int
LOCA::Epetra::AugmentedOp::blockMap2PointMap(const Epetra_BlockMap& BlockMap,
				    Epetra_Map*& PointMap) const
{
  // Generate an Epetra_Map that has the same number and distribution of points
  // as the input Epetra_BlockMap object.  The global IDs for the output PointMap
  // are computed by using the MaxElementSize of the BlockMap.  For variable block
  // sizes this will create gaps in the GID space, but that is OK for Epetra_Maps.

  int MaxElementSize = BlockMap.MaxElementSize();
  int PtNumMyElements = BlockMap.NumMyPoints();
  int * PtMyGlobalElements = 0;
  if (PtNumMyElements>0) PtMyGlobalElements = new int[PtNumMyElements];

  int NumMyElements = BlockMap.NumMyElements();

  int curID = 0;
  for (int i=0; i<NumMyElements; i++) {
    int StartID = BlockMap.GID(i)*MaxElementSize;
    int ElementSize = BlockMap.ElementSize(i);
    for (int j=0; j<ElementSize; j++) PtMyGlobalElements[curID++] = StartID+j;
  }
  assert(curID==PtNumMyElements); // Sanity test

  PointMap = new Epetra_Map(-1, PtNumMyElements, PtMyGlobalElements, BlockMap.IndexBase(), BlockMap.Comm());

  if (PtNumMyElements>0) delete [] PtMyGlobalElements;

  if (!BlockMap.PointSameAs(*PointMap)) {EPETRA_CHK_ERR(-1);} // Maps not compatible
  return(0);
}
//=========================================================================
int Ifpack_CrsRiluk::BlockMap2PointMap(const Epetra_BlockMap & BlockMap, Teuchos::RefCountPtr<Epetra_Map>* PointMap) {
	// Generate an Epetra_Map that has the same number and distribution of points
	// as the input Epetra_BlockMap object.  The global IDs for the output PointMap
	// are computed by using the MaxElementSize of the BlockMap.  For variable block
	// sizes this will create gaps in the GID space, but that is OK for Epetra_Maps.

	int MaxElementSize = BlockMap.MaxElementSize();
	int PtNumMyElements = BlockMap.NumMyPoints();
	vector<int> PtMyGlobalElements;
	if (PtNumMyElements>0) PtMyGlobalElements.resize(PtNumMyElements);

	int NumMyElements = BlockMap.NumMyElements();

	int curID = 0;
	for (int i=0; i<NumMyElements; i++) {
		int StartID = BlockMap.GID(i)*MaxElementSize;
		int ElementSize = BlockMap.ElementSize(i);
		for (int j=0; j<ElementSize; j++) PtMyGlobalElements[curID++] = StartID+j;
	}
	assert(curID==PtNumMyElements); // Sanity test

	(*PointMap) = Teuchos::rcp( new Epetra_Map(-1, PtNumMyElements, &PtMyGlobalElements[0], BlockMap.IndexBase(), BlockMap.Comm()) );

	if (!BlockMap.PointSameAs(*(*PointMap))) {EPETRA_CHK_ERR(-1);} // Maps not compatible
  return(0);
}
Esempio n. 3
0
Teuchos::RCP<Epetra_Map> mapDowncast(const Epetra_BlockMap &in)
{
  if (in.ConstantElementSize() && in.ElementSize() == 1) {
    return Teuchos::rcp(new Epetra_Map(static_cast<const Epetra_Map &>(in)));
  }
  return Teuchos::null;
}
int BlockMapToHandle(FILE * handle, const Epetra_BlockMap & map) {

  const Epetra_Comm & comm = map.Comm();
  int numProc = comm.NumProc();
  bool doSizes = !map.ConstantElementSize();

  if (numProc==1) {
    int * myElements = map.MyGlobalElements();
    int * elementSizeList = 0;
    if (doSizes) elementSizeList = map.ElementSizeList();
    return(writeBlockMap(handle, map.NumGlobalElements(), myElements, elementSizeList, doSizes));
  }

  int numRows = map.NumMyElements();
  
  Epetra_Map allGidsMap(-1, numRows, 0,comm);
  
  Epetra_IntVector allGids(allGidsMap);
  for (int i=0; i<numRows; i++) allGids[i] = map.GID(i);
  
  Epetra_IntVector allSizes(allGidsMap);
  for (int i=0; i<numRows; i++) allSizes[i] = map.ElementSize(i);
  
  // Now construct a Map on PE 0 by strip-mining the rows of the input matrix map.
  int numChunks = numProc;
  int stripSize = allGids.GlobalLength()/numChunks;
  int remainder = allGids.GlobalLength()%numChunks;
  int curStart = 0;
  int curStripSize = 0;
  Epetra_IntSerialDenseVector importGidList;
  Epetra_IntSerialDenseVector importSizeList;
  if (comm.MyPID()==0) {
    importGidList.Size(stripSize+1); // Set size of vector to max needed
    if (doSizes) importSizeList.Size(stripSize+1); // Set size of vector to max needed
  }
  for (int i=0; i<numChunks; i++) {
    if (comm.MyPID()==0) { // Only PE 0 does this part
      curStripSize = stripSize;
      if (i<remainder) curStripSize++; // handle leftovers
      for (int j=0; j<curStripSize; j++) importGidList[j] = j + curStart;
      curStart += curStripSize;
    }
    // The following import map will be non-trivial only on PE 0.
    Epetra_Map importGidMap(-1, curStripSize, importGidList.Values(), 0, comm);
    Epetra_Import gidImporter(importGidMap, allGidsMap);
    
    Epetra_IntVector importGids(importGidMap);
    if (importGids.Import(allGids, gidImporter, Insert)) return(-1); 
    Epetra_IntVector importSizes(importGidMap);
    if (doSizes) if (importSizes.Import(allSizes, gidImporter, Insert)) return(-1); 
    
    // importGids (and importSizes, if non-trivial block map)
    // now have a list of GIDs (and sizes, respectively) for the current strip of map.
    
    int * myElements = importGids.Values();
    int * elementSizeList = 0;
    if (doSizes) elementSizeList = importSizes.Values();
    // Finally we are ready to write this strip of the map to file
    writeBlockMap(handle, importGids.MyLength(), myElements, elementSizeList, doSizes);
  }
  return(0);
}
Esempio n. 5
0
int checkmap(Epetra_BlockMap & Map, int NumGlobalElements, int NumMyElements, 
	     int *MyGlobalElements, int ElementSize, int * ElementSizeList,
	     int NumGlobalPoints, int NumMyPoints,
	     int IndexBase, Epetra_Comm& Comm,
	     bool DistributedGlobal,
	     bool IsOneToOne)
{

  int i, ierr=0, forierr=0;// forierr is used in for loops, then is tested
  // after for loop completes to see if it is non zero - potentially prevents
  // thousands of error messages

  if (ElementSizeList==0)
    {
      EPETRA_TEST_ERR(!Map.ConstantElementSize(),ierr);
    }
  else
    EPETRA_TEST_ERR(Map.ConstantElementSize(),ierr);
  
  EPETRA_TEST_ERR(DistributedGlobal!=Map.DistributedGlobal(),ierr);

  EPETRA_TEST_ERR(IsOneToOne!=Map.IsOneToOne(),ierr);

  int *MyElementSizeList;

  if (ElementSizeList==0)
    {
      EPETRA_TEST_ERR(Map.ElementSize()!=ElementSize,ierr);
      
      MyElementSizeList = new int[NumMyElements];
      
      EPETRA_TEST_ERR(Map.ElementSizeList(MyElementSizeList)!=0,ierr);
      forierr = 0;
      for (i=0; i<NumMyElements; i++) 
        forierr += MyElementSizeList[i]!=ElementSize;
      EPETRA_TEST_ERR(forierr,ierr);

      EPETRA_TEST_ERR(Map.MaxMyElementSize() != ElementSize,ierr);
      EPETRA_TEST_ERR(Map.MinMyElementSize() != ElementSize,ierr);
    }
  else
    {
      MyElementSizeList = new int[NumMyElements];
      EPETRA_TEST_ERR(Map.ElementSizeList(MyElementSizeList)!=0,ierr);
      int MaxSize = MyElementSizeList[0];
      int MinSize = MyElementSizeList[0];
      forierr=0;
      for (i=0; i<NumMyElements; i++) {
        forierr += MyElementSizeList[i]!=ElementSizeList[i];
	if (MyElementSizeList[i] > MaxSize)
	  MaxSize = MyElementSizeList[i];
	if (MyElementSizeList[i] < MinSize)
	  MinSize = MyElementSizeList[i];

	// Test ElementSize(int LID) method	

	forierr += Map.ElementSize(Map.LID(MyGlobalElements[i])) != ElementSizeList[i];
      }
      EPETRA_TEST_ERR(forierr,ierr);
   
      EPETRA_TEST_ERR(MaxSize !=Map.MaxMyElementSize(),ierr);
      EPETRA_TEST_ERR(MinSize !=Map.MinMyElementSize(),ierr);
    }

  const Epetra_Comm & Comm1 = Map.Comm();

  EPETRA_TEST_ERR(Comm1.NumProc()!=Comm.NumProc(),ierr);

  EPETRA_TEST_ERR(Comm1.MyPID()!=Comm.MyPID(),ierr);

  EPETRA_TEST_ERR(Map.IndexBase()!=IndexBase,ierr);

  EPETRA_TEST_ERR(!Map.LinearMap() && MyGlobalElements==0,ierr);

  EPETRA_TEST_ERR(Map.LinearMap() && MyGlobalElements!=0,ierr);

  EPETRA_TEST_ERR(Map.MaxAllGID()!=NumGlobalElements-1+IndexBase,ierr);

  EPETRA_TEST_ERR(Map.MaxElementSize()!=ElementSize,ierr);

  int MaxLID = Map.MaxLID();
  EPETRA_TEST_ERR(MaxLID!=NumMyElements-1,ierr);

  int MaxMyGID = (Comm.MyPID()+1)*NumMyElements-1+IndexBase;
  if (Comm.MyPID()>2) MaxMyGID+=3;
  if (!DistributedGlobal) MaxMyGID = NumMyElements-1+IndexBase;
  EPETRA_TEST_ERR(Map.MaxMyGID()!=MaxMyGID,ierr);

  EPETRA_TEST_ERR(Map.MinAllGID()!=IndexBase,ierr);

  if (ElementSizeList==0)
    {
      EPETRA_TEST_ERR(Map.MinElementSize()!=ElementSize,ierr);
    }
  else EPETRA_TEST_ERR(Map.MinElementSize()!=2,ierr);

  int MinLID = Map.MinLID();
  EPETRA_TEST_ERR(MinLID!=0,ierr);

  int MinMyGID = Comm.MyPID()*NumMyElements+IndexBase;
  if (Comm.MyPID()>2) MinMyGID+=3;
  if (!DistributedGlobal) MinMyGID = IndexBase; // Not really needed
  EPETRA_TEST_ERR(Map.MinMyGID()!=MinMyGID,ierr);

  int * MyGlobalElements1 = new int[NumMyElements];
  EPETRA_TEST_ERR(Map.MyGlobalElements(MyGlobalElements1)!=0,ierr);
  
  forierr = 0;
  if (MyGlobalElements==0) {
    for (i=0; i<NumMyElements; i++) 
      forierr += MyGlobalElements1[i]!=MinMyGID+i;
    EPETRA_TEST_ERR(forierr,ierr);
  }
  else {
    for (i=0; i<NumMyElements; i++)
      forierr += MyGlobalElements[i]!=MyGlobalElements1[i];
    EPETRA_TEST_ERR(forierr,ierr);
  }
  EPETRA_TEST_ERR(Map.NumGlobalElements()!=NumGlobalElements,ierr);
  
  EPETRA_TEST_ERR(Map.NumGlobalPoints()!=NumGlobalPoints,ierr);
  
  EPETRA_TEST_ERR(Map.NumMyElements()!=NumMyElements,ierr);  

  EPETRA_TEST_ERR(Map.NumMyPoints()!=NumMyPoints,ierr);

  int MaxMyGID2 = Map.GID(Map.LID(MaxMyGID));
  EPETRA_TEST_ERR(MaxMyGID2 != MaxMyGID,ierr);
  int MaxLID2 = Map.LID(Map.GID(MaxLID));
  EPETRA_TEST_ERR(MaxLID2 != MaxLID,ierr);

  EPETRA_TEST_ERR(Map.GID(MaxLID+1) != IndexBase-1,ierr);// MaxLID+1 doesn't exist
  EPETRA_TEST_ERR(Map.LID(MaxMyGID+1) != -1,ierr);// MaxMyGID+1 doesn't exist or is on a different processor

  EPETRA_TEST_ERR(!Map.MyGID(MaxMyGID),ierr);
  EPETRA_TEST_ERR(Map.MyGID(MaxMyGID+1),ierr);

  EPETRA_TEST_ERR(!Map.MyLID(MaxLID),ierr);
  EPETRA_TEST_ERR(Map.MyLID(MaxLID+1),ierr);

  EPETRA_TEST_ERR(!Map.MyGID(Map.GID(MaxLID)),ierr);
  EPETRA_TEST_ERR(Map.MyGID(Map.GID(MaxLID+1)),ierr);

  EPETRA_TEST_ERR(!Map.MyLID(Map.LID(MaxMyGID)),ierr);
  EPETRA_TEST_ERR(Map.MyLID(Map.LID(MaxMyGID+1)),ierr);

  // Test the FirstPointInElementList methods, begin by testing that they produce identical results
  int * FirstPointInElementList = new int[NumMyElements+1];
  Map.FirstPointInElementList(FirstPointInElementList);
  int * FirstPointInElementList1 = Map.FirstPointInElementList();
  forierr = 0;
  for (i=0; i<=NumMyElements; i++)
    forierr += FirstPointInElementList[i]!=FirstPointInElementList1[i];
  EPETRA_TEST_ERR(forierr,ierr);
  // Now make sure values are correct
  forierr = 0;
  if (Map.ConstantElementSize()) {
    for (i=0; i<=NumMyElements; i++)
      forierr += FirstPointInElementList1[i]!=(i*ElementSize);// NOTE:FirstPointInElement[NumMyElements] is not the first point of an element
    EPETRA_TEST_ERR(forierr,ierr);
  }
  else {
    int FirstPoint = 0;
    for (i=0; i<NumMyElements; i++) {
      forierr += FirstPointInElementList1[i]!=FirstPoint;
      FirstPoint += ElementSizeList[i];
    }
    EPETRA_TEST_ERR(forierr,ierr);
    EPETRA_TEST_ERR(FirstPointInElementList[NumMyElements] != NumMyPoints,ierr);// The last entry in the array = the total number of Points on the proc
  }
  delete [] FirstPointInElementList;

  // Declare some variables for the FindLocalElementID test
  int ElementID, Offset;
  // Test the PointToElementList methods, begin by testing that they produce identical results
  int * PointToElementList = new int[NumMyPoints];
  Map.PointToElementList(PointToElementList);
  int * PointToElementList1 = Map.PointToElementList();
  forierr = 0;
  for (i=0; i<NumMyPoints; i++)
    forierr += PointToElementList1[i] != PointToElementList[i];
  EPETRA_TEST_ERR(forierr,ierr);
  //Now make sure values are correct
  forierr=0;
  if (Map.ConstantElementSize()) {
    for (i=0; i<NumMyElements; i++)
      for (int j=0; j<ElementSize; j++) {
	forierr += PointToElementList[i*ElementSize+j] != i;
	// Test FindLocalElementID method
	Map.FindLocalElementID(i*ElementSize+j,ElementID,Offset);
	forierr += ElementID != i || Offset != j;
      }
    EPETRA_TEST_ERR(forierr,ierr);
  }
  else {
    int MyPointTot = 0; // Keep track of total number of points in all previously completely checked elements
    for (i=0; i<NumMyElements; i++) {
      for (int j=0; j<ElementSizeList[i]; j++) {
	forierr += PointToElementList[MyPointTot+j] != i;
	// Test FindLocalElementID method
	Map.FindLocalElementID(MyPointTot+j,ElementID,Offset);
	forierr += ElementID != i || Offset != j;
      }
      MyPointTot += ElementSizeList[i];
    }
    EPETRA_TEST_ERR(forierr,ierr);
  }
  delete [] PointToElementList;

  // Check RemoteIDList function that includes a parameter for size
  // Get some GIDs off of each processor to test
  int TotalNumEle, NumElePerProc, NumProc = Comm.NumProc();
  int MinNumEleOnProc;
  int NumMyEle = Map.NumMyElements();
  Comm.MinAll(&NumMyEle,&MinNumEleOnProc,1);
  if (MinNumEleOnProc > 5) NumElePerProc = 6;
  else NumElePerProc = MinNumEleOnProc;
  if (NumElePerProc > 0) {
    TotalNumEle = NumElePerProc*NumProc;
    int * MyGIDlist = new int[NumElePerProc];
    int * GIDlist = new int[TotalNumEle];
    int * PIDlist = new int[TotalNumEle];
    int * LIDlist = new int[TotalNumEle];
    int * SizeList = new int[TotalNumEle];
    for (i=0; i<NumElePerProc; i++)
	  MyGIDlist[i] = MyGlobalElements1[i];
    Comm.GatherAll(MyGIDlist,GIDlist,NumElePerProc);// Get a few values from each proc
    Map.RemoteIDList(TotalNumEle, GIDlist, PIDlist, LIDlist, SizeList);
    int MyPID= Comm.MyPID();
    forierr = 0;
    for (i=0; i<TotalNumEle; i++) {
      if (Map.MyGID(GIDlist[i])) {
	forierr += PIDlist[i] != MyPID;
	forierr += !Map.MyLID(Map.LID(GIDlist[i])) || Map.LID(GIDlist[i]) != LIDlist[i] || Map.GID(LIDlist[i]) != GIDlist[i];
	forierr += SizeList[i] != Map.ElementSize(LIDlist[i]);
      }
      else {
	forierr += PIDlist[i] == MyPID; // If MyGID comes back false, the PID listed should be that of another proc
      }
    }
    EPETRA_TEST_ERR(forierr,ierr);

    delete [] MyGIDlist;
    delete [] GIDlist;
    delete [] PIDlist;
    delete [] LIDlist;
    delete [] SizeList;
  }

  delete [] MyGlobalElements1;
  delete [] MyElementSizeList;

  // Check RemoteIDList function (assumes all maps are linear, even if not stored that way)

  if (Map.LinearMap()) {

    int * GIDList = new int[3];
    int * PIDList = new int[3];
    int * LIDList = new int[3];
    int MyPID = Map.Comm().MyPID();
  
    int NumIDs = 0;
    //GIDList[NumIDs++] = Map.MaxAllGID()+1; // Should return -1 for both PID and LID
    if (Map.MinMyGID()-1>=Map.MinAllGID()) GIDList[NumIDs++] = Map.MinMyGID()-1;
    if (Map.MaxMyGID()+1<=Map.MaxAllGID()) GIDList[NumIDs++] = Map.MaxMyGID()+1;

    Map.RemoteIDList(NumIDs, GIDList, PIDList, LIDList);

    NumIDs = 0;

    //EPETRA_TEST_ERR(!(PIDList[NumIDs]==-1),ierr);
    //EPETRA_TEST_ERR(!(LIDList[NumIDs++]==-1),ierr);

    if (Map.MinMyGID()-1>=Map.MinAllGID()) EPETRA_TEST_ERR(!(PIDList[NumIDs++]==MyPID-1),ierr);
    if (Map.MaxMyGID()+1<=Map.MaxAllGID()) EPETRA_TEST_ERR(!(PIDList[NumIDs]==MyPID+1),ierr);
    if (Map.MaxMyGID()+1<=Map.MaxAllGID()) EPETRA_TEST_ERR(!(LIDList[NumIDs++]==0),ierr);

    delete [] GIDList;
    delete [] PIDList;
    delete [] LIDList;


  }
  return (ierr);
}
//==============================================================================
bool Epetra_BlockMap::SameAs(const Epetra_BlockMap & Map) const {

  // Quickest test: See if both maps share an inner data class
  if (this->BlockMapData_ == Map.BlockMapData_) 
    return(true);

  if(!GlobalIndicesTypeMatch(Map))
    return(false);

  // Next check other global properties that are easy global attributes
  if (BlockMapData_->MinAllGID_ != Map.MinAllGID64() ||
      BlockMapData_->MaxAllGID_ != Map.MaxAllGID64() ||
      BlockMapData_->NumGlobalElements_ != Map.NumGlobalElements64() ||
      BlockMapData_->IndexBase_ != Map.IndexBase()) 
    return(false);
  
  // Last possible global check for constant element sizes
  if (BlockMapData_->ConstantElementSize_ && BlockMapData_->ElementSize_!=Map.ElementSize()) 
    return(false);

  // If we get this far, we need to check local properties and then check across
  // all processors to see if local properties are all true
 
  int numMyElements = BlockMapData_->NumMyElements_;

  int MySameMap = 1; // Assume not needed
  
  // First check if number of element is the same in each map
  if (numMyElements != Map.NumMyElements()) MySameMap = 0;
  
  // If numMyElements is the same, check to see that list of GIDs is the same
  if (MySameMap==1) {
    if (LinearMap() && Map.LinearMap() ) {
      // For linear maps, just need to check whether lower bound is the same
      if (MinMyGID64() != Map.MinMyGID64() )
        MySameMap = 0;
    }
    else {
      for (int i = 0; i < numMyElements; i++) {
        if (GID64(i) != Map.GID64(i)) {
          MySameMap = 0;
          break;
        }
      }
    }
  }
//    for (int i = 0; i < numMyElements; i++)
//      if (GID64(i) != Map.GID64(i)) MySameMap = 0;

  // If GIDs are the same, check to see element sizes are the same
  if (MySameMap==1 && !BlockMapData_->ConstantElementSize_) {
    int * sizeList1 = ElementSizeList();
    int * sizeList2 = Map.ElementSizeList();
    for (int i = 0; i < numMyElements; i++) if (sizeList1[i] != sizeList2[i]) MySameMap=0;
  }
  // Now get min of MySameMap across all processors

  int GlobalSameMap = 0;
  int err = Comm().MinAll(&MySameMap, &GlobalSameMap, 1);
  assert(err==0);

  return(GlobalSameMap==1);
}
Esempio n. 7
-8
int MultiVectorTests(const Epetra_BlockMap & Map, int NumVectors, bool verbose)
{
  const Epetra_Comm & Comm = Map.Comm();
  int ierr = 0, i;
  double *residual = new double[NumVectors];

  Epetra_BLAS BLAS;
  /* get number of processors and the name of this processor */

  // int NumProc = Comm.getNumProc();
  int MyPID   = Comm.MyPID();

  // Construct MultiVectors

  Epetra_MultiVector A(Map, NumVectors);
  Epetra_MultiVector sqrtA(Map, NumVectors);
  Epetra_MultiVector B(Map, NumVectors);
  Epetra_MultiVector C(Map, NumVectors);
  Epetra_MultiVector C_alphaA(Map, NumVectors);
  Epetra_MultiVector C_alphaAplusB(Map, NumVectors);
  Epetra_MultiVector C_plusB(Map, NumVectors);
  Epetra_MultiVector Weights(Map, NumVectors);

  // Construct double vectors
  double *dotvec_AB   = new double[NumVectors];
  double *norm1_A     = new double[NumVectors];
  double *norm2_sqrtA = new double[NumVectors];
  double *norminf_A = new double[NumVectors];
  double *normw_A = new double[NumVectors];
  double *minval_A = new double[NumVectors];
  double *maxval_A = new double[NumVectors];
  double *meanval_A = new double[NumVectors];

  // Generate data


  EPETRA_TEST_ERR(C.Random(),ierr); // Fill C with random numbers.
  double alpha = 2.0;
  BuildMultiVectorTests (C,alpha, A, sqrtA, B, C_alphaA, C_alphaAplusB,
			     C_plusB, dotvec_AB, norm1_A, norm2_sqrtA, norminf_A,
			     normw_A, Weights, minval_A, maxval_A, meanval_A);

  int err = 0;
  if (verbose) cout << "XXXXX Testing alpha * A     ";
  // Test alpha*A
  Epetra_MultiVector alphaA(A); // Copy of A
  EPETRA_TEST_ERR(alphaA.Scale(alpha),err);
  EPETRA_TEST_ERR(alphaA.Update(-1.0, C_alphaA, 1.0),err);
  EPETRA_TEST_ERR(alphaA.Norm2(residual),err);

  if (err) ierr += err;
  else {
    EPETRA_TEST_ERR(BadResidual(verbose,residual, NumVectors),ierr);
  }

  err = 0;
  if (verbose) cout << "XXXXX Testing C = alpha * A + B      ";
  // Test alpha*A + B
  Epetra_MultiVector alphaAplusB(A); // Copy of A
  EPETRA_TEST_ERR(alphaAplusB.Update(1.0, B, alpha, A, 0.0),err);
  EPETRA_TEST_ERR(alphaAplusB.Update(-1.0, C_alphaAplusB, 1.0),err);
  EPETRA_TEST_ERR(alphaAplusB.Norm2(residual),err);

  if (err) ierr += err;
  else {
    EPETRA_TEST_ERR(BadResidual(verbose,residual, NumVectors),ierr);
  }

  err = 0;
  if (verbose) cout << "XXXXX Testing C += B      ";
  // Test + B
  Epetra_MultiVector plusB(C); // Copy of C
  EPETRA_TEST_ERR(plusB.Update(1.0, B, 1.0),err);
  EPETRA_TEST_ERR(plusB.Update(-1.0, C_plusB, 1.0),err);
  EPETRA_TEST_ERR(plusB.Norm2(residual),err);

  if (err) ierr += err;
  else {
    EPETRA_TEST_ERR(BadResidual(verbose,residual, NumVectors),ierr);
  }

  err = 0;
  if (verbose) cout << "XXXXX Testing A.dotProd(B)     ";
  // Test A.dotvec(B)
  double *dotvec = residual;
  EPETRA_TEST_ERR(A.Dot(B,dotvec),err);
  BLAS.AXPY(NumVectors,-1.0,dotvec_AB,dotvec);

  if (err) ierr += err;
  else {
    EPETRA_TEST_ERR(BadResidual(verbose,residual, NumVectors),ierr);
  }

  err = 0;
  if (verbose) cout << "XXXXX Testing norm1_A      ";
  // Test A.norm1()
  double *norm1 = residual;
  EPETRA_TEST_ERR(A.Norm1(norm1),err);
  BLAS.AXPY(NumVectors,-1.0,norm1_A,norm1);

  if (err) ierr += err;
  else {
    EPETRA_TEST_ERR(BadResidual(verbose,residual, NumVectors),ierr);
  }

  err = 0;
  if (verbose) cout << "XXXXX Testing norm2_sqrtA     ";
  // Test sqrtA.norm2()
  double *norm2 = residual;
  EPETRA_TEST_ERR(sqrtA.Norm2(norm2),err);
  BLAS.AXPY(NumVectors,-1.0,norm2_sqrtA,norm2);

  if (err) ierr += err;
  else {
    EPETRA_TEST_ERR(BadResidual(verbose,residual, NumVectors),ierr);
  }

  err = 0;
  if (verbose) cout << "XXXXX Testing norminf_A     ";
  // Test A.norminf()
  double *norminf = residual;
  EPETRA_TEST_ERR(A.NormInf(norminf),err);
  BLAS.AXPY(NumVectors,-1.0,norminf_A,norminf);

  if (err) ierr += err;
  else {
    EPETRA_TEST_ERR(BadResidual(verbose,residual, NumVectors),ierr);
  }

  err = 0;
  if (verbose) cout << "XXXXX Testing normw_A     ";
  // Test A.NormWeighted()
  double *normw = residual;
  EPETRA_TEST_ERR(A.NormWeighted(Weights, normw),err);
  BLAS.AXPY(NumVectors,-1.0,normw_A,normw);

  if (err) ierr += err;
  else {
    EPETRA_TEST_ERR(BadResidual(verbose,residual, NumVectors),ierr);
  }

  err = 0;
  if (verbose) cout << "XXXXX Testing minval_A     ";
  // Test A.MinValue()
  double *minval = residual;
  EPETRA_TEST_ERR(A.MinValue(minval),err);
  BLAS.AXPY(NumVectors,-1.0,minval_A,minval);

  if (err) ierr += err;
  else {
    EPETRA_TEST_ERR(BadResidual(verbose,residual, NumVectors),ierr);
  }

  err = 0;
  if (verbose) cout << "XXXXX Testing maxval_A     ";
  // Test A.MaxValue()
  double *maxval = residual;
  EPETRA_TEST_ERR(A.MaxValue(maxval),err);
  BLAS.AXPY(NumVectors,-1.0,maxval_A,maxval);

  if (err) ierr += err;
  else {
    EPETRA_TEST_ERR(BadResidual(verbose,residual, NumVectors),ierr);
  }

  err = 0;
  if (verbose) cout << "XXXXX Testing meanval_A     ";
  // Test A.MeanValue()
  double *meanval = residual;
  EPETRA_TEST_ERR(A.MeanValue(meanval),err);
  BLAS.AXPY(NumVectors,-1.0,meanval_A,meanval);

  if (err) ierr += err;
  else {
    EPETRA_TEST_ERR(BadResidual(verbose,residual, NumVectors),ierr);
  }

  err = 0;
  if (verbose) cout << "XXXXX Testing abs_A     ";
  // Test A.Abs()
  Epetra_MultiVector Abs_A = A;
  EPETRA_TEST_ERR(Abs_A.Abs(A),err);
  EPETRA_TEST_ERR(Abs_A.Update(1.0, A, -1.0),err); // Abs_A = A - Abs_A (should be zero since A > 0)
  EPETRA_TEST_ERR(Abs_A.Norm2(residual),err);

  if (err) ierr += err;
  else {
    EPETRA_TEST_ERR(BadResidual(verbose,residual, NumVectors),ierr);
  }

  err = 0;
  if (verbose) cout << "XXXXX Testing random_A (Test1) ";
  // Test A.Random()
  Epetra_MultiVector Rand1_A(A);
  Epetra_MultiVector Rand2_A(A);
  EPETRA_TEST_ERR(Rand1_A.Random(),err);
  EPETRA_TEST_ERR(Rand2_A.Random(),err);
  // Rand2_A = Rand1_A - Rand2_A (should be nonzero since Random() should give different vectors > 0)
  EPETRA_TEST_ERR(Rand2_A.Update(1.0, Rand1_A, -1.0),err);
  EPETRA_TEST_ERR(Rand2_A.Norm2(residual),err);

  if (err) ierr += err;
  else {
    EPETRA_TEST_ERR(BadResidual1(verbose,residual, NumVectors),ierr);
  }

  err = 0;
  if (verbose) cout << "XXXXX Testing random_A (Test2) ";

  // Next test that each column of the multivector is different from all other columns by testing the first value
  // of each vector against the first value of every other vector.
  int randvalsdiffer = 1; // Assume they all differ
  for (i=0; i< NumVectors; i++)
    for (int j=i+1; j<NumVectors; j++)
      if (Rand1_A[i][0]==Rand1_A[j][0]) randvalsdiffer = 0; // make false if equal
  int allrandvals = 0;
  Comm.MinAll(&randvalsdiffer, &allrandvals, 1); // get min of all values across all processors

  EPETRA_TEST_ERR(1-allrandvals, err); // If allrandvals is anything but 1, this will cause an error
  int locerr = err;
  Comm.MinAll(&locerr, &err, 1);

  if (verbose) {
    if (err==0) {
      cout << "\t Checked OK" << endl;
    } else {
      cout << "\t Checked Failed" << endl;
    }
  }
  err = 0;
  if (verbose) cout << "XXXXX Testing random_A (Test3) ";

  // Next test that the first element on each processor of the first column of Rand1_A is different from all others
  // First we will gather them all to PE 0


  Epetra_Map RandstartsMap(-1, 1, 0, Comm); // This Map has a single element on each PE
  int itmp = 0;
  int nproc = Comm.NumProc();
  if (MyPID==0) itmp = nproc;
  Epetra_Map AllrandstartsMap(nproc, itmp, 0, Comm); // Map has NumProc elements on PE 0, none elsewhere
  Epetra_MultiVector Randstarts(RandstartsMap, NumVectors);
  Epetra_MultiVector Allrandstarts(AllrandstartsMap, NumVectors);
  for (i=0; i< NumVectors; i++) Randstarts[i][0] = Rand1_A[i][0]; // Load first value of local multivector

  Epetra_Import Randimporter(AllrandstartsMap,RandstartsMap);
  EPETRA_TEST_ERR(Allrandstarts.Import(Randstarts,Randimporter,Insert),err);
  // cout << "Randstarts = " << Randstarts << endl << "Allrandstarts = " << Allrandstarts << endl;
  // Allrandstarts now contains the first values for each local section of Rand1_A.
  // Next test that this is true.
  randvalsdiffer = 1; // Assume they all differ
  if (MyPID==0) {
    for (i=0; i< NumVectors; i++)
      for (int irand=0; irand<nproc; irand++)
	for (int jrand=irand+1; jrand<nproc; jrand++)
	  if (Allrandstarts[i][irand]==Allrandstarts[i][jrand]) randvalsdiffer = 0; // make false if equal
  }
  allrandvals = 0;
  Comm.MinAll(&randvalsdiffer, &allrandvals, 1); // get min of all values across all processors

  EPETRA_TEST_ERR(1-allrandvals, err); // If allrandvals is anything but 1, this will cause an error
  locerr = err;
  Comm.MinAll(&locerr, &err, 1);
  if (verbose) {
    if (err==0) {
      cout << "\t Checked OK" << endl;
    } else {
      cout << "\t Checked Failed" << endl;
    }
  }

  // Delete everything

  delete [] dotvec_AB;
  delete [] norm1_A;
  delete [] norm2_sqrtA;
  delete [] norminf_A;
  delete [] normw_A;
  delete [] minval_A;
  delete [] maxval_A;
  delete [] meanval_A;
  delete [] residual;

  //*******************************************************************
  // Post-construction modification tests
  //*******************************************************************

  if (verbose) cout <<  "\n\nXXXXX Testing Post-construction modification of a multivector"
		    <<endl<<endl;

  err = 0;

  Epetra_MultiVector X(Map, NumVectors);
  X.Random();

  // Pick middle range values for GID, LID and Vector Index
  int testGID = Map.NumGlobalElements()/2;
  int testVecIndex = NumVectors/2;

  int GIDSize = 1;
  int LIDOfGID = 0;
  int FirstEntryOfGID = 0;

  if (Map.MyGID(testGID)) {
    LIDOfGID = Map.LID(testGID);
    GIDSize = Map.ElementSize(LIDOfGID);
    FirstEntryOfGID = Map.FirstPointInElement(LIDOfGID);
  }

  // ========================================================================
  // Test int ReplaceGlobalValue (int GlobalRow, int VectorIndex, double ScalarValue)
  // ========================================================================

  double newGIDValue = 4.0;
  locerr = X.ReplaceGlobalValue(testGID, testVecIndex, newGIDValue);

  if (Map.MyGID(testGID)) {
    if (X[testVecIndex][FirstEntryOfGID]!=newGIDValue) err++;
    if (verbose) cout << "X["<<testVecIndex<<"]["<<FirstEntryOfGID<<"] = "
		      <<  X[testVecIndex][FirstEntryOfGID]
		      << " should = " << newGIDValue << endl;
  }
  else
    if (locerr!=1) err++; // Test for GID out of range error (=1)

  // ========================================================================
  // Test int ReplaceGlobalValue (int GlobalRow, intBlockRowOffset, int VectorIndex, double ScalarValue)
  // ========================================================================
  newGIDValue = 8.0;
  locerr = X.ReplaceGlobalValue(testGID, GIDSize-1, testVecIndex, newGIDValue);

  if (Map.MyGID(testGID)) {
    if (X[testVecIndex][FirstEntryOfGID+GIDSize-1]!=newGIDValue) err++;
    if (verbose) cout << "X["<<testVecIndex<<"]["<<FirstEntryOfGID+GIDSize-1<<"] = "
		      <<  X[testVecIndex][FirstEntryOfGID+GIDSize-1]
		      << " should = " << newGIDValue << endl;
  }
  else
    if (locerr!=1) err++; // Test for GID out of range error (=1)

  // ========================================================================
  // Test int SumIntoGlobalValue (int GlobalRow, int VectorIndex, double ScalarValue)
  // ========================================================================

  newGIDValue = 1.0;
  locerr = X.ReplaceGlobalValue(testGID, testVecIndex, newGIDValue);
  locerr = X.SumIntoGlobalValue(testGID, testVecIndex, newGIDValue);
  if (Map.MyGID(testGID)) {
    if (X[testVecIndex][FirstEntryOfGID]!=(newGIDValue+newGIDValue)) err++;
    if (verbose) cout << "X["<<testVecIndex<<"]["<<FirstEntryOfGID<<"] = "
		      <<  X[testVecIndex][FirstEntryOfGID]
		      << " should = " << newGIDValue << endl;
  }
  else
    if (locerr!=1) err++; // Test for GID out of range error (=1)

  // ========================================================================
  // Test int SumIntoGlobalValue (int GlobalRow, intBlockRowOffset, int VectorIndex, double ScalarValue)
  // ========================================================================

  newGIDValue = 1.0;
  locerr = X.ReplaceGlobalValue(testGID, GIDSize-1, testVecIndex, newGIDValue);
  locerr = X.SumIntoGlobalValue(testGID, GIDSize-1, testVecIndex, newGIDValue);

  if (Map.MyGID(testGID)) {
    if (X[testVecIndex][FirstEntryOfGID+GIDSize-1]!=(newGIDValue+newGIDValue)) err++;
    if (verbose) cout << "X["<<testVecIndex<<"]["<<FirstEntryOfGID+GIDSize-1<<"] = "
		      <<  X[testVecIndex][FirstEntryOfGID+GIDSize-1]
		      << " should = " << newGIDValue << endl;
  }
  else
    if (locerr!=1) err++; // Test for GID out of range error (=1)

  // ========================================================================
  // Test Local "My" versions of same routine (less complicated)
  // ========================================================================

  // Pick middle range values for LID
  int testLID = Map.NumMyElements()/2;

  int LIDSize = Map.ElementSize(testLID);
  int FirstEntryOfLID = Map.FirstPointInElement(testLID);


  double newLIDValue = 4.0;
  locerr = X.ReplaceMyValue(testLID, testVecIndex, newLIDValue);

  if (X[testVecIndex][FirstEntryOfLID]!=newLIDValue) err++;
  if (verbose) cout << "X["<<testVecIndex<<"]["<<FirstEntryOfLID<<"] = "
		    <<  X[testVecIndex][FirstEntryOfLID]
		    << " should = " << newLIDValue << endl;

  newLIDValue = 8.0;
  locerr = X.ReplaceMyValue(testLID, LIDSize-1, testVecIndex, newLIDValue);
  if (X[testVecIndex][FirstEntryOfLID+LIDSize-1]!=newLIDValue) err++;
  if (verbose) cout << "X["<<testVecIndex<<"]["<<FirstEntryOfLID+LIDSize-1<<"] = "
		    <<  X[testVecIndex][FirstEntryOfLID+LIDSize-1]
		    << " should = " << newLIDValue << endl;
  newLIDValue = 1.0;
  locerr = X.ReplaceMyValue(testLID, testVecIndex, newLIDValue);
  locerr = X.SumIntoMyValue(testLID, testVecIndex, newLIDValue);
  if (X[testVecIndex][FirstEntryOfLID]!=(newLIDValue+newLIDValue)) err++;
  if (verbose) cout << "X["<<testVecIndex<<"]["<<FirstEntryOfLID<<"] = "
		    <<  X[testVecIndex][FirstEntryOfLID]
		    << " should = " << newLIDValue << endl;
  newLIDValue = 2.0;
  locerr = X.ReplaceMyValue(testLID, LIDSize-1, testVecIndex, newLIDValue);
  locerr = X.SumIntoMyValue(testLID, LIDSize-1, testVecIndex, newLIDValue);
  if (verbose) cout << "X["<<testVecIndex<<"]["<<FirstEntryOfLID+LIDSize-1<<"] = "
		    <<  X[testVecIndex][FirstEntryOfLID+LIDSize-1]
		    << " should = " << newLIDValue << endl;
  if (X[testVecIndex][FirstEntryOfLID+LIDSize-1]!=(newLIDValue+newLIDValue)) err++;

  ierr += err;

  // ========================================================================
  // Test Post-construction modification of an Epetra_Vector using a vector
  // our multivector X
  // ========================================================================

  if (verbose) cout <<  "\n\nXXXXX Testing Post-construction modification of a vector"
		    << endl << endl;

  Epetra_Vector * x = X(testVecIndex);

  int NumEntries = 2;
  double * VecValues = new double[NumEntries];
  int * VecGIDs = new int[NumEntries];
  VecGIDs[0] = testGID;
  VecGIDs[1] = testGID+1; // Some pathological chance that these GIDs are not valid

  // ========================================================================
  // Test int ReplaceGlobalValues (int NumEntries, double *Values, int *Indices)
  // ========================================================================

  VecValues[0] = 2.0; VecValues[1] = 4.0;
  locerr = x->ReplaceGlobalValues(NumEntries, VecValues, VecGIDs);

  for (i=0; i<NumEntries; i++) {
    testGID = VecGIDs[i];
    if (Map.MyGID(testGID)) {
      LIDOfGID = Map.LID(testGID);
      GIDSize = EPETRA_MIN(GIDSize,Map.ElementSize(LIDOfGID)); // Need this value below
      FirstEntryOfGID = Map.FirstPointInElement(LIDOfGID);
      if ((*x)[FirstEntryOfGID]!=VecValues[i]) err++;
      if (verbose) cout << "x["<<FirstEntryOfGID<<"] = "
			<< (*x)[FirstEntryOfGID]
			<< " should = " << VecValues[i] << endl;
    }
    else
      if (locerr!=1) err++; // Test for GID out of range error (=1)
  }


  // ========================================================================
  // Test int ReplaceGlobalValues (int NumEntries, int BlockOffset, double *Values, int *Indices)
  // ========================================================================

  VecValues[0] = 4.0; VecValues[1] = 8.0;
  locerr = x->ReplaceGlobalValues(NumEntries, GIDSize-1, VecValues, VecGIDs);

  for (i=0; i<NumEntries; i++) {
    testGID = VecGIDs[i];
    if (Map.MyGID(testGID)) {
      LIDOfGID = Map.LID(testGID);
      FirstEntryOfGID = Map.FirstPointInElement(LIDOfGID);
      if ((*x)[FirstEntryOfGID+GIDSize-1]!=VecValues[i]) err++;
      if (verbose) cout << "x["<<FirstEntryOfGID+GIDSize-1<<"] = "
			<< (*x)[FirstEntryOfGID+GIDSize-1]
			<< " should = " << VecValues[i] << endl;
    }
    else
      if (locerr!=1) err++; // Test for GID out of range error (=1)
  }

  // ========================================================================
  // Test int SumIntoGlobalValues (int NumEntries, double *Values, int *Indices)
  // ========================================================================

  VecValues[0] = 1.0; VecValues[1] = 2.0;
  locerr = x->ReplaceGlobalValues(NumEntries, VecValues, VecGIDs);
  locerr = x->SumIntoGlobalValues(NumEntries, VecValues, VecGIDs);

  for (i=0; i<NumEntries; i++) {
    testGID = VecGIDs[i];
    if (Map.MyGID(testGID)) {
      LIDOfGID = Map.LID(testGID);
      FirstEntryOfGID = Map.FirstPointInElement(LIDOfGID);
      if ((*x)[FirstEntryOfGID]!=(VecValues[i]+VecValues[i])) err++;
      if (verbose) cout << "x["<<FirstEntryOfGID<<"] = "
			<< (*x)[FirstEntryOfGID]
			<< " should = " << (VecValues[i]+VecValues[i]) << endl;
    }
    else
      if (locerr!=1) err++; // Test for GID out of range error (=1)
  }
  // ========================================================================
  // Test int ReplaceGlobalValues (int NumEntries, int BlockOffset, double *Values, int *Indices)
  // ========================================================================

  VecValues[0] = 1.0; VecValues[1] = 2.0;
  locerr = x->ReplaceGlobalValues(NumEntries, GIDSize-1, VecValues, VecGIDs);
  locerr = x->SumIntoGlobalValues(NumEntries, GIDSize-1, VecValues, VecGIDs);

  for (i=0; i<NumEntries; i++) {
    testGID = VecGIDs[i];
    if (Map.MyGID(testGID)) {
      LIDOfGID = Map.LID(testGID);
      FirstEntryOfGID = Map.FirstPointInElement(LIDOfGID);
      if ((*x)[FirstEntryOfGID+GIDSize-1]!=(VecValues[i]+VecValues[i])) err++;
      if (verbose) cout << "x["<<FirstEntryOfGID+GIDSize-1<<"] = "
			<< (*x)[FirstEntryOfGID+GIDSize-1]
			<< " should = " << (VecValues[i]+VecValues[i]) << endl;
    }
    else
      if (locerr!=1) err++; // Test for GID out of range error (=1)
  }

  // ========================================================================
  // Test Local "My" versions of same routine (less complicated)
  // ========================================================================
  int * VecLIDs = new int[NumEntries];
  VecLIDs[0] = testLID;
  VecLIDs[1] = testLID+1; // Some pathological chance that these LIDs are not valid

  VecValues[0] = 2.0; VecValues[1] = 4.0;
  locerr = x->ReplaceMyValues(NumEntries, VecValues, VecLIDs);

  for (i=0; i<NumEntries; i++) {
    testLID = VecLIDs[i];
    LIDSize = EPETRA_MIN(LIDSize,Map.ElementSize(testLID)); // Need this value below
    FirstEntryOfLID = Map.FirstPointInElement(testLID);
    if ((*x)[FirstEntryOfLID]!=VecValues[i]) err++;
    if (verbose) cout << "x["<<FirstEntryOfLID<<"] = "
		      << (*x)[FirstEntryOfLID]
		      << " should = " << VecValues[i] << endl;
  }

  VecValues[0] = 4.0; VecValues[1] = 8.0;
  locerr = x->ReplaceMyValues(NumEntries, LIDSize-1, VecValues, VecLIDs);

  for (i=0; i<NumEntries; i++) {
    testLID = VecLIDs[i];
    LIDSize = EPETRA_MIN(LIDSize,Map.ElementSize(testLID)); // Need this value below
    FirstEntryOfLID = Map.FirstPointInElement(testLID);
    if ((*x)[FirstEntryOfLID+LIDSize-1]!=VecValues[i]) err++;
    if (verbose) cout << "x["<<FirstEntryOfLID+LIDSize-1<<"] = "
		      << (*x)[FirstEntryOfLID+LIDSize-1]
		      << " should = " << VecValues[i] << endl;
  }

  VecValues[0] = 1.0; VecValues[1] = 1.0;
  locerr = x->ReplaceMyValues(NumEntries, VecValues, VecLIDs);
  locerr = x->SumIntoMyValues(NumEntries, VecValues, VecLIDs);

  for (i=0; i<NumEntries; i++) {
    testLID = VecLIDs[i];
    LIDSize = EPETRA_MIN(LIDSize,Map.ElementSize(testLID)); // Need this value below
    FirstEntryOfLID = Map.FirstPointInElement(testLID);
    if ((*x)[FirstEntryOfLID]!=(VecValues[i]+VecValues[i])) err++;
    if (verbose) cout << "x["<<FirstEntryOfLID<<"] = "
		      << (*x)[FirstEntryOfLID]
		      << " should = " << (VecValues[i]+VecValues[i]) << endl;
  }

  VecValues[0] = 2.0; VecValues[1] = 4.0;
  locerr = x->ReplaceMyValues(NumEntries, LIDSize-1, VecValues, VecLIDs);
  locerr = x->SumIntoMyValues(NumEntries, LIDSize-1, VecValues, VecLIDs);

  for (i=0; i<NumEntries; i++) {
    testLID = VecLIDs[i];
    LIDSize = EPETRA_MIN(LIDSize,Map.ElementSize(testLID)); // Need this value below
    FirstEntryOfLID = Map.FirstPointInElement(testLID);
    if ((*x)[FirstEntryOfLID+LIDSize-1]!=(VecValues[i]+VecValues[i])) err++;
    if (verbose) cout << "x["<<FirstEntryOfLID+LIDSize-1<<"] = "
		      << (*x)[FirstEntryOfLID+LIDSize-1]
		      << " should = " << (VecValues[i]+VecValues[i]) << endl;
  }

    delete [] VecValues;
    delete [] VecGIDs;
    delete [] VecLIDs;

  return(ierr);
}