void ProteinResolver::buildingISDGroups_(vector<ProteinEntry> & protein_nodes, vector<PeptideEntry> & peptide_nodes, vector<ISDGroup> & isd_groups) { EnzymaticDigestion digestor; String enzyme_name = param_.getValue("resolver:enzyme"); digestor.setEnzyme(digestor.getEnzymeByName(enzyme_name)); UInt min_size = param_.getValue("resolver:min_length"); UInt missed_cleavages = param_.getValue("resolver:missed_cleavages"); digestor.setMissedCleavages(missed_cleavages); //------------------------------------------------------------- // building ISD Groups //------------------------------------------------------------- vector<AASequence> temp_peptides; map<String, set<Size> > peptides; for (Size i = 0; i < protein_data_.size(); ++i) { protein_nodes[i].fasta_entry = &protein_data_[i]; protein_nodes[i].traversed = false; protein_nodes[i].index = i; protein_nodes[i].protein_type = ProteinEntry::secondary; protein_nodes[i].weight = AASequence(protein_data_[i].sequence).getMonoWeight(); protein_nodes[i].coverage = 0.; protein_nodes[i].number_of_experimental_peptides = 0; digestor.digest(AASequence(protein_data_[i].sequence), temp_peptides); for (Size j = 0; j < temp_peptides.size(); ++j) { if (temp_peptides[j].size() >= min_size) { peptides[temp_peptides[j].toUnmodifiedString()].insert(i); } } } // important to resize peptide_nodes.resize(peptides.size()); vector<PeptideEntry>::iterator pep_node = peptide_nodes.begin(); Size peptide_counter = 0; for (map<String, set<Size> >::iterator i = peptides.begin(); i != peptides.end(); ++i, ++pep_node, ++peptide_counter) { pep_node->index = peptide_counter; pep_node->traversed = false; pep_node->sequence = (*i).first; pep_node->experimental = false; for (set<Size>::iterator j = (*i).second.begin(); j != (*i).second.end(); ++j) { pep_node->proteins.push_back(&protein_nodes[*j]); protein_nodes[*j].peptides.push_back(&*pep_node); } } //ISDGraph constructed Size isd_group_counter = 0; Size i = 0; for (vector<ProteinEntry>::iterator prot_node = protein_nodes.begin(); prot_node != protein_nodes.end(); ++prot_node) { ++i; if (!prot_node->traversed) { prot_node->traversed = true; ISDGroup group; group.index = isd_group_counter; ++isd_group_counter; traversProtein_(&*prot_node, group); isd_groups.push_back(group); } } }
void DigestSimulation::digest(SimTypes::FeatureMapSim& feature_map) { LOG_INFO << "Digest Simulation ... started" << std::endl; if ((String)param_.getValue("enzyme") == String("none")) { //peptides = proteins; // convert all proteins into peptides // for each protein_hit in the FeatureMap for (std::vector<ProteinHit>::iterator protein_hit = feature_map.getProteinIdentifications()[0].getHits().begin(); protein_hit != feature_map.getProteinIdentifications()[0].getHits().end(); ++protein_hit) { // generate a PeptideHit hit with the correct link to the protein PeptideHit pep_hit(1.0, 1, 0, AASequence::fromString(protein_hit->getSequence())); PeptideEvidence pe; pe.setProteinAccession(protein_hit->getAccession()); pep_hit.addPeptideEvidence(pe); // add the PeptideHit to the PeptideIdentification PeptideIdentification pep_id; pep_id.insertHit(pep_hit); // generate Feature with correct Intensity and corresponding PeptideIdentification Feature f; f.getPeptideIdentifications().push_back(pep_id); f.setIntensity(protein_hit->getMetaValue("intensity")); // copy intensity meta-values and additional annotations from Protein to Feature StringList keys; protein_hit->getKeys(keys); for (StringList::const_iterator it_key = keys.begin(); it_key != keys.end(); ++it_key) { f.setMetaValue(*it_key, protein_hit->getMetaValue(*it_key)); } // add Feature to SimTypes::FeatureMapSim feature_map.push_back(f); } return; } UInt min_peptide_length = param_.getValue("min_peptide_length"); bool use_log_model = param_.getValue("model") == "trained" ? true : false; UInt missed_cleavages = param_.getValue("model_naive:missed_cleavages"); double cleave_threshold = param_.getValue("model_trained:threshold"); EnzymaticDigestion digestion; digestion.setEnzyme(digestion.getEnzymeByName((String)param_.getValue("enzyme"))); digestion.setLogModelEnabled(use_log_model); digestion.setLogThreshold(cleave_threshold); std::vector<AASequence> digestion_products; // keep track of generated features std::map<AASequence, Feature> generated_features; // Iterate through ProteinHits in the FeatureMap and digest them for (std::vector<ProteinHit>::iterator protein_hit = feature_map.getProteinIdentifications()[0].getHits().begin(); protein_hit != feature_map.getProteinIdentifications()[0].getHits().end(); ++protein_hit) { // determine abundance of each digestion product (this is quite long now...) // we assume that each digestion product will have the same abundance // note: missed cleavages reduce overall abundance as they combine two (or more) single peptides // how many "atomic"(i.e. non-cleavable) peptides are created? digestion.setMissedCleavages(0); Size complete_digest_count = digestion.peptideCount(AASequence::fromString(protein_hit->getSequence())); // compute average number of "atomic" peptides summed from all digestion products Size number_atomic_whole = 0; Size number_of_digestion_products = 0; for (Size i = 0; (i <= missed_cleavages) && (i < complete_digest_count); ++i) { number_atomic_whole += (complete_digest_count - i) * (i + 1); number_of_digestion_products += (complete_digest_count - i); } // mean number of "atomic" peptides per digestion product is now: number_atomic_whole / number_of_digestion_products // -> thus abundance of a digestion product is: #proteins / avg#of"atomic"peptides // i.e.: protein->second / (number_atomic_whole / number_of_digestion_products) Map<String, SimTypes::SimIntensityType> intensities; StringList keys; protein_hit->getKeys(keys); for (StringList::const_iterator it_key = keys.begin(); it_key != keys.end(); ++it_key) { if (!it_key->hasPrefix("intensity")) continue; intensities[*it_key] = std::max(SimTypes::SimIntensityType(1), SimTypes::SimIntensityType(protein_hit->getMetaValue(*it_key)) * SimTypes::SimIntensityType(number_of_digestion_products) / SimTypes::SimIntensityType(number_atomic_whole)); // order changed for numeric stability } // do real digest digestion.setMissedCleavages(missed_cleavages); digestion.digest(AASequence::fromString(protein_hit->getSequence()), digestion_products); for (std::vector<AASequence>::const_iterator dp_it = digestion_products.begin(); dp_it != digestion_products.end(); ++dp_it) { if (dp_it->size() < min_peptide_length) continue; // sum equal peptide's intensities // *dp_it -> peptide // If we see this Peptide the first time -> generate corresponding feature if (generated_features.count(*dp_it) == 0) { PeptideHit pep_hit(1.0, 1, 0, *dp_it); PeptideIdentification pep_id; pep_id.insertHit(pep_hit); // create feature Feature f; f.getPeptideIdentifications().push_back(pep_id); // set intensity to 0 to avoid problems when summing up f.setIntensity(0.0); // copy all non-intensity meta values StringList lkeys; protein_hit->getKeys(lkeys); for (StringList::iterator key = lkeys.begin(); key != lkeys.end(); ++key) { if (!key->hasPrefix("intensity")) { f.setMetaValue(*key, protein_hit->getMetaValue(*key)); } } // insert into map generated_features.insert(std::make_pair(*dp_it, f)); } // sum up intensity values generated_features[*dp_it].setIntensity(generated_features[*dp_it].getIntensity() + intensities["intensity"]); // ... same for other intensities (iTRAQ...) for (Map<String, SimTypes::SimIntensityType>::const_iterator it_other = intensities.begin(); it_other != intensities.end(); ++it_other) { if (!generated_features[*dp_it].metaValueExists(it_other->first)) { generated_features[*dp_it].setMetaValue(it_other->first, it_other->second); } else { generated_features[*dp_it].setMetaValue(it_other->first, SimTypes::SimIntensityType(generated_features[*dp_it].getMetaValue(it_other->first)) + it_other->second); } } // add current protein accession // existing proteins accessions ... std::set<String> protein_accessions = generated_features[*dp_it].getPeptideIdentifications()[0].getHits()[0].extractProteinAccessions(); // ... add accession of current protein protein_accessions.insert(protein_hit->getAccession()); std::vector<PeptideIdentification> pep_idents = generated_features[*dp_it].getPeptideIdentifications(); std::vector<PeptideHit> pep_hits = pep_idents[0].getHits(); for (std::set<String>::const_iterator s_it = protein_accessions.begin(); s_it != protein_accessions.end(); ++s_it) { PeptideEvidence pe; pe.setProteinAccession(*s_it); pep_hits[0].addPeptideEvidence(pe); } pep_idents[0].setHits(pep_hits); generated_features[*dp_it].setPeptideIdentifications(pep_idents); } } // add generated_features to FeatureMap for (std::map<AASequence, Feature>::iterator it_gf = generated_features.begin(); it_gf != generated_features.end(); ++it_gf) { // round up intensity (it_gf->second).setIntensity(ceil((it_gf->second).getIntensity())); feature_map.push_back(it_gf->second); } }
ExitCodes main_(int, const char **) { vector<ProteinIdentification> protein_identifications; vector<PeptideIdentification> identifications; PeptideIdentification peptide_identification; DateTime date_time = DateTime::now(); String date_time_string = date_time.get(); peptide_identification.setIdentifier("In-silico_digestion" + date_time_string); ProteinIdentification protein_identification; protein_identifications.push_back(ProteinIdentification()); //------------------------------------------------------------- // parsing parameters //------------------------------------------------------------- String inputfile_name = getStringOption_("in"); String outputfile_name = getStringOption_("out"); //input file type FileHandler fh; FileTypes::Type out_type = FileTypes::nameToType(getStringOption_("out_type")); if (out_type == FileTypes::UNKNOWN) { out_type = fh.getTypeByFileName(outputfile_name); writeDebug_(String("Output file type: ") + FileTypes::typeToName(out_type), 2); } if (out_type == FileTypes::UNKNOWN) { LOG_ERROR << ("Error: Could not determine output file type!") << std::endl; return PARSE_ERROR; } Size min_size = getIntOption_("min_length"); Size max_size = getIntOption_("max_length"); Size missed_cleavages = getIntOption_("missed_cleavages"); bool has_FASTA_output = (out_type == FileTypes::FASTA); //------------------------------------------------------------- // reading input //------------------------------------------------------------- std::vector<FASTAFile::FASTAEntry> protein_data; FASTAFile().load(inputfile_name, protein_data); //------------------------------------------------------------- // calculations //------------------------------------------------------------- // This should be updated if more cleavage enzymes are available ProteinIdentification::SearchParameters search_parameters; String enzyme = getStringOption_("enzyme"); EnzymaticDigestion digestor; if (enzyme == "Trypsin") { digestor.setEnzyme(EnzymaticDigestion::ENZYME_TRYPSIN); digestor.setMissedCleavages(missed_cleavages); search_parameters.enzyme = ProteinIdentification::TRYPSIN; } else if (enzyme == "none") { search_parameters.enzyme = ProteinIdentification::NO_ENZYME; } else { LOG_ERROR << "Internal error in Digestor, when evaluating enzyme name! Please report this!" << std::endl; return ILLEGAL_PARAMETERS; } vector<String> protein_accessions(1); PeptideHit temp_peptide_hit; protein_identifications[0].setSearchParameters(search_parameters); protein_identifications[0].setDateTime(date_time); protein_identifications[0].setSearchEngine("In-silico digestion"); protein_identifications[0].setIdentifier("In-silico_digestion" + date_time_string); std::vector<FASTAFile::FASTAEntry> all_peptides; Size dropped_bylength(0); // stats for removing candidates for (Size i = 0; i < protein_data.size(); ++i) { if (!has_FASTA_output) { protein_accessions[0] = protein_data[i].identifier; ProteinHit temp_protein_hit; temp_protein_hit.setSequence(protein_data[i].sequence); temp_protein_hit.setAccession(protein_accessions[0]); protein_identifications[0].insertHit(temp_protein_hit); temp_peptide_hit.setProteinAccessions(protein_accessions); } vector<AASequence> temp_peptides; if (enzyme == "none") { temp_peptides.push_back(AASequence(protein_data[i].sequence)); } else { digestor.digest(AASequence(protein_data[i].sequence), temp_peptides); } for (Size j = 0; j < temp_peptides.size(); ++j) { if ((temp_peptides[j].size() >= min_size) && (temp_peptides[j].size() <= max_size)) { if (!has_FASTA_output) { temp_peptide_hit.setSequence(temp_peptides[j]); peptide_identification.insertHit(temp_peptide_hit); identifications.push_back(peptide_identification); peptide_identification.setHits(std::vector<PeptideHit>()); // clear } else // for FASTA file output { FASTAFile::FASTAEntry pep(protein_data[i].identifier, protein_data[i].description, temp_peptides[j].toString()); all_peptides.push_back(pep); } } else { ++dropped_bylength; } } } //------------------------------------------------------------- // writing output //------------------------------------------------------------- if (has_FASTA_output) { FASTAFile().store(outputfile_name, all_peptides); } else { IdXMLFile().store(outputfile_name, protein_identifications, identifications); } Size pep_remaining_count = (has_FASTA_output ? all_peptides.size() : identifications.size()); LOG_INFO << "Statistics:\n" << " total #peptides after digestion: " << pep_remaining_count + dropped_bylength << "\n" << " removed #peptides (length restrictions): " << dropped_bylength << "\n" << " remaining #peptides: " << pep_remaining_count << std::endl; return EXECUTION_OK; }