new Statements());
        members->push(ctor);
        ctor->addMember(sc, this, 1);
        *sc = scsave;   // why? What about sc->nofree?
        sc->offset = structsize;
        ctor->semantic(sc);
        this->ctor = ctor;
        defaultCtor = ctor;
    }

#if 0
    if (baseClass)
    {   if (!aggDelete)
            aggDelete = baseClass->aggDelete;
        if (!aggNew)
            aggNew = baseClass->aggNew;
    }
#endif

    // Allocate instance of each new interface
    for (size_t i = 0; i < vtblInterfaces->dim; i++)
    {
        BaseClass *b = vtblInterfaces->tdata()[i];
        unsigned thissize = PTRSIZE;

        alignmember(structalign, thissize, &sc->offset);
        assert(b->offset == 0);
        b->offset = sc->offset;

        // Take care of single inheritance offsets
        while (b->baseInterfaces_dim)
        {
            b = &b->baseInterfaces[0];
            b->offset = sc->offset;
        }

        sc->offset += thissize;
        if (alignsize < thissize)
            alignsize = thissize;
    }
    structsize = sc->offset;
    sizeok = 1;
    Module::dprogress++;

    dtor = buildDtor(sc);

    sc->pop();

#if 0 // Do not call until toObjfile() because of forward references
    // Fill in base class vtbl[]s
    for (i = 0; i < vtblInterfaces->dim; i++)
    {
        BaseClass *b = vtblInterfaces->tdata()[i];

        //b->fillVtbl(this, &b->vtbl, 1);
    }
#endif
    //printf("-ClassDeclaration::semantic(%s), type = %p\n", toChars(), type);

    if (deferred)
    {
        deferred->semantic2(sc);
        deferred->semantic3(sc);
    }
}
Esempio n. 18
0
void AggregateDeclaration::accessCheck(Loc loc, Scope *sc, Dsymbol *smember)
{
    int result;

    FuncDeclaration *f = sc->func;
    AggregateDeclaration *cdscope = sc->getStructClassScope();
    enum PROT access;

#if LOG
    printf("AggregateDeclaration::accessCheck() for %s.%s in function %s() in scope %s\n",
        toChars(), smember->toChars(),
        f ? f->toChars() : NULL,
        cdscope ? cdscope->toChars() : NULL);
#endif

    Dsymbol *smemberparent = smember->toParent();
    if (!smemberparent || !smemberparent->isAggregateDeclaration())
    {
#if LOG
        printf("not an aggregate member\n");
#endif
        return;                         // then it is accessible
    }

    // BUG: should enable this check
    //assert(smember->parent->isBaseOf(this, NULL));

    if (smemberparent == this)
    {   enum PROT access2 = smember->prot();

        result = access2 >= PROTpublic ||
                hasPrivateAccess(f) ||
                isFriendOf(cdscope) ||
                (access2 == PROTpackage && hasPackageAccess(sc, this));
#if LOG
        printf("result1 = %d\n", result);
#endif
    }
    else if ((access = this->getAccess(smember)) >= PROTpublic)
    {
        result = 1;
#if LOG
        printf("result2 = %d\n", result);
#endif
    }
    else if (access == PROTpackage && hasPackageAccess(sc, this))
    {
        result = 1;
#if LOG
        printf("result3 = %d\n", result);
#endif
    }
    else
    {
        result = accessCheckX(smember, f, this, cdscope);
#if LOG
        printf("result4 = %d\n", result);
#endif
    }
    if (!result)
    {
        error(loc, "member %s is not accessible", smember->toChars());
    }
}
Esempio n. 19
0
Expression *semanticTraits(TraitsExp *e, Scope *sc)
{
#if LOGSEMANTIC
    printf("TraitsExp::semantic() %s\n", e->toChars());
#endif
    if (e->ident != Id::compiles && e->ident != Id::isSame &&
        e->ident != Id::identifier && e->ident != Id::getProtection)
    {
        if (!TemplateInstance::semanticTiargs(e->loc, sc, e->args, 1))
            return new ErrorExp();
    }
    size_t dim = e->args ? e->args->dim : 0;

    if (e->ident == Id::isArithmetic)
    {
        return isTypeX(e, &isTypeArithmetic);
    }
    else if (e->ident == Id::isFloating)
    {
        return isTypeX(e, &isTypeFloating);
    }
    else if (e->ident == Id::isIntegral)
    {
        return isTypeX(e, &isTypeIntegral);
    }
    else if (e->ident == Id::isScalar)
    {
        return isTypeX(e, &isTypeScalar);
    }
    else if (e->ident == Id::isUnsigned)
    {
        return isTypeX(e, &isTypeUnsigned);
    }
    else if (e->ident == Id::isAssociativeArray)
    {
        return isTypeX(e, &isTypeAssociativeArray);
    }
    else if (e->ident == Id::isStaticArray)
    {
        return isTypeX(e, &isTypeStaticArray);
    }
    else if (e->ident == Id::isAbstractClass)
    {
        return isTypeX(e, &isTypeAbstractClass);
    }
    else if (e->ident == Id::isFinalClass)
    {
        return isTypeX(e, &isTypeFinalClass);
    }
    else if (e->ident == Id::isPOD)
    {
        if (dim != 1)
            goto Ldimerror;
        RootObject *o = (*e->args)[0];
        Type *t = isType(o);
        StructDeclaration *sd;
        if (!t)
        {
            e->error("type expected as second argument of __traits %s instead of %s", e->ident->toChars(), o->toChars());
            goto Lfalse;
        }
        Type *tb = t->baseElemOf();
        if (tb->ty == Tstruct
            && ((sd = (StructDeclaration *)(((TypeStruct *)tb)->sym)) != NULL))
        {
            if (sd->isPOD())
                goto Ltrue;
            else
                goto Lfalse;
        }
        goto Ltrue;
    }
    else if (e->ident == Id::isNested)
    {
        if (dim != 1)
            goto Ldimerror;
        RootObject *o = (*e->args)[0];
        Dsymbol *s = getDsymbol(o);
        AggregateDeclaration *a;
        FuncDeclaration *f;

        if (!s) { }
        else if ((a = s->isAggregateDeclaration()) != NULL)
        {
            if (a->isNested())
                goto Ltrue;
            else
                goto Lfalse;
        }
        else if ((f = s->isFuncDeclaration()) != NULL)
        {
            if (f->isNested())
                goto Ltrue;
            else
                goto Lfalse;
        }

        e->error("aggregate or function expected instead of '%s'", o->toChars());
        goto Lfalse;
    }
    else if (e->ident == Id::isAbstractFunction)
    {
        return isFuncX(e, &isFuncAbstractFunction);
    }
    else if (e->ident == Id::isVirtualFunction)
    {
        return isFuncX(e, &isFuncVirtualFunction);
    }
    else if (e->ident == Id::isVirtualMethod)
    {
        return isFuncX(e, &isFuncVirtualMethod);
    }
    else if (e->ident == Id::isFinalFunction)
    {
        return isFuncX(e, &isFuncFinalFunction);
    }
    else if (e->ident == Id::isOverrideFunction)
    {
        return isFuncX(e, &isFuncOverrideFunction);
    }
    else if (e->ident == Id::isStaticFunction)
    {
        return isFuncX(e, &isFuncStaticFunction);
    }
    else if (e->ident == Id::isRef)
    {
        return isDeclX(e, &isDeclRef);
    }
    else if (e->ident == Id::isOut)
    {
        return isDeclX(e, &isDeclOut);
    }
    else if (e->ident == Id::isLazy)
    {
        return isDeclX(e, &isDeclLazy);
    }
    else if (e->ident == Id::identifier)
    {
        // Get identifier for symbol as a string literal
        /* Specify 0 for bit 0 of the flags argument to semanticTiargs() so that
         * a symbol should not be folded to a constant.
         * Bit 1 means don't convert Parameter to Type if Parameter has an identifier
         */
        if (!TemplateInstance::semanticTiargs(e->loc, sc, e->args, 2))
            return new ErrorExp();

        if (dim != 1)
            goto Ldimerror;
        RootObject *o = (*e->args)[0];
        Parameter *po = isParameter(o);
        Identifier *id;
        if (po)
        {
            id = po->ident;
            assert(id);
        }
        else
        {
            Dsymbol *s = getDsymbol(o);
            if (!s || !s->ident)
            {
                e->error("argument %s has no identifier", o->toChars());
                goto Lfalse;
            }
            id = s->ident;
        }
        StringExp *se = new StringExp(e->loc, id->toChars());
        return se->semantic(sc);
    }
    else if (e->ident == Id::getProtection)
    {
        if (dim != 1)
            goto Ldimerror;

        Scope *sc2 = sc->push();
        sc2->flags = sc->flags | SCOPEnoaccesscheck;
        bool ok = TemplateInstance::semanticTiargs(e->loc, sc2, e->args, 1);
        sc2->pop();

        if (!ok)
            return new ErrorExp();

        RootObject *o = (*e->args)[0];
        Dsymbol *s = getDsymbol(o);
        if (!s)
        {
            if (!isError(o))
                e->error("argument %s has no protection", o->toChars());
            goto Lfalse;
        }
        if (s->scope)
            s->semantic(s->scope);
        PROT protection = s->prot();

        const char *protName = Pprotectionnames[protection];

        assert(protName);
        StringExp *se = new StringExp(e->loc, (char *) protName);
        return se->semantic(sc);
    }
    else if (e->ident == Id::parent)
    {
        if (dim != 1)
            goto Ldimerror;
        RootObject *o = (*e->args)[0];
        Dsymbol *s = getDsymbol(o);
        if (s)
        {
            if (FuncDeclaration *fd = s->isFuncDeclaration())   // Bugzilla 8943
                s = fd->toAliasFunc();
            if (!s->isImport())  // Bugzilla 8922
                s = s->toParent();
        }
        if (!s || s->isImport())
        {
            e->error("argument %s has no parent", o->toChars());
            goto Lfalse;
        }

        if (FuncDeclaration *f = s->isFuncDeclaration())
        {
            if (TemplateDeclaration *td = getFuncTemplateDecl(f))
            {
                if (td->overroot)       // if not start of overloaded list of TemplateDeclaration's
                    td = td->overroot;  // then get the start
                Expression *ex = new TemplateExp(e->loc, td, f);
                ex = ex->semantic(sc);
                return ex;
            }

            if (FuncLiteralDeclaration *fld = f->isFuncLiteralDeclaration())
            {
                // Directly translate to VarExp instead of FuncExp
                Expression *ex = new VarExp(e->loc, fld, 1);
                return ex->semantic(sc);
            }
        }

        return (new DsymbolExp(e->loc, s))->semantic(sc);
    }
    else if (e->ident == Id::hasMember ||
             e->ident == Id::getMember ||
             e->ident == Id::getOverloads ||
             e->ident == Id::getVirtualMethods ||
             e->ident == Id::getVirtualFunctions)
    {
        if (dim != 2)
            goto Ldimerror;
        RootObject *o = (*e->args)[0];
        Expression *ex = isExpression((*e->args)[1]);
        if (!ex)
        {
            e->error("expression expected as second argument of __traits %s", e->ident->toChars());
            goto Lfalse;
        }
        ex = ex->ctfeInterpret();
        StringExp *se = ex->toStringExp();
        if (!se || se->length() == 0)
        {
            e->error("string expected as second argument of __traits %s instead of %s", e->ident->toChars(), ex->toChars());
            goto Lfalse;
        }
        se = se->toUTF8(sc);
        if (se->sz != 1)
        {
            e->error("string must be chars");
            goto Lfalse;
        }
        Identifier *id = Lexer::idPool((char *)se->string);

        /* Prefer dsymbol, because it might need some runtime contexts.
         */
        Dsymbol *sym = getDsymbol(o);
        if (sym)
        {
            ex = new DsymbolExp(e->loc, sym);
            ex = new DotIdExp(e->loc, ex, id);
        }
        else if (Type *t = isType(o))
            ex = typeDotIdExp(e->loc, t, id);
        else if (Expression *ex2 = isExpression(o))
            ex = new DotIdExp(e->loc, ex2, id);
        else
        {
            e->error("invalid first argument");
            goto Lfalse;
        }

        if (e->ident == Id::hasMember)
        {
            if (sym)
            {
                Dsymbol *sm = sym->search(e->loc, id);
                if (sm)
                    goto Ltrue;
            }

            /* Take any errors as meaning it wasn't found
             */
            Scope *sc2 = sc->push();
            ex = ex->trySemantic(sc2);
            sc2->pop();
            if (!ex)
                goto Lfalse;
            else
                goto Ltrue;
        }
        else if (e->ident == Id::getMember)
        {
            ex = ex->semantic(sc);
            return ex;
        }
        else if (e->ident == Id::getVirtualFunctions ||
                 e->ident == Id::getVirtualMethods ||
                 e->ident == Id::getOverloads)
        {
            unsigned errors = global.errors;
            Expression *eorig = ex;
            ex = ex->semantic(sc);
            if (errors < global.errors)
                e->error("%s cannot be resolved", eorig->toChars());

            /* Create tuple of functions of ex
             */
            //ex->print();
            Expressions *exps = new Expressions();
            FuncDeclaration *f;
            if (ex->op == TOKvar)
            {
                VarExp *ve = (VarExp *)ex;
                f = ve->var->isFuncDeclaration();
                ex = NULL;
            }
            else if (ex->op == TOKdotvar)
            {
                DotVarExp *dve = (DotVarExp *)ex;
                f = dve->var->isFuncDeclaration();
                if (dve->e1->op == TOKdottype || dve->e1->op == TOKthis)
                    ex = NULL;
                else
                    ex = dve->e1;
            }
            else
                f = NULL;
            Ptrait p;
            p.exps = exps;
            p.e1 = ex;
            p.ident = e->ident;
            overloadApply(f, &p, &fptraits);

            TupleExp *tup = new TupleExp(e->loc, exps);
            return tup->semantic(sc);
        }
        else
            assert(0);
    }
    else if (e->ident == Id::classInstanceSize)
    {
        if (dim != 1)
            goto Ldimerror;
        RootObject *o = (*e->args)[0];
        Dsymbol *s = getDsymbol(o);
        ClassDeclaration *cd;
        if (!s || (cd = s->isClassDeclaration()) == NULL)
        {
            e->error("first argument is not a class");
            goto Lfalse;
        }
        if (cd->sizeok == SIZEOKnone)
        {
            if (cd->scope)
                cd->semantic(cd->scope);
        }
        if (cd->sizeok != SIZEOKdone)
        {
            e->error("%s %s is forward referenced", cd->kind(), cd->toChars());
            goto Lfalse;
        }
        return new IntegerExp(e->loc, cd->structsize, Type::tsize_t);
    }
    else if (e->ident == Id::getAliasThis)
    {
        if (dim != 1)
            goto Ldimerror;
        RootObject *o = (*e->args)[0];
        Dsymbol *s = getDsymbol(o);
        AggregateDeclaration *ad;
        if (!s || (ad = s->isAggregateDeclaration()) == NULL)
        {
            e->error("argument is not an aggregate type");
            goto Lfalse;
        }

        Expressions *exps = new Expressions();
        if (ad->aliasthis)
            exps->push(new StringExp(e->loc, ad->aliasthis->ident->toChars()));

        Expression *ex = new TupleExp(e->loc, exps);
        ex = ex->semantic(sc);
        return ex;
    }
    else if (e->ident == Id::getAttributes)
    {
        if (dim != 1)
            goto Ldimerror;
        RootObject *o = (*e->args)[0];
        Dsymbol *s = getDsymbol(o);
        if (!s)
        {
        #if 0
            Expression *x = isExpression(o);
            Type *t = isType(o);
            if (x) printf("e = %s %s\n", Token::toChars(x->op), x->toChars());
            if (t) printf("t = %d %s\n", t->ty, t->toChars());
        #endif
            e->error("first argument is not a symbol");
            goto Lfalse;
        }
        //printf("getAttributes %s, attrs = %p, scope = %p\n", s->toChars(), s->userAttributes, s->userAttributesScope);
        UserAttributeDeclaration *udad = s->userAttribDecl;
        TupleExp *tup = new TupleExp(e->loc, udad ? udad->getAttributes() : new Expressions());
        return tup->semantic(sc);
    }
    else if (e->ident == Id::getFunctionAttributes)
    {
        /// extract all function attributes as a tuple (const/shared/inout/pure/nothrow/etc) except UDAs.

        if (dim != 1)
            goto Ldimerror;
        RootObject *o = (*e->args)[0];
        Dsymbol *s = getDsymbol(o);
        Type *t = isType(o);
        TypeFunction *tf = NULL;

        if (s)
        {
            if (FuncDeclaration *f = s->isFuncDeclaration())
                t = f->type;
            else if (VarDeclaration *v = s->isVarDeclaration())
                t = v->type;
        }
        if (t)
        {
            if (t->ty == Tfunction)
                tf = (TypeFunction *)t;
            else if (t->ty == Tdelegate)
                tf = (TypeFunction *)t->nextOf();
            else if (t->ty == Tpointer && t->nextOf()->ty == Tfunction)
                tf = (TypeFunction *)t->nextOf();
        }
        if (!tf)
        {
            e->error("first argument is not a function");
            goto Lfalse;
        }

        Expressions *mods = new Expressions();

        PushAttributes pa;
        pa.mods = mods;

        tf->modifiersApply(&pa, &PushAttributes::fp);
        tf->attributesApply(&pa, &PushAttributes::fp, TRUSTformatSystem);

        TupleExp *tup = new TupleExp(e->loc, mods);
        return tup->semantic(sc);
    }
    else if (e->ident == Id::allMembers || e->ident == Id::derivedMembers)
    {
        if (dim != 1)
            goto Ldimerror;
        RootObject *o = (*e->args)[0];
        Dsymbol *s = getDsymbol(o);
        ScopeDsymbol *sds;
        if (!s)
        {
            e->error("argument has no members");
            goto Lfalse;
        }
        Import *import;
        if ((import = s->isImport()) != NULL)
        {
            // Bugzilla 9692
            sds = import->mod;
        }
        else if ((sds = s->isScopeDsymbol()) == NULL)
        {
            e->error("%s %s has no members", s->kind(), s->toChars());
            goto Lfalse;
        }

        // use a struct as local function
        struct PushIdentsDg
        {
            static int dg(void *ctx, size_t n, Dsymbol *sm)
            {
                if (!sm)
                    return 1;
                //printf("\t[%i] %s %s\n", i, sm->kind(), sm->toChars());
                if (sm->ident)
                {
                    if (sm->ident != Id::ctor &&
                        sm->ident != Id::dtor &&
                        sm->ident != Id::_postblit &&
                        memcmp(sm->ident->string, "__", 2) == 0)
                    {
                        return 0;
                    }

                    //printf("\t%s\n", sm->ident->toChars());
                    Identifiers *idents = (Identifiers *)ctx;

                    /* Skip if already present in idents[]
                     */
                    for (size_t j = 0; j < idents->dim; j++)
                    {   Identifier *id = (*idents)[j];
                        if (id == sm->ident)
                            return 0;
#ifdef DEBUG
                        // Avoid using strcmp in the first place due to the performance impact in an O(N^2) loop.
                        assert(strcmp(id->toChars(), sm->ident->toChars()) != 0);
#endif
                    }

                    idents->push(sm->ident);
                }
                else
                {
                    EnumDeclaration *ed = sm->isEnumDeclaration();
                    if (ed)
                    {
                        ScopeDsymbol::foreach(NULL, ed->members, &PushIdentsDg::dg, (Identifiers *)ctx);
                    }
                }
                return 0;
            }
        };

        Identifiers *idents = new Identifiers;

        ScopeDsymbol::foreach(sc, sds->members, &PushIdentsDg::dg, idents);

        ClassDeclaration *cd = sds->isClassDeclaration();
        if (cd && e->ident == Id::allMembers)
        {
            struct PushBaseMembers
            {
                static void dg(ClassDeclaration *cd, Identifiers *idents)
                {
                    for (size_t i = 0; i < cd->baseclasses->dim; i++)
                    {
                        ClassDeclaration *cb = (*cd->baseclasses)[i]->base;
                        ScopeDsymbol::foreach(NULL, cb->members, &PushIdentsDg::dg, idents);
                        if (cb->baseclasses->dim)
                            dg(cb, idents);
                    }
                }
            };
            PushBaseMembers::dg(cd, idents);
        }

        // Turn Identifiers into StringExps reusing the allocated array
        assert(sizeof(Expressions) == sizeof(Identifiers));
        Expressions *exps = (Expressions *)idents;
        for (size_t i = 0; i < idents->dim; i++)
        {
            Identifier *id = (*idents)[i];
            StringExp *se = new StringExp(e->loc, id->toChars());
            (*exps)[i] = se;
        }

        /* Making this a tuple is more flexible, as it can be statically unrolled.
         * To make an array literal, enclose __traits in [ ]:
         *   [ __traits(allMembers, ...) ]
         */
        Expression *ex = new TupleExp(e->loc, exps);
        ex = ex->semantic(sc);
        return ex;
    }
    else if (e->ident == Id::compiles)
    {
        /* Determine if all the objects - types, expressions, or symbols -
         * compile without error
         */
        if (!dim)
            goto Lfalse;

        for (size_t i = 0; i < dim; i++)
        {
            unsigned errors = global.startGagging();
            unsigned oldspec = global.speculativeGag;
            global.speculativeGag = global.gag;
            Scope *sc2 = sc->push();
            sc2->speculative = true;
            sc2->flags = sc->flags & ~SCOPEctfe | SCOPEcompile;
            bool err = false;

            RootObject *o = (*e->args)[i];
            Type *t = isType(o);
            Expression *ex = t ? t->toExpression() : isExpression(o);
            if (!ex && t)
            {
                Dsymbol *s;
                t->resolve(e->loc, sc2, &ex, &t, &s);
                if (t)
                {
                    t->semantic(e->loc, sc2);
                    if (t->ty == Terror)
                        err = true;
                }
                else if (s && s->errors)
                    err = true;
            }
            if (ex)
            {
                ex = ex->semantic(sc2);
                ex = resolvePropertiesOnly(sc2, ex);
                ex = ex->optimize(WANTvalue);
                ex = checkGC(sc2, ex);
                if (ex->op == TOKerror)
                    err = true;
            }

            sc2->pop();
            global.speculativeGag = oldspec;
            if (global.endGagging(errors) || err)
            {
                goto Lfalse;
            }
        }
        goto Ltrue;
    }
    else if (e->ident == Id::isSame)
    {
        /* Determine if two symbols are the same
         */
        if (dim != 2)
            goto Ldimerror;
        if (!TemplateInstance::semanticTiargs(e->loc, sc, e->args, 0))
            return new ErrorExp();
        RootObject *o1 = (*e->args)[0];
        RootObject *o2 = (*e->args)[1];
        Dsymbol *s1 = getDsymbol(o1);
        Dsymbol *s2 = getDsymbol(o2);

        //printf("isSame: %s, %s\n", o1->toChars(), o2->toChars());
#if 0
        printf("o1: %p\n", o1);
        printf("o2: %p\n", o2);
        if (!s1)
        {
            Expression *ea = isExpression(o1);
            if (ea)
                printf("%s\n", ea->toChars());
            Type *ta = isType(o1);
            if (ta)
                printf("%s\n", ta->toChars());
            goto Lfalse;
        }
        else
            printf("%s %s\n", s1->kind(), s1->toChars());
#endif
        if (!s1 && !s2)
        {
            Expression *ea1 = isExpression(o1);
            Expression *ea2 = isExpression(o2);
            if (ea1 && ea2)
            {
                if (ea1->equals(ea2))
                    goto Ltrue;
            }
        }

        if (!s1 || !s2)
            goto Lfalse;

        s1 = s1->toAlias();
        s2 = s2->toAlias();

        if (s1->isFuncAliasDeclaration())
            s1 = ((FuncAliasDeclaration *)s1)->toAliasFunc();
        if (s2->isFuncAliasDeclaration())
            s2 = ((FuncAliasDeclaration *)s2)->toAliasFunc();

        if (s1 == s2)
            goto Ltrue;
        else
            goto Lfalse;
    }
    else if (e->ident == Id::getUnitTests)
    {
        if (dim != 1)
            goto Ldimerror;
        RootObject *o = (*e->args)[0];
        Dsymbol *s = getDsymbol(o);
        if (!s)
        {
            e->error("argument %s to __traits(getUnitTests) must be a module or aggregate", o->toChars());
            goto Lfalse;
        }

        Import *imp = s->isImport();
        if (imp)  // Bugzilla 10990
            s = imp->mod;

        ScopeDsymbol* scope = s->isScopeDsymbol();

        if (!scope)
        {
            e->error("argument %s to __traits(getUnitTests) must be a module or aggregate, not a %s", s->toChars(), s->kind());
            goto Lfalse;
        }

        Expressions* unitTests = new Expressions();
        Dsymbols* symbols = scope->members;

        if (global.params.useUnitTests && symbols)
        {
            // Should actually be a set
            AA* uniqueUnitTests = NULL;
            collectUnitTests(symbols, uniqueUnitTests, unitTests);
        }

        TupleExp *tup = new TupleExp(e->loc, unitTests);
        return tup->semantic(sc);
    }
    else if(e->ident == Id::getVirtualIndex)
    {
        if (dim != 1)
            goto Ldimerror;
        RootObject *o = (*e->args)[0];
        Dsymbol *s = getDsymbol(o);
        FuncDeclaration *fd;
        if (!s || (fd = s->isFuncDeclaration()) == NULL)
        {
            e->error("first argument to __traits(getVirtualIndex) must be a function");
            goto Lfalse;
        }
        fd = fd->toAliasFunc(); // Neccessary to support multiple overloads.
        return new IntegerExp(e->loc, fd->vtblIndex, Type::tptrdiff_t);
    }
    else
    {
        if (const char *sub = (const char *)speller(e->ident->toChars(), &trait_search_fp, NULL, idchars))
            e->error("unrecognized trait '%s', did you mean '%s'?", e->ident->toChars(), sub);
        else
            e->error("unrecognized trait '%s'", e->ident->toChars());

        goto Lfalse;
    }

    return NULL;

Ldimerror:
    e->error("wrong number of arguments %d", (int)dim);
    goto Lfalse;


Lfalse:
    return new IntegerExp(e->loc, 0, Type::tbool);

Ltrue:
    return new IntegerExp(e->loc, 1, Type::tbool);
}
Esempio n. 20
0
void StructDeclaration::semantic(Scope *sc)
{
    Scope *sc2;

    //printf("+StructDeclaration::semantic(this=%p, '%s', sizeok = %d)\n", this, toChars(), sizeok);

    //static int count; if (++count == 20) halt();

    assert(type);
    if (!members)                       // if forward reference
        return;

    if (symtab)
    {   if (sizeok == 1 || !scope)
        {   //printf("already completed\n");
            scope = NULL;
            return;             // semantic() already completed
        }
    }
    else
        symtab = new DsymbolTable();

    Scope *scx = NULL;
    if (scope)
    {   sc = scope;
        scx = scope;            // save so we don't make redundant copies
        scope = NULL;
    }

    unsigned dprogress_save = Module::dprogress;
#ifdef IN_GCC
    methods.setDim(0);
#endif

    parent = sc->parent;
    type = type->semantic(loc, sc);
#if STRUCTTHISREF
    handle = type;
#else
    handle = type->pointerTo();
#endif
    structalign = sc->structalign;
    protection = sc->protection;
    if (sc->stc & STCdeprecated)
        isdeprecated = 1;
    assert(!isAnonymous());
    if (sc->stc & STCabstract)
        error("structs, unions cannot be abstract");
#if DMDV2
    if (storage_class & STCimmutable)
        type = type->invariantOf();
    else if (storage_class & STCconst)
        type = type->constOf();
#endif
#if IN_GCC
    if (attributes)
        attributes->append(sc->attributes);
    else
        attributes = sc->attributes;
#endif

    if (sizeok == 0)            // if not already done the addMember step
    {
        for (size_t i = 0; i < members->dim; i++)
        {
            Dsymbol *s = (Dsymbol *)members->data[i];
            //printf("adding member '%s' to '%s'\n", s->toChars(), this->toChars());
            s->addMember(sc, this, 1);
        }
    }

    sizeok = 0;
    sc2 = sc->push(this);
    sc2->stc = 0;
#if IN_GCC
    sc2->attributes = NULL;
#endif
    sc2->parent = this;
    if (isUnionDeclaration())
        sc2->inunion = 1;
    sc2->protection = PROTpublic;
    sc2->explicitProtection = 0;

    size_t members_dim = members->dim;

    /* Set scope so if there are forward references, we still might be able to
     * resolve individual members like enums.
     */
    for (size_t i = 0; i < members_dim; i++)
    {   Dsymbol *s = (Dsymbol *)members->data[i];
        /* There are problems doing this in the general case because
         * Scope keeps track of things like 'offset'
         */
        if (s->isEnumDeclaration() || (s->isAggregateDeclaration() && s->ident))
        {
            //printf("setScope %s %s\n", s->kind(), s->toChars());
            s->setScope(sc2);
        }
    }

    for (size_t i = 0; i < members_dim; i++)
    {
        Dsymbol *s = (Dsymbol *)members->data[i];
        s->semantic(sc2);
#if 0
        if (sizeok == 2)
        {   //printf("forward reference\n");
            break;
        }
#endif
    }

#if DMDV1
    /* This doesn't work for DMDV2 because (ref S) and (S) parameter
     * lists will overload the same.
     */
    /* The TypeInfo_Struct is expecting an opEquals and opCmp with
     * a parameter that is a pointer to the struct. But if there
     * isn't one, but is an opEquals or opCmp with a value, write
     * another that is a shell around the value:
     *  int opCmp(struct *p) { return opCmp(*p); }
     */

    TypeFunction *tfeqptr;
    {
        Parameters *arguments = new Parameters;
        Parameter *arg = new Parameter(STCin, handle, Id::p, NULL);

        arguments->push(arg);
        tfeqptr = new TypeFunction(arguments, Type::tint32, 0, LINKd);
        tfeqptr = (TypeFunction *)tfeqptr->semantic(0, sc);
    }

    TypeFunction *tfeq;
    {
        Parameters *arguments = new Parameters;
        Parameter *arg = new Parameter(STCin, type, NULL, NULL);

        arguments->push(arg);
        tfeq = new TypeFunction(arguments, Type::tint32, 0, LINKd);
        tfeq = (TypeFunction *)tfeq->semantic(0, sc);
    }

    Identifier *id = Id::eq;
    for (int i = 0; i < 2; i++)
    {
        Dsymbol *s = search_function(this, id);
        FuncDeclaration *fdx = s ? s->isFuncDeclaration() : NULL;
        if (fdx)
        {   FuncDeclaration *fd = fdx->overloadExactMatch(tfeqptr);
            if (!fd)
            {   fd = fdx->overloadExactMatch(tfeq);
                if (fd)
                {   // Create the thunk, fdptr
                    FuncDeclaration *fdptr = new FuncDeclaration(loc, loc, fdx->ident, STCundefined, tfeqptr);
                    Expression *e = new IdentifierExp(loc, Id::p);
                    e = new PtrExp(loc, e);
                    Expressions *args = new Expressions();
                    args->push(e);
                    e = new IdentifierExp(loc, id);
                    e = new CallExp(loc, e, args);
                    fdptr->fbody = new ReturnStatement(loc, e);
                    ScopeDsymbol *s = fdx->parent->isScopeDsymbol();
                    assert(s);
                    s->members->push(fdptr);
                    fdptr->addMember(sc, s, 1);
                    fdptr->semantic(sc2);
                }
            }
        }

        id = Id::cmp;
    }
#endif
#if DMDV2
    /* Try to find the opEquals function. Build it if necessary.
     */
    TypeFunction *tfeqptr;
    {   // bool opEquals(const T*) const;
        Parameters *parameters = new Parameters;
#if STRUCTTHISREF
        // bool opEquals(ref const T) const;
        Parameter *param = new Parameter(STCref, type->constOf(), NULL, NULL);
#else
        // bool opEquals(const T*) const;
        Parameter *param = new Parameter(STCin, type->pointerTo(), NULL, NULL);
#endif

        parameters->push(param);
        tfeqptr = new TypeFunction(parameters, Type::tbool, 0, LINKd);
        tfeqptr->mod = MODconst;
        tfeqptr = (TypeFunction *)tfeqptr->semantic(0, sc2);

        Dsymbol *s = search_function(this, Id::eq);
        FuncDeclaration *fdx = s ? s->isFuncDeclaration() : NULL;
        if (fdx)
        {
            eq = fdx->overloadExactMatch(tfeqptr);
            if (!eq)
                fdx->error("type signature should be %s not %s", tfeqptr->toChars(), fdx->type->toChars());
        }

        TemplateDeclaration *td = s ? s->isTemplateDeclaration() : NULL;
        // BUG: should also check that td is a function template, not just a template

        if (!eq && !td)
            eq = buildOpEquals(sc2);
    }

    dtor = buildDtor(sc2);
    postblit = buildPostBlit(sc2);
    cpctor = buildCpCtor(sc2);
    buildOpAssign(sc2);
#endif

    sc2->pop();

    if (sizeok == 2)
    {   // semantic() failed because of forward references.
        // Unwind what we did, and defer it for later
        fields.setDim(0);
        structsize = 0;
        alignsize = 0;
        structalign = 0;

        scope = scx ? scx : new Scope(*sc);
        scope->setNoFree();
        scope->module->addDeferredSemantic(this);

        Module::dprogress = dprogress_save;
        //printf("\tdeferring %s\n", toChars());
        return;
    }

    // 0 sized struct's are set to 1 byte
    if (structsize == 0)
    {
        structsize = 1;
        alignsize = 1;
    }

    // Round struct size up to next alignsize boundary.
    // This will ensure that arrays of structs will get their internals
    // aligned properly.
    structsize = (structsize + alignsize - 1) & ~(alignsize - 1);

    sizeok = 1;
    Module::dprogress++;

    //printf("-StructDeclaration::semantic(this=%p, '%s')\n", this, toChars());

    // Determine if struct is all zeros or not
    zeroInit = 1;
    for (size_t i = 0; i < fields.dim; i++)
    {
        Dsymbol *s = (Dsymbol *)fields.data[i];
        VarDeclaration *vd = s->isVarDeclaration();
        if (vd && !vd->isDataseg())
        {
            if (vd->init)
            {
                // Should examine init to see if it is really all 0's
                zeroInit = 0;
                break;
            }
            else
            {
                if (!vd->type->isZeroInit(loc))
                {
                    zeroInit = 0;
                    break;
                }
            }
        }
    }

    /* Look for special member functions.
     */
#if DMDV2
    ctor = search(0, Id::ctor, 0);
#endif
    inv =    (InvariantDeclaration *)search(0, Id::classInvariant, 0);
    aggNew =       (NewDeclaration *)search(0, Id::classNew,       0);
    aggDelete = (DeleteDeclaration *)search(0, Id::classDelete,    0);

    if (sc->func)
    {
        semantic2(sc);
        semantic3(sc);
    }
}
Esempio n. 21
0
File: attrib.c Progetto: smunix/ldc
void AnonDeclaration::semantic(Scope *sc)
{
    //printf("\tAnonDeclaration::semantic %s %p\n", isunion ? "union" : "struct", this);

    Scope *scx = NULL;
    if (scope)
    {   sc = scope;
        scx = scope;
        scope = NULL;
    }

    unsigned dprogress_save = Module::dprogress;

    assert(sc->parent);

    Dsymbol *parent = sc->parent->pastMixin();
    AggregateDeclaration *ad = parent->isAggregateDeclaration();

    if (!ad || (!ad->isStructDeclaration() && !ad->isClassDeclaration()))
    {
        error("can only be a part of an aggregate");
        return;
    }

    if (decl)
    {
        AnonymousAggregateDeclaration aad;
        int adisunion;

        if (sc->anonAgg)
        {   ad = sc->anonAgg;
            adisunion = sc->inunion;
        }
        else
            adisunion = ad->isUnionDeclaration() != NULL;

//      printf("\tsc->anonAgg = %p\n", sc->anonAgg);
//      printf("\tad  = %p\n", ad);
//      printf("\taad = %p\n", &aad);

        sc = sc->push();
        sc->anonAgg = &aad;
        sc->stc &= ~(STCauto | STCscope | STCstatic | STCtls | STCgshared);
        sc->inunion = isunion;
        sc->offset = 0;
        sc->flags = 0;
        aad.structalign = sc->structalign;
        aad.parent = ad;

        for (unsigned i = 0; i < decl->dim; i++)
        {
            Dsymbol *s = (Dsymbol *)decl->data[i];

            s->semantic(sc);
            if (isunion)
                sc->offset = 0;
            if (aad.sizeok == 2)
            {
                break;
            }
        }
        sc = sc->pop();

        // If failed due to forward references, unwind and try again later
        if (aad.sizeok == 2)
        {
            ad->sizeok = 2;
            //printf("\tsetting ad->sizeok %p to 2\n", ad);
            if (!sc->anonAgg)
            {
                scope = scx ? scx : new Scope(*sc);
                scope->setNoFree();
                scope->module->addDeferredSemantic(this);
            }
            Module::dprogress = dprogress_save;
            //printf("\tforward reference %p\n", this);
            return;
        }
        if (sem == 0)
        {   Module::dprogress++;
            sem = 1;
            //printf("\tcompleted %p\n", this);
        }
        else
            ;//printf("\talready completed %p\n", this);

        // 0 sized structs are set to 1 byte
        if (aad.structsize == 0)
        {
            aad.structsize = 1;
            aad.alignsize = 1;
        }

        // Align size of anonymous aggregate
//printf("aad.structalign = %d, aad.alignsize = %d, sc->offset = %d\n", aad.structalign, aad.alignsize, sc->offset);
        ad->alignmember(aad.structalign, aad.alignsize, &sc->offset);
        //ad->structsize = sc->offset;
//printf("sc->offset = %d\n", sc->offset);

        // Add members of aad to ad
        //printf("\tadding members of aad (%p) to '%s'\n", &aad, ad->toChars());
        for (unsigned i = 0; i < aad.fields.dim; i++)
        {
            VarDeclaration *v = (VarDeclaration *)aad.fields.data[i];

#if IN_LLVM
        v->offset2 = sc->offset;
#endif
            v->offset += sc->offset;

#if IN_LLVM
        if (!v->anonDecl)
            v->anonDecl = this;
#endif
            ad->fields.push(v);
        }

        // Add size of aad to ad
        if (adisunion)
        {
            if (aad.structsize > ad->structsize)
                ad->structsize = aad.structsize;
            sc->offset = 0;
        }
        else
        {
            ad->structsize = sc->offset + aad.structsize;
            sc->offset = ad->structsize;
        }

        if (ad->alignsize < aad.alignsize)
            ad->alignsize = aad.alignsize;
    }
}
Esempio n. 22
0
Dsymbol *ScopeDsymbol::search(Loc loc, Identifier *ident, int flags)
{
    //printf("%s->ScopeDsymbol::search(ident='%s', flags=x%x)\n", toChars(), ident->toChars(), flags);
    //if (strcmp(ident->toChars(),"c") == 0) *(char*)0=0;

    // Look in symbols declared in this module
    Dsymbol *s = symtab ? symtab->lookup(ident) : NULL;
    //printf("\ts = %p, imports = %p, %d\n", s, imports, imports ? imports->dim : 0);
    if (s)
    {
        //printf("\ts = '%s.%s'\n",toChars(),s->toChars());
    }
    else if (imports)
    {
        OverloadSet *a = NULL;

        // Look in imported modules
        for (size_t i = 0; i < imports->dim; i++)
        {   Dsymbol *ss = (*imports)[i];
            Dsymbol *s2;

            // If private import, don't search it
            if (flags & 1 && prots[i] == PROTprivate)
                continue;

            //printf("\tscanning import '%s', prots = %d, isModule = %p, isImport = %p\n", ss->toChars(), prots[i], ss->isModule(), ss->isImport());
            /* Don't find private members if ss is a module
             */
            s2 = ss->search(loc, ident, ss->isModule() ? 1 : 0);
            if (!s)
                s = s2;
            else if (s2 && s != s2)
            {
                if (s->toAlias() == s2->toAlias() ||
                    s->getType() == s2->getType() && s->getType())
                {
                    /* After following aliases, we found the same
                     * symbol, so it's not an ambiguity.  But if one
                     * alias is deprecated or less accessible, prefer
                     * the other.
                     */
                    if (s->isDeprecated() ||
                        s2->prot() > s->prot() && s2->prot() != PROTnone)
                        s = s2;
                }
                else
                {
                    /* Two imports of the same module should be regarded as
                     * the same.
                     */
                    Import *i1 = s->isImport();
                    Import *i2 = s2->isImport();
                    if (!(i1 && i2 &&
                          (i1->mod == i2->mod ||
                           (!i1->parent->isImport() && !i2->parent->isImport() &&
                            i1->ident->equals(i2->ident))
                          )
                         )
                       )
                    {
                        /* Bugzilla 8668:
                         * Public selective import adds AliasDeclaration in module.
                         * To make an overload set, resolve aliases in here and
                         * get actual overload roots which accessible via s and s2.
                         */
                        s = s->toAlias();
                        s2 = s2->toAlias();

                        /* If both s2 and s are overloadable (though we only
                         * need to check s once)
                         */
                        if (s2->isOverloadable() && (a || s->isOverloadable()))
                        {   if (!a)
                                a = new OverloadSet(s->ident);
                            /* Don't add to a[] if s2 is alias of previous sym
                             */
                            for (size_t j = 0; j < a->a.dim; j++)
                            {   Dsymbol *s3 = a->a[j];
                                if (s2->toAlias() == s3->toAlias())
                                {
                                    if (s3->isDeprecated() ||
                                        s2->prot() > s3->prot() && s2->prot() != PROTnone)
                                        a->a[j] = s2;
                                    goto Lcontinue;
                                }
                            }
                            a->push(s2);
                        Lcontinue:
                            continue;
                        }
                        if (flags & 4)          // if return NULL on ambiguity
                            return NULL;
                        if (!(flags & 2))
                            ScopeDsymbol::multiplyDefined(loc, s, s2);
                        break;
                    }
                }
            }
        }

        /* Build special symbol if we had multiple finds
         */
        if (a)
        {   assert(s);
            a->push(s);
            s = a;
        }

        if (s)
        {
            if (!(flags & 2))
            {   Declaration *d = s->isDeclaration();
                if (d && d->protection == PROTprivate &&
                    !d->parent->isTemplateMixin())
                    error(loc, "%s is private", d->toPrettyChars());

                AggregateDeclaration *ad = s->isAggregateDeclaration();
                if (ad && ad->protection == PROTprivate &&
                    !ad->parent->isTemplateMixin())
                    error(loc, "%s is private", ad->toPrettyChars());

                EnumDeclaration *ed = s->isEnumDeclaration();
                if (ed && ed->protection == PROTprivate &&
                    !ed->parent->isTemplateMixin())
                    error(loc, "%s is private", ed->toPrettyChars());

                TemplateDeclaration *td = s->isTemplateDeclaration();
                if (td && td->protection == PROTprivate &&
                    !td->parent->isTemplateMixin())
                    error(loc, "%s is private", td->toPrettyChars());
            }
        }
    }
    return s;
}
Esempio n. 23
0
void InterfaceDeclaration::semantic(Scope *sc)
{
    //printf("InterfaceDeclaration::semantic(%s), type = %p\n", toChars(), type);
    if (inuse)
        return;

    if (!sc)
        sc = scope;
    if (!parent && sc->parent && !sc->parent->isModule())
        parent = sc->parent;

    type = type->semantic(loc, sc);

    if (type->ty == Tclass && ((TypeClass *)type)->sym != this)
    {
        TemplateInstance *ti = ((TypeClass *)type)->sym->isInstantiated();
        if (ti && ti->errors)
            ((TypeClass *)type)->sym = this;
    }

    if (!members)                       // if forward reference
    {   //printf("\tinterface '%s' is forward referenced\n", toChars());
        return;
    }
    if (symtab)                 // if already done
    {   if (!scope)
            return;
    }
    else
        symtab = new DsymbolTable();

    Scope *scx = NULL;
    if (scope)
    {
        sc = scope;
        scx = scope;            // save so we don't make redundant copies
        scope = NULL;
    }

    int errors = global.errors;

    if (sc->stc & STCdeprecated)
    {
        isdeprecated = true;
    }
    userAttribDecl = sc->userAttribDecl;

    // Expand any tuples in baseclasses[]
    for (size_t i = 0; i < baseclasses->dim; )
    {
        // Ungag errors when not speculative
        Ungag ungag = ungagSpeculative();

        BaseClass *b = (*baseclasses)[i];
        b->type = b->type->semantic(loc, sc);

        Type *tb = b->type->toBasetype();
        if (tb->ty == Ttuple)
        {   TypeTuple *tup = (TypeTuple *)tb;
            PROT protection = b->protection;
            baseclasses->remove(i);
            size_t dim = Parameter::dim(tup->arguments);
            for (size_t j = 0; j < dim; j++)
            {   Parameter *arg = Parameter::getNth(tup->arguments, j);
                b = new BaseClass(arg->type, protection);
                baseclasses->insert(i + j, b);
            }
        }
        else
            i++;
    }

    if (!baseclasses->dim && sc->linkage == LINKcpp)
        cpp = 1;

    // Check for errors, handle forward references
    for (size_t i = 0; i < baseclasses->dim; )
    {
        // Ungag errors when not speculative
        Ungag ungag = ungagSpeculative();

        BaseClass *b = (*baseclasses)[i];
        b->type = b->type->semantic(loc, sc);

        Type *tb = b->type->toBasetype();
        TypeClass *tc = (tb->ty == Tclass) ? (TypeClass *)tb : NULL;
        if (!tc || !tc->sym->isInterfaceDeclaration())
        {
            if (b->type != Type::terror)
                error("base type must be interface, not %s", b->type->toChars());
            baseclasses->remove(i);
            continue;
        }
        else
        {
            // Check for duplicate interfaces
            for (size_t j = 0; j < i; j++)
            {
                BaseClass *b2 = (*baseclasses)[j];
                if (b2->base == tc->sym)
                    error("inherits from duplicate interface %s", b2->base->toChars());
            }

            b->base = tc->sym;
            if (b->base == this || isBaseOf2(b->base))
            {
                error("circular inheritance of interface");
                baseclasses->remove(i);
                continue;
            }
            if (b->base->scope)
            {
                // Try to resolve forward reference
                b->base->semantic(NULL);
            }
            if (!b->base->symtab || b->base->scope || b->base->inuse)
            {
                //error("forward reference of base class %s", baseClass->toChars());
                // Forward reference of base, try again later
                //printf("\ttry later, forward reference of base %s\n", b->base->toChars());
                scope = scx ? scx : sc->copy();
                scope->setNoFree();
                scope->module->addDeferredSemantic(this);
                return;
            }
        }
#if 0
        // Inherit const/invariant from base class
        storage_class |= b->base->storage_class & STC_TYPECTOR;
#endif
        i++;
    }
    if (doAncestorsSemantic == SemanticIn)
        doAncestorsSemantic = SemanticDone;

    interfaces_dim = baseclasses->dim;
    interfaces = baseclasses->tdata();

    interfaceSemantic(sc);

    if (vtblOffset())
        vtbl.push(this);                // leave room at vtbl[0] for classinfo

    // Cat together the vtbl[]'s from base interfaces
    for (size_t i = 0; i < interfaces_dim; i++)
    {   BaseClass *b = interfaces[i];

        // Skip if b has already appeared
        for (size_t k = 0; k < i; k++)
        {
            if (b == interfaces[k])
                goto Lcontinue;
        }

        // Copy vtbl[] from base class
        if (b->base->vtblOffset())
        {   size_t d = b->base->vtbl.dim;
            if (d > 1)
            {
                vtbl.reserve(d - 1);
                for (size_t j = 1; j < d; j++)
                    vtbl.push(b->base->vtbl[j]);
            }
        }
        else
        {
            vtbl.append(&b->base->vtbl);
        }

      Lcontinue:
        ;
    }

    protection = sc->protection;
    storage_class |= sc->stc & STC_TYPECTOR;

    for (size_t i = 0; i < members->dim; i++)
    {
        Dsymbol *s = (*members)[i];
        s->addMember(sc, this, 1);
    }

    sc = sc->push(this);
    sc->stc &= STCsafe | STCtrusted | STCsystem;
    sc->parent = this;
    if (com)
        sc->linkage = LINKwindows;
    else if (cpp)
        sc->linkage = LINKcpp;
    sc->structalign = STRUCTALIGN_DEFAULT;
    sc->protection = PROTpublic;
    sc->explicitProtection = 0;
//    structalign = sc->structalign;
    sc->offset = Target::ptrsize * 2;
    sc->userAttribDecl = NULL;
    structsize = sc->offset;
    inuse++;

    /* Set scope so if there are forward references, we still might be able to
     * resolve individual members like enums.
     */
    for (size_t i = 0; i < members->dim; i++)
    {   Dsymbol *s = (*members)[i];
        /* There are problems doing this in the general case because
         * Scope keeps track of things like 'offset'
         */
        if (s->isEnumDeclaration() || (s->isAggregateDeclaration() && s->ident))
        {
            //printf("setScope %s %s\n", s->kind(), s->toChars());
            s->setScope(sc);
        }
    }

    for (size_t i = 0; i < members->dim; i++)
    {
        Dsymbol *s = (*members)[i];
        s->importAll(sc);
    }

    for (size_t i = 0; i < members->dim; i++)
    {
        Dsymbol *s = (*members)[i];

        // Ungag errors when not speculative
        Ungag ungag = ungagSpeculative();
        s->semantic(sc);
    }

    if (global.errors != errors)
    {   // The type is no good.
        type = Type::terror;
    }

    inuse--;
    //members->print();
    sc->pop();
    //printf("-InterfaceDeclaration::semantic(%s), type = %p\n", toChars(), type);

#if 0
    if (type->ty == Tclass && ((TypeClass *)type)->sym != this)
    {
        printf("this = %p %s\n", this, this->toChars());
        printf("type = %d sym = %p\n", type->ty, ((TypeClass *)type)->sym);
      }
#endif
    assert(type->ty != Tclass || ((TypeClass *)type)->sym == this);
}
Esempio n. 24
0
void StructDeclaration::semantic(Scope *sc)
{
    Scope *sc2;

    //printf("+StructDeclaration::semantic(this=%p, %s '%s', sizeok = %d)\n", this, parent->toChars(), toChars(), sizeok);

    //static int count; if (++count == 20) halt();

    assert(type);
    if (!members)                       // if forward reference
        return;

    if (symtab)
    {   if (sizeok == SIZEOKdone || !scope)
        {   //printf("already completed\n");
            scope = NULL;
            return;             // semantic() already completed
        }
    }
    else
        symtab = new DsymbolTable();

    Scope *scx = NULL;
    if (scope)
    {   sc = scope;
        scx = scope;            // save so we don't make redundant copies
        scope = NULL;
    }

    int errors = global.gaggedErrors;

    unsigned dprogress_save = Module::dprogress;

    parent = sc->parent;
    type = type->semantic(loc, sc);
#if STRUCTTHISREF
    handle = type;
#else
    handle = type->pointerTo();
#endif
    protection = sc->protection;
    alignment = sc->structalign;
    storage_class |= sc->stc;
    if (sc->stc & STCdeprecated)
        isdeprecated = true;
    assert(!isAnonymous());
    if (sc->stc & STCabstract)
        error("structs, unions cannot be abstract");
    userAttributes = sc->userAttributes;

    if (sizeok == SIZEOKnone)            // if not already done the addMember step
    {
        int hasfunctions = 0;
        for (size_t i = 0; i < members->dim; i++)
        {
            Dsymbol *s = (*members)[i];
            //printf("adding member '%s' to '%s'\n", s->toChars(), this->toChars());
            s->addMember(sc, this, 1);
            if (s->isFuncDeclaration())
                hasfunctions = 1;
        }

        // If nested struct, add in hidden 'this' pointer to outer scope
        if (hasfunctions && !(storage_class & STCstatic))
        {   Dsymbol *s = toParent2();
            if (s)
            {
                AggregateDeclaration *ad = s->isAggregateDeclaration();
                FuncDeclaration *fd = s->isFuncDeclaration();

                TemplateInstance *ti;
                if (ad && (ti = ad->parent->isTemplateInstance()) != NULL && ti->isnested || fd)
                {   isnested = 1;
                    Type *t;
                    if (ad)
                        t = ad->handle;
                    else if (fd)
                    {   AggregateDeclaration *ad = fd->isMember2();
                        if (ad)
                            t = ad->handle;
                        else
                            t = Type::tvoidptr;
                    }
                    else
                        assert(0);
                    if (t->ty == Tstruct)
                        t = Type::tvoidptr;     // t should not be a ref type
                    assert(!vthis);
                    vthis = new ThisDeclaration(loc, t);
                    //vthis->storage_class |= STCref;
                    members->push(vthis);
                }
            }
        }
    }

    sizeok = SIZEOKnone;
    sc2 = sc->push(this);
    sc2->stc &= STCsafe | STCtrusted | STCsystem;
    sc2->parent = this;
    if (isUnionDeclaration())
        sc2->inunion = 1;
    sc2->protection = PROTpublic;
    sc2->explicitProtection = 0;
    sc2->structalign = STRUCTALIGN_DEFAULT;
    sc2->userAttributes = NULL;

    size_t members_dim = members->dim;

    /* Set scope so if there are forward references, we still might be able to
     * resolve individual members like enums.
     */
    for (size_t i = 0; i < members_dim; i++)
    {   Dsymbol *s = (*members)[i];
        /* There are problems doing this in the general case because
         * Scope keeps track of things like 'offset'
         */
        //if (s->isEnumDeclaration() || (s->isAggregateDeclaration() && s->ident))
        {
            //printf("struct: setScope %s %s\n", s->kind(), s->toChars());
            s->setScope(sc2);
        }
    }

    for (size_t i = 0; i < members_dim; i++)
    {
        Dsymbol *s = (*members)[i];

        /* If this is the last member, see if we can finish setting the size.
         * This could be much better - finish setting the size after the last
         * field was processed. The problem is the chicken-and-egg determination
         * of when that is. See Bugzilla 7426 for more info.
         */
        if (i + 1 == members_dim)
        {
            if (sizeok == SIZEOKnone && s->isAliasDeclaration())
                finalizeSize(sc2);
        }
        // Ungag errors when not speculative
        unsigned oldgag = global.gag;
        if (global.isSpeculativeGagging() && !isSpeculative())
        {
            global.gag = 0;
        }
        s->semantic(sc2);
        global.gag = oldgag;
    }
    finalizeSize(sc2);

    if (sizeok == SIZEOKfwd)
    {   // semantic() failed because of forward references.
        // Unwind what we did, and defer it for later
        for (size_t i = 0; i < fields.dim; i++)
        {   Dsymbol *s = fields[i];
            VarDeclaration *vd = s->isVarDeclaration();
            if (vd)
                vd->offset = 0;
        }
        fields.setDim(0);
        structsize = 0;
        alignsize = 0;
//        structalign = 0;

        scope = scx ? scx : new Scope(*sc);
        scope->setNoFree();
        scope->module->addDeferredSemantic(this);

        Module::dprogress = dprogress_save;
        //printf("\tdeferring %s\n", toChars());
        return;
    }

    Module::dprogress++;

    //printf("-StructDeclaration::semantic(this=%p, '%s')\n", this, toChars());

    // Determine if struct is all zeros or not
    zeroInit = 1;
    for (size_t i = 0; i < fields.dim; i++)
    {
        Dsymbol *s = fields[i];
        VarDeclaration *vd = s->isVarDeclaration();
        if (vd && !vd->isDataseg())
        {
            if (vd->init)
            {
                // Should examine init to see if it is really all 0's
                zeroInit = 0;
                break;
            }
            else
            {
                if (!vd->type->isZeroInit(loc))
                {
                    zeroInit = 0;
                    break;
                }
            }
        }
    }

#if DMDV1
    /* This doesn't work for DMDV2 because (ref S) and (S) parameter
     * lists will overload the same.
     */
    /* The TypeInfo_Struct is expecting an opEquals and opCmp with
     * a parameter that is a pointer to the struct. But if there
     * isn't one, but is an opEquals or opCmp with a value, write
     * another that is a shell around the value:
     *  int opCmp(struct *p) { return opCmp(*p); }
     */

    TypeFunction *tfeqptr;
    {
        Parameters *arguments = new Parameters;
        Parameter *arg = new Parameter(STCin, handle, Id::p, NULL);

        arguments->push(arg);
        tfeqptr = new TypeFunction(arguments, Type::tint32, 0, LINKd);
        tfeqptr = (TypeFunction *)tfeqptr->semantic(0, sc);
    }

    TypeFunction *tfeq;
    {
        Parameters *arguments = new Parameters;
        Parameter *arg = new Parameter(STCin, type, NULL, NULL);

        arguments->push(arg);
        tfeq = new TypeFunction(arguments, Type::tint32, 0, LINKd);
        tfeq = (TypeFunction *)tfeq->semantic(0, sc);
    }

    Identifier *id = Id::eq;
    for (int i = 0; i < 2; i++)
    {
        Dsymbol *s = search_function(this, id);
        FuncDeclaration *fdx = s ? s->isFuncDeclaration() : NULL;
        if (fdx)
        {   FuncDeclaration *fd = fdx->overloadExactMatch(tfeqptr);
            if (!fd)
            {   fd = fdx->overloadExactMatch(tfeq);
                if (fd)
                {   // Create the thunk, fdptr
                    FuncDeclaration *fdptr = new FuncDeclaration(loc, loc, fdx->ident, STCundefined, tfeqptr);
                    Expression *e = new IdentifierExp(loc, Id::p);
                    e = new PtrExp(loc, e);
                    Expressions *args = new Expressions();
                    args->push(e);
                    e = new IdentifierExp(loc, id);
                    e = new CallExp(loc, e, args);
                    fdptr->fbody = new ReturnStatement(loc, e);
                    ScopeDsymbol *s = fdx->parent->isScopeDsymbol();
                    assert(s);
                    s->members->push(fdptr);
                    fdptr->addMember(sc, s, 1);
                    fdptr->semantic(sc2);
                }
            }
        }

        id = Id::cmp;
    }
#endif
#if DMDV2
    dtor = buildDtor(sc2);
    postblit = buildPostBlit(sc2);
    cpctor = buildCpCtor(sc2);

    hasIdentityAssign = (buildOpAssign(sc2) != NULL);
    hasIdentityEquals = (buildOpEquals(sc2) != NULL);

    xeq = buildXopEquals(sc2);
#endif

    sc2->pop();

    /* Look for special member functions.
     */
#if DMDV2
    ctor = search(0, Id::ctor, 0);
#endif
    inv =    (InvariantDeclaration *)search(0, Id::classInvariant, 0);
    aggNew =       (NewDeclaration *)search(0, Id::classNew,       0);
    aggDelete = (DeleteDeclaration *)search(0, Id::classDelete,    0);

    TypeTuple *tup = type->toArgTypes();
    size_t dim = tup->arguments->dim;
    if (dim >= 1)
    {   assert(dim <= 2);
        arg1type = (*tup->arguments)[0]->type;
        if (dim == 2)
            arg2type = (*tup->arguments)[1]->type;
    }

    if (sc->func)
    {
        semantic2(sc);
        semantic3(sc);
    }

    if (global.gag && global.gaggedErrors != errors)
    {   // The type is no good, yet the error messages were gagged.
        type = Type::terror;
    }

    if (deferred && !global.gag)
    {
        deferred->semantic2(sc);
        deferred->semantic3(sc);
    }
}