// // Ackermann related routines // void Egraph::retrieveFunctionApplications( Enode * formula ) { assert( formula ); vector< Enode * > unprocessed_enodes; initDup1( ); unprocessed_enodes.push_back( formula ); // // Visit the DAG of the formula from the leaves to the root // while( !unprocessed_enodes.empty( ) ) { Enode * enode = unprocessed_enodes.back( ); // // Skip if the node has already been processed before // if ( isDup1( enode ) ) { unprocessed_enodes.pop_back( ); continue; } bool unprocessed_children = false; Enode * arg_list; for ( arg_list = enode->getCdr( ) ; arg_list != enil ; arg_list = arg_list->getCdr( ) ) { Enode * arg = arg_list->getCar( ); assert( arg->isTerm( ) ); // // Push only if it is unprocessed // if ( !isDup1( arg ) ) { unprocessed_enodes.push_back( arg ); unprocessed_children = true; } } // // SKip if unprocessed_children // if ( unprocessed_children ) continue; unprocessed_enodes.pop_back( ); // // At this point, every child has been processed // if ( enode->isUf( ) || enode->isUp( ) ) { if ( uf_to_appl_cache[ enode->getCar( ) ].insert( enode ).second ) { uf_to_appl[ enode->getCar( ) ].push_back( enode ); undo_stack_oper.push_back( ACK_APPL ); undo_stack_term.push_back( enode ); } } assert( !isDup1( enode ) ); storeDup1( enode ); } doneDup1( ); }
Enode * Egraph::canonizeDTC( Enode * formula, bool split_eqs ) { assert( config.sat_lazy_dtc != 0 ); assert( config.logic == QF_UFLRA || config.logic == QF_UFIDL ); list< Enode * > dtc_axioms; vector< Enode * > unprocessed_enodes; initDupMap1( ); unprocessed_enodes.push_back( formula ); // // Visit the DAG of the formula from the leaves to the root // while( !unprocessed_enodes.empty( ) ) { Enode * enode = unprocessed_enodes.back( ); // // Skip if the node has already been processed before // if ( valDupMap1( enode ) != NULL ) { unprocessed_enodes.pop_back( ); continue; } bool unprocessed_children = false; Enode * arg_list; for ( arg_list = enode->getCdr( ) ; arg_list != enil ; arg_list = arg_list->getCdr( ) ) { Enode * arg = arg_list->getCar( ); assert( arg->isTerm( ) ); // // Push only if it is unprocessed // if ( valDupMap1( arg ) == NULL ) { unprocessed_enodes.push_back( arg ); unprocessed_children = true; } } // // SKip if unprocessed_children // if ( unprocessed_children ) continue; unprocessed_enodes.pop_back( ); Enode * result = NULL; // // Replace arithmetic atoms with canonized version // if ( enode->isTAtom( ) && !enode->isUp( ) ) { // No need to do anything if node is purely UF if ( isRootUF( enode ) ) { if ( config.verbosity > 2 ) cerr << "# Egraph::Skipping canonization of " << enode << " as it's root is purely UF" << endl; result = enode; } else { LAExpression a( enode ); result = a.toEnode( *this ); #ifdef PRODUCE_PROOF const uint64_t partitions = getIPartitions( enode ); assert( partitions != 0 ); setIPartitions( result, partitions ); #endif if ( split_eqs && result->isEq( ) ) { #ifdef PRODUCE_PROOF if ( config.produce_inter > 0 ) opensmt_error2( "can't compute interpolant for equalities at the moment ", enode ); #endif LAExpression aa( enode ); Enode * e = aa.toEnode( *this ); #ifdef PRODUCE_PROOF assert( partitions != 0 ); setIPartitions( e, partitions ); #endif Enode * lhs = e->get1st( ); Enode * rhs = e->get2nd( ); Enode * leq = mkLeq( cons( lhs, cons( rhs ) ) ); LAExpression b( leq ); leq = b.toEnode( *this ); #ifdef PRODUCE_PROOF assert( partitions != 0 ); setIPartitions( leq, partitions ); #endif Enode * geq = mkGeq( cons( lhs, cons( rhs ) ) ); LAExpression c( geq ); geq = c.toEnode( *this ); #ifdef PRODUCE_PROOF assert( partitions != 0 ); setIPartitions( geq, partitions ); #endif Enode * not_e = mkNot( cons( enode ) ); Enode * not_l = mkNot( cons( leq ) ); Enode * not_g = mkNot( cons( geq ) ); // Add clause ( !x=y v x<=y ) Enode * c1 = mkOr( cons( not_e , cons( leq ) ) ); // Add clause ( !x=y v x>=y ) Enode * c2 = mkOr( cons( not_e , cons( geq ) ) ); // Add clause ( x=y v !x>=y v !x<=y ) Enode * c3 = mkOr( cons( enode , cons( not_l , cons( not_g ) ) ) ); // Add conjunction of clauses Enode * ax = mkAnd( cons( c1 , cons( c2 , cons( c3 ) ) ) ); dtc_axioms.push_back( ax ); result = enode; } } } // // If nothing have been done copy and simplify // if ( result == NULL ) result = copyEnodeEtypeTermWithCache( enode ); assert( valDupMap1( enode ) == NULL ); storeDupMap1( enode, result ); #ifdef PRODUCE_PROOF if ( config.produce_inter > 0 ) { // Setting partitions for result setIPartitions( result, getIPartitions( enode ) ); // Setting partitions for negation as well occ if atom if ( result->hasSortBool( ) ) { setIPartitions( mkNot( cons( result ) ) , getIPartitions( enode ) ); } } #endif } Enode * new_formula = valDupMap1( formula ); assert( new_formula ); doneDupMap1( ); if ( !dtc_axioms.empty( ) ) { dtc_axioms.push_back( new_formula ); new_formula = mkAnd( cons( dtc_axioms ) ); } return new_formula; }
void Egraph::gatherInterfaceTerms( Enode * e ) { assert( config.sat_lazy_dtc != 0 ); assert( config.logic == QF_UFIDL || config.logic == QF_UFLRA ); assert( e ); if ( config.verbosity > 2 ) cerr << "# Egraph::Gathering interface terms" << endl; vector< Enode * > unprocessed_enodes; initDup1( ); unprocessed_enodes.push_back( e ); // // Visit the DAG of the term from the leaves to the root // while( !unprocessed_enodes.empty( ) ) { Enode * enode = unprocessed_enodes.back( ); // // Skip if the node has already been processed before // if ( isDup1( enode ) ) { unprocessed_enodes.pop_back( ); continue; } bool unprocessed_children = false; Enode * arg_list; for ( arg_list = enode->getCdr( ) ; arg_list != enil ; arg_list = arg_list->getCdr( ) ) { Enode * arg = arg_list->getCar( ); assert( arg->isTerm( ) ); // // Push only if it is unprocessed // if ( !isDup1( arg ) ) { unprocessed_enodes.push_back( arg ); unprocessed_children = true; } } // // SKip if unprocessed_children // if ( unprocessed_children ) continue; unprocessed_enodes.pop_back( ); // // At this point, every child has been processed // if ( enode->isUFOp( ) ) { // Retrieve arguments for ( Enode * arg_list = enode->getCdr( ) ; !arg_list->isEnil( ) ; arg_list = arg_list->getCdr( ) ) { Enode * arg = arg_list->getCar( ); // This is for sure an interface term if ( ( arg->isArithmeticOp( ) || arg->isConstant( ) ) && interface_terms_cache.insert( arg ).second ) { if ( config.verbosity > 2 ) cerr << "# Egraph::Added interface term: " << arg << endl; // Save info for backtracking undo_stack_oper.push_back( INTERFACE_TERM ); undo_stack_term.push_back( arg ); } // We add this variable to the potential // interface terms or to interface terms if // already seen in LA else if ( arg->isVar( ) || arg->isConstant( ) ) { if ( it_la.find( arg ) == it_la.end( ) ) { if ( it_uf.insert( arg ).second ) { // Insertion took place, save undo info undo_stack_oper.push_back( INTERFACE_UF ); undo_stack_term.push_back( arg ); } } else if ( interface_terms_cache.insert( arg ).second ) { interface_terms.push_back( arg ); if ( config.verbosity > 2 ) cerr << "# Egraph::Added interface term: " << arg << endl; // Save info for backtracking undo_stack_oper.push_back( INTERFACE_TERM ); undo_stack_term.push_back( arg ); } } } } if ( enode->isArithmeticOp( ) && !isRootUF( enode ) ) { // Retrieve arguments for ( Enode * arg_list = enode->getCdr( ) ; !arg_list->isEnil( ) ; arg_list = arg_list->getCdr( ) ) { Enode * arg = arg_list->getCar( ); // This is for sure an interface term if ( arg->isUFOp( ) && !arg->isUp( ) && interface_terms_cache.insert( arg ).second ) { interface_terms.push_back( arg ); if ( config.verbosity > 2 ) cerr << "# Egraph::Added interface term: " << arg << endl; // Save info for backtracking undo_stack_oper.push_back( INTERFACE_TERM ); undo_stack_term.push_back( arg ); } // We add this variable to the potential // interface terms or to interface terms if // already seen in UF else if ( arg->isVar( ) || arg->isConstant( ) ) { if ( it_uf.find( arg ) == it_uf.end( ) ) { if ( it_la.insert( arg ).second ) { // Insertion took place, save undo info undo_stack_oper.push_back( INTERFACE_LA ); undo_stack_term.push_back( arg ); } } else if ( interface_terms_cache.insert( arg ).second ) { interface_terms.push_back( arg ); if ( config.verbosity > 2 ) cerr << "# Egraph::Added interface term: " << arg << endl; // Save info for backtracking undo_stack_oper.push_back( INTERFACE_TERM ); undo_stack_term.push_back( arg ); } } } } assert( !isDup1( enode ) ); storeDup1( enode ); } doneDup1( ); }