Esempio n. 1
0
    KeyGenerator::KeyGenerator(const EncryptionParameters &parms) :
        poly_modulus_(parms.poly_modulus()), coeff_modulus_(parms.coeff_modulus()), plain_modulus_(parms.plain_modulus()),
        noise_standard_deviation_(parms.noise_standard_deviation()), noise_max_deviation_(parms.noise_max_deviation()),
        decomposition_bit_count_(parms.decomposition_bit_count()), mode_(parms.mode()),
        random_generator_(parms.random_generator() != nullptr ? parms.random_generator()->create() : UniformRandomGeneratorFactory::default_factory()->create())
    {
        // Verify required parameters are non-zero and non-nullptr.
        if (poly_modulus_.is_zero())
        {
            throw invalid_argument("poly_modulus cannot be zero");
        }
        if (coeff_modulus_.is_zero())
        {
            throw invalid_argument("coeff_modulus cannot be zero");
        }
        if (plain_modulus_.is_zero())
        {
            throw invalid_argument("plain_modulus cannot be zero");
        }
        if (noise_standard_deviation_ < 0)
        {
            throw invalid_argument("noise_standard_deviation must be non-negative");
        }
        if (noise_max_deviation_ < 0)
        {
            throw invalid_argument("noise_max_deviation must be non-negative");
        }
        if (decomposition_bit_count_ <= 0)
        {
            throw invalid_argument("decomposition_bit_count must be positive");
        }

        // Verify parameters.
        if (plain_modulus_ >= coeff_modulus_)
        {
            throw invalid_argument("plain_modulus must be smaller than coeff_modulus");
        }
        if (!are_poly_coefficients_less_than(poly_modulus_, coeff_modulus_))
        {
            throw invalid_argument("poly_modulus cannot have coefficients larger than coeff_modulus");
        }

        // Resize encryption parameters to consistent size.
        int coeff_count = poly_modulus_.significant_coeff_count();
        int coeff_bit_count = coeff_modulus_.significant_bit_count();
        int coeff_uint64_count = divide_round_up(coeff_bit_count, bits_per_uint64);
        if (poly_modulus_.coeff_count() != coeff_count || poly_modulus_.coeff_bit_count() != coeff_bit_count)
        {
            poly_modulus_.resize(coeff_count, coeff_bit_count);
        }
        if (coeff_modulus_.bit_count() != coeff_bit_count)
        {
            coeff_modulus_.resize(coeff_bit_count);
        }
        if (plain_modulus_.bit_count() != coeff_bit_count)
        {
            plain_modulus_.resize(coeff_bit_count);
        }
        if (decomposition_bit_count_ > coeff_bit_count)
        {
            decomposition_bit_count_ = coeff_bit_count;
        }

        // Calculate -1 (mod coeff_modulus).
        coeff_modulus_minus_one_.resize(coeff_bit_count);
        decrement_uint(coeff_modulus_.pointer(), coeff_uint64_count, coeff_modulus_minus_one_.pointer());

        // Initialize public and secret key.
        public_key_.resize(coeff_count, coeff_bit_count);
        secret_key_.resize(coeff_count, coeff_bit_count);

        // Initialize evaluation keys.
        int evaluation_key_count = 0;
        Pointer evaluation_factor(allocate_uint(coeff_uint64_count, pool_));
        set_uint(1, coeff_uint64_count, evaluation_factor.get());
        while (!is_zero_uint(evaluation_factor.get(), coeff_uint64_count) && is_less_than_uint_uint(evaluation_factor.get(), coeff_modulus_.pointer(), coeff_uint64_count))
        {
            left_shift_uint(evaluation_factor.get(), decomposition_bit_count_, coeff_uint64_count, evaluation_factor.get());
            evaluation_key_count++;
        }
        evaluation_keys_.resize(evaluation_key_count);
        for (int i = 0; i < evaluation_key_count; ++i)
        {
            evaluation_keys_[i].resize(coeff_count, coeff_bit_count);
        }

        // Initialize moduli.
        polymod_ = PolyModulus(poly_modulus_.pointer(), coeff_count, coeff_uint64_count);
        mod_ = Modulus(coeff_modulus_.pointer(), coeff_uint64_count, pool_);
    }
    bool ChooserEvaluator::select_parameters(const std::vector<ChooserPoly> &operands, double noise_standard_deviation, double noise_max_deviation, const std::map<int, BigUInt> &parameter_options, EncryptionParameters &destination)
    {
        if (noise_standard_deviation < 0)
        {
            throw invalid_argument("noise_standard_deviation can not be negative");
        }
        if (noise_max_deviation < 0)
        {
            throw invalid_argument("noise_max_deviation can not be negative");
        }
        if (parameter_options.size() == 0)
        {
            throw invalid_argument("parameter_options must contain at least one entry");
        }
        if (operands.empty())
        {
            throw invalid_argument("operands cannot be empty");
        }

        int largest_bit_count = 0;
        int largest_coeff_count = 0;
        for (vector<ChooserPoly>::size_type i = 0; i < operands.size(); ++i)
        {
            if (operands[i].comp_ == nullptr)
            {
                throw logic_error("no operation history to simulate");
            }
            int current_bit_count = operands[i].max_abs_value_.significant_bit_count();
            largest_bit_count = (current_bit_count > largest_bit_count) ? current_bit_count : largest_bit_count;

            int current_coeff_count = operands[i].max_coeff_count_;
            largest_coeff_count = (current_coeff_count > largest_coeff_count) ? current_coeff_count : largest_coeff_count;
        }

        // We restrict to plain moduli that are powers of two. Here largest_bit_count is the largest positive
        // coefficient that we can expect to appear. Thus, we need one more bit.
        destination.plain_modulus() = 1;
        destination.plain_modulus() <<= largest_bit_count;

        bool found_good_parms = false;
        map<int, BigUInt>::const_iterator iter = parameter_options.begin();
        while (iter != parameter_options.end() && !found_good_parms)
        {
            int dimension = iter->first;
            if (dimension < 512 || (dimension & (dimension - 1)) != 0)
            {
                throw invalid_argument("parameter_options keys invalid");
            }

            if (dimension > largest_coeff_count && destination.plain_modulus() < iter->second)
            {
                // Set the polynomial
                destination.coeff_modulus() = iter->second;
                destination.poly_modulus().resize(dimension + 1, 1);
                destination.poly_modulus().set_zero();
                destination.poly_modulus()[0] = 1;
                destination.poly_modulus()[dimension] = 1;

                // The bound needed for GapSVP->search-LWE reduction
                //parms.noise_standard_deviation() = round(sqrt(dimension / (2 * 3.1415)) + 0.5);

                // Use constant (small) standard deviation.
                destination.noise_standard_deviation() = noise_standard_deviation;

                // We truncate the gaussian at noise_max_deviation.
                destination.noise_max_deviation() = noise_max_deviation;

                // Start initially with the maximum decomposition_bit_count, then decrement until decrypts().
                destination.decomposition_bit_count() = destination.coeff_modulus().significant_bit_count();

                // We bound the decomposition bit count value by 1/8 of the maximum. A too small
                // decomposition bit count slows down multiplication significantly. This is not an
                // issue when the user wants to use multiply_norelin() instead of multiply(), as it
                // only affects the relinearization step. The fraction 1/8 is not an optimal choice
                // in any sense, but was rather arbitrarily chosen. An expert user might want to tweak this
                // value to be smaller or larger depending on their use case.
                // To do: Figure out a somewhat optimal bound.
                int min_decomposition_bit_count = destination.coeff_modulus().significant_bit_count() / 8;

                while (!found_good_parms && destination.decomposition_bit_count() > min_decomposition_bit_count)
                {
                    found_good_parms = true;
                    for (vector<ChooserPoly>::size_type i = 0; i < operands.size(); ++i)
                    {
                        // If one of the operands does not decrypt, set found_good_parms to false.
                        found_good_parms = operands[i].simulate(destination).decrypts() ? found_good_parms : false;
                    }
                    if (!found_good_parms)
                    {
                        --destination.decomposition_bit_count();
                    }
                    else
                    {
                        // We found some good parameters. But in fact we can still decrease the decomposition count
                        // a little bit without hurting performance at all.
                        int old_dbc = destination.decomposition_bit_count();
                        int num_parts = destination.coeff_modulus().significant_bit_count() / old_dbc + (destination.coeff_modulus().significant_bit_count() % old_dbc != 0);
                        destination.decomposition_bit_count() = destination.coeff_modulus().significant_bit_count() / num_parts + (destination.coeff_modulus().significant_bit_count() % num_parts != 0);
                    }
                }
            }

            // This dimension/coeff_modulus are to small. Move on to the next pair.
            ++iter;
        }
        
        if (!found_good_parms)
        {
            destination = EncryptionParameters();
        }

        return found_good_parms;
    }
    HkeyGen::HkeyGen(const EncryptionParameters &parms, const BigPoly &secret_key) :
        poly_modulus_(parms.poly_modulus()), coeff_modulus_(parms.coeff_modulus()), plain_modulus_(parms.plain_modulus()), secret_key_(secret_key), orig_plain_modulus_bit_count_(parms.plain_modulus().significant_bit_count())
    {
        // Verify required parameters are non-zero and non-nullptr.
        if (poly_modulus_.is_zero())
        {
            throw invalid_argument("poly_modulus cannot be zero");
        }
        if (coeff_modulus_.is_zero())
        {
            throw invalid_argument("coeff_modulus cannot be zero");
        }
        if (plain_modulus_.is_zero())
        {
            throw invalid_argument("plain_modulus cannot be zero");
        }

        if (secret_key_.is_zero())
        {
            throw invalid_argument("secret_key cannot be zero");
        }

        // Verify parameters.
        if (plain_modulus_ >= coeff_modulus_)
        {
            throw invalid_argument("plain_modulus must be smaller than coeff_modulus");
        }
        if (!are_poly_coefficients_less_than(poly_modulus_, coeff_modulus_))
        {
            throw invalid_argument("poly_modulus cannot have coefficients larger than coeff_modulus");
        }

        // Resize encryption parameters to consistent size.
        int coeff_count = poly_modulus_.significant_coeff_count();
        int coeff_bit_count = coeff_modulus_.significant_bit_count();
        int coeff_uint64_count = divide_round_up(coeff_bit_count, bits_per_uint64);
        if (poly_modulus_.coeff_count() != coeff_count || poly_modulus_.coeff_bit_count() != coeff_bit_count)
        {
            poly_modulus_.resize(coeff_count, coeff_bit_count);
        }
        if (coeff_modulus_.bit_count() != coeff_bit_count)
        {
            coeff_modulus_.resize(coeff_bit_count);
        }
        if (plain_modulus_.bit_count() != coeff_bit_count)
        {
            plain_modulus_.resize(coeff_bit_count);
        }
        if (secret_key_.coeff_count() != coeff_count || secret_key_.coeff_bit_count() != coeff_bit_count ||
            secret_key_.significant_coeff_count() == coeff_count || !are_poly_coefficients_less_than(secret_key_, coeff_modulus_))
        {
            throw invalid_argument("secret_key is not valid for encryption parameters");
        }

        // Set the secret_key_array to have size 1 (first power of secret) 
        secret_key_array_.resize(1, coeff_count, coeff_bit_count);
        set_poly_poly(secret_key_.pointer(), coeff_count, coeff_uint64_count, secret_key_array_.pointer(0));

        MemoryPool &pool = *MemoryPool::default_pool();

        // Calculate coeff_modulus / plain_modulus.
        coeff_div_plain_modulus_.resize(coeff_bit_count);
        Pointer temp(allocate_uint(coeff_uint64_count, pool));
        divide_uint_uint(coeff_modulus_.pointer(), plain_modulus_.pointer(), coeff_uint64_count, coeff_div_plain_modulus_.pointer(), temp.get(), pool);

        // Calculate coeff_modulus / plain_modulus / 2.
        coeff_div_plain_modulus_div_two_.resize(coeff_bit_count);
        right_shift_uint(coeff_div_plain_modulus_.pointer(), 1, coeff_uint64_count, coeff_div_plain_modulus_div_two_.pointer());

        // Calculate coeff_modulus / 2.
        upper_half_threshold_.resize(coeff_bit_count);
        half_round_up_uint(coeff_modulus_.pointer(), coeff_uint64_count, upper_half_threshold_.pointer());

        // Calculate upper_half_increment.
        upper_half_increment_.resize(coeff_bit_count);
        multiply_truncate_uint_uint(plain_modulus_.pointer(), coeff_div_plain_modulus_.pointer(), coeff_uint64_count, upper_half_increment_.pointer());
        sub_uint_uint(coeff_modulus_.pointer(), upper_half_increment_.pointer(), coeff_uint64_count, upper_half_increment_.pointer());

        // Initialize moduli.
        polymod_ = PolyModulus(poly_modulus_.pointer(), coeff_count, coeff_uint64_count);
        mod_ = Modulus(coeff_modulus_.pointer(), coeff_uint64_count, pool);  
    }
Esempio n. 4
0
    bool ChooserEvaluator::select_parameters(
        const std::vector<ChooserPoly> &operands, 
        int budget_gap, double noise_standard_deviation, 
        const map<int, vector<SmallModulus> > &coeff_modulus_options, 
        EncryptionParameters &destination)
    {
        if (budget_gap < 0)
        {
            throw std::invalid_argument("budget_gap cannot be negative");
        }
        if (noise_standard_deviation < 0)
        {
            throw invalid_argument("noise_standard_deviation can not be negative");
        }
        if (coeff_modulus_options.size() == 0)
        {
            throw invalid_argument("parameter_options must contain at least one entry");
        }
        if (operands.empty())
        {
            throw invalid_argument("operands cannot be empty");
        }

        int largest_bit_count = 0;
        int largest_coeff_count = 0;
        for (size_t i = 0; i < operands.size(); i++)
        {
            if (operands[i].comp_ == nullptr)
            {
                throw logic_error("no operation history to simulate");
            }
            int current_bit_count = get_significant_bit_count(operands[i].max_abs_value_);
            largest_bit_count = (current_bit_count > largest_bit_count) ? 
                current_bit_count : largest_bit_count;

            int current_coeff_count = operands[i].max_coeff_count_;
            largest_coeff_count = (current_coeff_count > largest_coeff_count) ? 
                current_coeff_count : largest_coeff_count;
        }

        // We restrict to plain moduli that are powers of two. Here largest_bit_count 
        // is the largest positive coefficient that we can expect to appear. Thus, we 
        // need one more bit.
        uint64_t new_plain_modulus;
        if (largest_bit_count >= SEAL_USER_MODULO_BIT_BOUND)
        {
            // The plain_modulus needed is too big
            return false;
        }
        new_plain_modulus = 1ULL << largest_bit_count;
        destination.set_plain_modulus(new_plain_modulus);

        bool found_good_parms = false;
        map<int, vector<SmallModulus> >::const_iterator iter = coeff_modulus_options.begin();
        while (iter != coeff_modulus_options.end() && !found_good_parms)
        {
            int dimension = iter->first;
            if (dimension < 512 || (dimension & (dimension - 1)) != 0)
            {
                throw invalid_argument("coeff_modulus_options keys invalid");
            }

            int coeff_bit_count = 0;
            for(auto mod : iter->second)
            {
                coeff_bit_count += mod.bit_count();
            }

            if (dimension > largest_coeff_count && 
                coeff_bit_count > destination.plain_modulus().bit_count())
            {
                // Set the polynomial
                destination.set_coeff_modulus(iter->second);
                BigPoly new_poly_modulus(dimension + 1, 1);
                new_poly_modulus.set_zero();
                new_poly_modulus[0] = 1;
                new_poly_modulus[dimension] = 1;
                destination.set_poly_modulus(new_poly_modulus);

                // The bound needed for GapSVP->search-LWE reduction
                //parms.noise_standard_deviation() = round(sqrt(dimension / (2 * 3.1415)) + 0.5);

                // Use constant (small) standard deviation.
                destination.set_noise_standard_deviation(noise_standard_deviation);

                found_good_parms = true;
                for (size_t i = 0; i < operands.size(); i++)
                {
                    // If one of the operands does not decrypt, set found_good_parms to false.
                    found_good_parms = operands[i].simulate(destination).decrypts(budget_gap) ? 
                        found_good_parms : false;
                }
            }

            // This dimension/coeff_modulus are to small. Move on to the next pair.
            iter++;
        }

        if (!found_good_parms)
        {
            destination = EncryptionParameters();
        }

        return found_good_parms;
    }
    Evaluator::Evaluator(const EncryptionParameters &parms, const EvaluationKeys &evaluation_keys) :
        poly_modulus_(parms.poly_modulus()), coeff_modulus_(parms.coeff_modulus()), plain_modulus_(parms.plain_modulus()),
        decomposition_bit_count_(parms.decomposition_bit_count()), evaluation_keys_(evaluation_keys), mode_(parms.mode())
    {
        // Verify required parameters are non-zero and non-nullptr.
        if (poly_modulus_.is_zero())
        {
            throw invalid_argument("poly_modulus cannot be zero");
        }
        if (coeff_modulus_.is_zero())
        {
            throw invalid_argument("coeff_modulus cannot be zero");
        }
        if (plain_modulus_.is_zero())
        {
            throw invalid_argument("plain_modulus cannot be zero");
        }
        if (decomposition_bit_count_ <= 0)
        {
            throw invalid_argument("decomposition_bit_count must be positive");
        }
        if (evaluation_keys_.count() == 0)
        {
            throw invalid_argument("evaluation_keys cannot be empty");
        }

        // Verify parameters.
        if (plain_modulus_ >= coeff_modulus_)
        {
            throw invalid_argument("plain_modulus must be smaller than coeff_modulus");
        }
        if (!are_poly_coefficients_less_than(poly_modulus_, coeff_modulus_))
        {
            throw invalid_argument("poly_modulus cannot have coefficients larger than coeff_modulus");
        }

        // Resize encryption parameters to consistent size.
        int coeff_count = poly_modulus_.significant_coeff_count();
        int coeff_bit_count = coeff_modulus_.significant_bit_count();
        int coeff_uint64_count = divide_round_up(coeff_bit_count, bits_per_uint64);
        if (poly_modulus_.coeff_count() != coeff_count || poly_modulus_.coeff_bit_count() != coeff_bit_count)
        {
            poly_modulus_.resize(coeff_count, coeff_bit_count);
        }
        if (coeff_modulus_.bit_count() != coeff_bit_count)
        {
            coeff_modulus_.resize(coeff_bit_count);
        }
        if (plain_modulus_.bit_count() != coeff_bit_count)
        {
            plain_modulus_.resize(coeff_bit_count);
        }
        if (decomposition_bit_count_ > coeff_bit_count)
        {
            decomposition_bit_count_ = coeff_bit_count;
        }

        // Determine correct number of evaluation keys.
        int evaluation_key_count = 0;
        Pointer evaluation_factor(allocate_uint(coeff_uint64_count, pool_));
        set_uint(1, coeff_uint64_count, evaluation_factor.get());
        while (!is_zero_uint(evaluation_factor.get(), coeff_uint64_count) && is_less_than_uint_uint(evaluation_factor.get(), coeff_modulus_.pointer(), coeff_uint64_count))
        {
            left_shift_uint(evaluation_factor.get(), decomposition_bit_count_, coeff_uint64_count, evaluation_factor.get());
            evaluation_key_count++;
        }

        // Verify evaluation keys.
        if (evaluation_keys_.count() != evaluation_key_count)
        {
            throw invalid_argument("evaluation_keys is not valid for encryption parameters");
        }
        for (int i = 0; i < evaluation_keys_.count(); ++i)
        {
            BigPoly &evaluation_key = evaluation_keys_[i];
            if (evaluation_key.coeff_count() != coeff_count || evaluation_key.coeff_bit_count() != coeff_bit_count ||
                evaluation_key.significant_coeff_count() == coeff_count || !are_poly_coefficients_less_than(evaluation_key, coeff_modulus_))
            {
                throw invalid_argument("evaluation_keys is not valid for encryption parameters");
            }
        }

        // Calculate coeff_modulus / plain_modulus.
        coeff_div_plain_modulus_.resize(coeff_bit_count);
        Pointer temp(allocate_uint(coeff_uint64_count, pool_));
        divide_uint_uint(coeff_modulus_.pointer(), plain_modulus_.pointer(), coeff_uint64_count, coeff_div_plain_modulus_.pointer(), temp.get(), pool_);

        // Calculate (plain_modulus + 1) / 2.
        plain_upper_half_threshold_.resize(coeff_bit_count);
        half_round_up_uint(plain_modulus_.pointer(), coeff_uint64_count, plain_upper_half_threshold_.pointer());

        // Calculate coeff_modulus - plain_modulus.
        plain_upper_half_increment_.resize(coeff_bit_count);
        sub_uint_uint(coeff_modulus_.pointer(), plain_modulus_.pointer(), coeff_uint64_count, plain_upper_half_increment_.pointer());

        // Calculate (plain_modulus + 1) / 2 * coeff_div_plain_modulus.
        upper_half_threshold_.resize(coeff_bit_count);
        multiply_truncate_uint_uint(plain_upper_half_threshold_.pointer(), coeff_div_plain_modulus_.pointer(), coeff_uint64_count, upper_half_threshold_.pointer());

        // Calculate upper_half_increment.
        upper_half_increment_.resize(coeff_bit_count);
        multiply_truncate_uint_uint(plain_modulus_.pointer(), coeff_div_plain_modulus_.pointer(), coeff_uint64_count, upper_half_increment_.pointer());
        sub_uint_uint(coeff_modulus_.pointer(), upper_half_increment_.pointer(), coeff_uint64_count, upper_half_increment_.pointer());

        // Widen coeff modulus.
        int product_coeff_bit_count = coeff_bit_count + coeff_bit_count + get_significant_bit_count(static_cast<uint64_t>(coeff_count));
        int plain_modulus_bit_count = plain_modulus_.significant_bit_count();
        int wide_bit_count = product_coeff_bit_count + plain_modulus_bit_count;
        int wide_uint64_count = divide_round_up(wide_bit_count, bits_per_uint64);
        wide_coeff_modulus_.resize(wide_bit_count);
        wide_coeff_modulus_ = coeff_modulus_;

        // Calculate wide_coeff_modulus_ / 2.
        wide_coeff_modulus_div_two_.resize(wide_bit_count);
        right_shift_uint(wide_coeff_modulus_.pointer(), 1, wide_uint64_count, wide_coeff_modulus_div_two_.pointer());

        // Initialize moduli.
        polymod_ = PolyModulus(poly_modulus_.pointer(), coeff_count, coeff_uint64_count);
        if (mode_ == TEST_MODE)
        {
            mod_ = Modulus(plain_modulus_.pointer(), coeff_uint64_count, pool_);
        }
        else
        {
            mod_ = Modulus(coeff_modulus_.pointer(), coeff_uint64_count, pool_);
        }
    }