EndCriteria::Type Simplex::minimize(Problem& P, const EndCriteria& endCriteria) { // set up of the problem //Real ftol = endCriteria.functionEpsilon(); // end criteria on f(x) (see Numerical Recipes in C++, p.410) Real xtol = endCriteria.rootEpsilon(); // end criteria on x (see GSL v. 1.9, http://www.gnu.org/software/gsl/) Size maxStationaryStateIterations_ = endCriteria.maxStationaryStateIterations(); EndCriteria::Type ecType = EndCriteria::None; P.reset(); Array x_ = P.currentValue(); Integer iterationNumber_=0; // Initialize vertices of the simplex bool end = false; Size n = x_.size(), i; vertices_ = std::vector<Array>(n+1, x_); for (i=0; i<n; i++) { Array direction(n, 0.0); direction[i] = 1.0; P.constraint().update(vertices_[i+1], direction, lambda_); } // Initialize function values at the vertices of the simplex values_ = Array(n+1, 0.0); for (i=0; i<=n; i++) values_[i] = P.value(vertices_[i]); // Loop looking for minimum do { sum_ = Array(n, 0.0); Size i; for (i=0; i<=n; i++) sum_ += vertices_[i]; // Determine the best (iLowest), worst (iHighest) // and 2nd worst (iNextHighest) vertices Size iLowest = 0; Size iHighest, iNextHighest; if (values_[0]<values_[1]) { iHighest = 1; iNextHighest = 0; } else { iHighest = 0; iNextHighest = 1; } for (i=1;i<=n; i++) { if (values_[i]>values_[iHighest]) { iNextHighest = iHighest; iHighest = i; } else { if ((values_[i]>values_[iNextHighest]) && i!=iHighest) iNextHighest = i; } if (values_[i]<values_[iLowest]) iLowest = i; } // Now compute accuracy, update iteration number and check end criteria //// Numerical Recipes exit strategy on fx (see NR in C++, p.410) //Real low = values_[iLowest]; //Real high = values_[iHighest]; //Real rtol = 2.0*std::fabs(high - low)/ // (std::fabs(high) + std::fabs(low) + QL_EPSILON); //++iterationNumber_; //if (rtol < ftol || // endCriteria.checkMaxIterations(iterationNumber_, ecType)) { // GSL exit strategy on x (see GSL v. 1.9, http://www.gnu.org/software/gsl Real simplexSize = computeSimplexSize(vertices_); ++iterationNumber_; if (simplexSize < xtol || endCriteria.checkMaxIterations(iterationNumber_, ecType)) { endCriteria.checkStationaryPoint(0.0, 0.0, maxStationaryStateIterations_, ecType); // PC this is probably not meant like this ? Use separate counter ? endCriteria.checkMaxIterations(iterationNumber_, ecType); x_ = vertices_[iLowest]; Real low = values_[iLowest]; P.setFunctionValue(low); P.setCurrentValue(x_); return ecType; } // If end criteria is not met, continue Real factor = -1.0; Real vTry = extrapolate(P, iHighest, factor); if ((vTry <= values_[iLowest]) && (factor == -1.0)) { factor = 2.0; extrapolate(P, iHighest, factor); } else if (std::fabs(factor) > QL_EPSILON) { if (vTry >= values_[iNextHighest]) { Real vSave = values_[iHighest]; factor = 0.5; vTry = extrapolate(P, iHighest, factor); if (vTry >= vSave && std::fabs(factor) > QL_EPSILON) { for (Size i=0; i<=n; i++) { if (i!=iLowest) { #if defined(QL_ARRAY_EXPRESSIONS) vertices_[i] = 0.5*(vertices_[i] + vertices_[iLowest]); #else vertices_[i] += vertices_[iLowest]; vertices_[i] *= 0.5; #endif values_[i] = P.value(vertices_[i]); } } } } } // If can't extrapolate given the constraints, exit if (std::fabs(factor) <= QL_EPSILON) { x_ = vertices_[iLowest]; Real low = values_[iLowest]; P.setFunctionValue(low); P.setCurrentValue(x_); return EndCriteria::StationaryFunctionValue; } } while (end == false); QL_FAIL("optimization failed: unexpected behaviour"); }
EndCriteria::Type DifferentialEvolution::minimize(Problem& P, const EndCriteria& endCriteria) { EndCriteria::Type ecType = EndCriteria::MaxIterations; QL_REQUIRE(P.currentValue().size() == nParam_, "Number of parameters mismatch between problem and DE optimizer"); P.reset(); init(); Real bestCost = QL_MAX_REAL; Size bestPop = 0; for (Size p = 0; p < nPop_; ++p) { Array tmp(currGen_[p].pop_); try { currGen_[p].cost_ = P.costFunction().value(tmp); } catch (Error&) { currGen_[p].cost_ = QL_MAX_REAL; } if (currGen_[p].cost_ < bestCost) { bestPop = p; bestCost = currGen_[p].cost_; } } Size lastChange = 0; Size lastParamChange = 0; for(Size i=0; i<endCriteria.maxIterations(); ++i) { Size newBestPop = bestPop; Real newBestCost = bestCost; for (Size p=0; p<nPop_; ++p) { // Find 3 different populations randomly Size r1; do { r1 = static_cast <Size> (uniformRng_.nextInt32() % nPop_); } while(r1 == p || r1 == bestPop); Size r2; do { r2 = static_cast <Size> (uniformRng_.nextInt32() % nPop_); } while ( r2 == p || r2 == bestPop || r2 == r1); Size r3; do { r3 = static_cast <Size> (uniformRng_.nextInt32() % nPop_); } while ( r3 == p || r3 == bestPop || r3 == r1 || r3 == r2); for(Size j=0; j<nParam_; ++j) { nextGen_[p].pop_[j] = currGen_[p].pop_[j]; } Size j = static_cast <Size> (uniformRng_.nextInt32() % nParam_); Size L = 0; do { const double tmp = currGen_[ p].pop_[j] * a0_ + currGen_[ r1].pop_[j] * a1_ + currGen_[ r2].pop_[j] * a2_ + currGen_[ r3].pop_[j] * a3_ + currGen_[bestPop].pop_[j] * aBest_; nextGen_[p].pop_[j] = std::min(maxParams_[j], std::max(minParams_[j], tmp)); j = (j+1)%nParam_; ++L; } while ((uniformRng_.nextReal() < CR_) && (L < nParam_)); // Evaluate the new population Array tmp(nextGen_[p].pop_); try { nextGen_[p].cost_ = P.costFunction().value(tmp); } catch (Error&) { nextGen_[p].cost_ = QL_MAX_REAL; } // Not better, discard it and keep the old one. if (nextGen_[p].cost_ >= currGen_[p].cost_) { nextGen_[p] = currGen_[p]; } // Better, keep it. else { // New best? if (nextGen_[p].cost_ < newBestCost) { newBestPop = p; newBestCost = nextGen_[p].cost_; } } } if(std::abs(newBestCost-bestCost) > endCriteria.functionEpsilon()) { lastChange = i; } const Array absDiff = Abs(nextGen_[newBestPop].pop_-currGen_[bestPop].pop_); if(*std::max_element(absDiff.begin(), absDiff.end()) > endCriteria.rootEpsilon()) { lastParamChange = i; } bestPop = newBestPop; bestCost = newBestCost; currGen_ = nextGen_; if(i-lastChange > endCriteria.maxStationaryStateIterations()) { ecType = EndCriteria::StationaryFunctionValue; break; } if(i-lastParamChange > endCriteria.maxStationaryStateIterations()) { ecType = EndCriteria::StationaryPoint; break; } if (adaptive_) adaptParameters(); } const Array res(currGen_[bestPop].pop_); P.setCurrentValue(res); P.setFunctionValue(bestCost); return ecType; }