void MeshRefinement::flag_elements_by_mean_stddev (const ErrorVector & error_per_cell,
                                                   const Real refine_frac,
                                                   const Real coarsen_frac,
                                                   const unsigned int max_l)
{
  // The function arguments are currently just there for
  // backwards_compatibility
  if (!_use_member_parameters)
    {
      // If the user used non-default parameters, lets warn
      // that they're deprecated
      if (refine_frac != 0.3 ||
          coarsen_frac != 0.0 ||
          max_l != libMesh::invalid_uint)
        libmesh_deprecated();

      _refine_fraction = refine_frac;
      _coarsen_fraction = coarsen_frac;
      _max_h_level = max_l;
    }

  // Get the mean value from the error vector
  const Real mean = error_per_cell.mean();

  // Get the standard deviation.  This equals the
  // square-root of the variance
  const Real stddev = std::sqrt (error_per_cell.variance());

  // Check for valid fractions
  libmesh_assert_greater_equal (_refine_fraction, 0);
  libmesh_assert_less_equal (_refine_fraction, 1);
  libmesh_assert_greater_equal (_coarsen_fraction, 0);
  libmesh_assert_less_equal (_coarsen_fraction, 1);

  // The refine and coarsen cutoff
  const Real refine_cutoff  =  mean + _refine_fraction  * stddev;
  const Real coarsen_cutoff =  std::max(mean - _coarsen_fraction * stddev, 0.);

  // Loop over the elements and flag them for coarsening or
  // refinement based on the element error
  for (auto & elem : _mesh.active_element_ptr_range())
    {
      const dof_id_type id  = elem->id();

      libmesh_assert_less (id, error_per_cell.size());

      const ErrorVectorReal elem_error = error_per_cell[id];

      // Possibly flag the element for coarsening ...
      if (elem_error <= coarsen_cutoff)
        elem->set_refinement_flag(Elem::COARSEN);

      // ... or refinement
      if ((elem_error >= refine_cutoff) && (elem->level() < _max_h_level))
        elem->set_refinement_flag(Elem::REFINE);
    }
}
Esempio n. 2
0
realv Layer::errorWeighting(ErrorVector _deltas, Mat _weights) {
	if (_deltas.getLength() != ((uint) _weights.rows)) {
		throw length_error("Layer : Uncorrect length between deltas and weights");
	}
	realv sum = 0;
	for (uint i = 0; i < _deltas.getLength(); i++) {
		sum += _deltas[i] * _weights.at<realv>(i, 0);
	}
	return sum;
}
Esempio n. 3
0
void ErrorEstimator::estimate_errors(const EquationSystems & equation_systems,
                                     ErrorVector & error_per_cell,
                                     const std::map<const System *, SystemNorm> & error_norms,
                                     const std::map<const System *, const NumericVector<Number> *> * solution_vectors,
                                     bool estimate_parent_error)
{
  SystemNorm old_error_norm = this->error_norm;

  // Sum the error values from each system
  for (unsigned int s = 0; s != equation_systems.n_systems(); ++s)
    {
      ErrorVector system_error_per_cell;
      const System & sys = equation_systems.get_system(s);
      if (error_norms.find(&sys) == error_norms.end())
        this->error_norm = old_error_norm;
      else
        this->error_norm = error_norms.find(&sys)->second;

      const NumericVector<Number> * solution_vector = nullptr;
      if (solution_vectors &&
          solution_vectors->find(&sys) != solution_vectors->end())
        solution_vector = solution_vectors->find(&sys)->second;

      this->estimate_error(sys, system_error_per_cell,
                           solution_vector, estimate_parent_error);

      if (s)
        {
          libmesh_assert_equal_to (error_per_cell.size(), system_error_per_cell.size());
          for (std::size_t i=0; i != error_per_cell.size(); ++i)
            error_per_cell[i] += system_error_per_cell[i];
        }
      else
        error_per_cell = system_error_per_cell;
    }

  // Restore our old state before returning
  this->error_norm = old_error_norm;
}
Esempio n. 4
0
int main(int argc, char** argv)
{
  // Initialize libMesh.
  LibMeshInit init (argc, argv);

  // Adaptive constraint calculations for fine Hermite elements seems
  // to require half-decent precision
#ifdef LIBMESH_DEFAULT_SINGLE_PRECISION
  libmesh_example_assert(false, "double precision");
#endif

  // This example requires Adaptive Mesh Refinement support
#ifndef LIBMESH_ENABLE_AMR
  libmesh_example_assert(false, "--enable-amr");
#else

  // This example requires second derivative calculation support
#ifndef LIBMESH_ENABLE_SECOND_DERIVATIVES
  libmesh_example_assert(false, "--enable-second");
#else

  // Parse the input file
  GetPot input_file("adaptivity_ex4.in");

  // Read in parameters from the input file
  const unsigned int max_r_level = input_file("max_r_level", 10);
  const unsigned int max_r_steps = input_file("max_r_steps", 4);
  const std::string approx_type  = input_file("approx_type",
                                              "HERMITE");
  const unsigned int uniform_refine =
                  input_file("uniform_refine", 0);
  const Real refine_percentage =
                  input_file("refine_percentage", 0.5);
  const Real coarsen_percentage =
                  input_file("coarsen_percentage", 0.5);
  const unsigned int dim =
                  input_file("dimension", 2);
  const unsigned int max_linear_iterations =
                  input_file("max_linear_iterations", 10000);

  // Skip higher-dimensional examples on a lower-dimensional libMesh build
  libmesh_example_assert(dim <= LIBMESH_DIM, "2D/3D support");
  
  // We have only defined 2 and 3 dimensional problems
  libmesh_assert (dim == 2 || dim == 3);

  // Currently only the Hermite cubics give a 3D C^1 basis
  libmesh_assert (dim == 2 || approx_type == "HERMITE");

  // Create a mesh.
  Mesh mesh;
  
  // Output file for plotting the error 
  std::string output_file = "";

  if (dim == 2)
    output_file += "2D_";
  else if (dim == 3)
    output_file += "3D_";

  if (approx_type == "HERMITE")
    output_file += "hermite_";
  else if (approx_type == "SECOND")
    output_file += "reducedclough_";
  else
    output_file += "clough_";

  if (uniform_refine == 0)
    output_file += "adaptive";
  else
    output_file += "uniform";

  std::string exd_file = output_file;
  exd_file += ".e";
  output_file += ".m";

  std::ofstream out (output_file.c_str());
  out << "% dofs     L2-error     H1-error      H2-error\n"
      << "e = [\n";
  
  // Set up the dimension-dependent coarse mesh and solution
  // We build more than one cell so as to avoid bugs on fewer than 
  // 4 processors in 2D or 8 in 3D.
  if (dim == 2)
    {
      MeshTools::Generation::build_square(mesh, 2, 2);
      exact_solution = &exact_2D_solution;
      exact_derivative = &exact_2D_derivative;
      exact_hessian = &exact_2D_hessian;
      forcing_function = &forcing_function_2D;
    }
  else if (dim == 3)
    {
      MeshTools::Generation::build_cube(mesh, 2, 2, 2);
      exact_solution = &exact_3D_solution;
      exact_derivative = &exact_3D_derivative;
      exact_hessian = &exact_3D_hessian;
      forcing_function = &forcing_function_3D;
    }

  // Convert the mesh to second order: necessary for computing with
  // Clough-Tocher elements, useful for getting slightly less 
  // broken visualization output with Hermite elements
  mesh.all_second_order();

  // Convert it to triangles if necessary
  if (approx_type != "HERMITE")
    MeshTools::Modification::all_tri(mesh);

  // Mesh Refinement object
  MeshRefinement mesh_refinement(mesh);
  mesh_refinement.refine_fraction() = refine_percentage;
  mesh_refinement.coarsen_fraction() = coarsen_percentage;
  mesh_refinement.max_h_level() = max_r_level;

  // Create an equation systems object.
  EquationSystems equation_systems (mesh);

  // Declare the system and its variables.
  // Create a system named "Biharmonic"
  LinearImplicitSystem& system =
    equation_systems.add_system<LinearImplicitSystem> ("Biharmonic");

  // Adds the variable "u" to "Biharmonic".  "u"
  // will be approximated using Hermite tensor product squares
  // or (possibly reduced) cubic Clough-Tocher triangles
  if (approx_type == "HERMITE")
    system.add_variable("u", THIRD, HERMITE);
  else if (approx_type == "SECOND")
    system.add_variable("u", SECOND, CLOUGH);
  else if (approx_type == "CLOUGH")
    system.add_variable("u", THIRD, CLOUGH);
  else
    libmesh_error();

  // Give the system a pointer to the matrix assembly
  // function.
  system.attach_assemble_function (assemble_biharmonic);
      
  // Initialize the data structures for the equation system.
  equation_systems.init();

  // Set linear solver max iterations
  equation_systems.parameters.set<unsigned int>
    ("linear solver maximum iterations") = max_linear_iterations;

  // Linear solver tolerance.
  equation_systems.parameters.set<Real>
    ("linear solver tolerance") = TOLERANCE * TOLERANCE;
      
  // Prints information about the system to the screen.
  equation_systems.print_info();

  // Construct ExactSolution object and attach function to compute exact solution
  ExactSolution exact_sol(equation_systems);
  exact_sol.attach_exact_value(exact_solution);
  exact_sol.attach_exact_deriv(exact_derivative);
  exact_sol.attach_exact_hessian(exact_hessian);

  // Construct zero solution object, useful for computing solution norms
  // Attaching "zero_solution" functions is unnecessary
  ExactSolution zero_sol(equation_systems);

  // A refinement loop.
  for (unsigned int r_step=0; r_step<max_r_steps; r_step++)
    {
      mesh.print_info();
      equation_systems.print_info();

      std::cout << "Beginning Solve " << r_step << std::endl;
      
      // Solve the system "Biharmonic", just like example 2.
      system.solve();

      std::cout << "Linear solver converged at step: "
                << system.n_linear_iterations()
                << ", final residual: "
                << system.final_linear_residual()
                << std::endl;

      // Compute the error.
      exact_sol.compute_error("Biharmonic", "u");
      // Compute the norm.
      zero_sol.compute_error("Biharmonic", "u");

      // Print out the error values
      std::cout << "L2-Norm is: "
                << zero_sol.l2_error("Biharmonic", "u")
                << std::endl;
      std::cout << "H1-Norm is: "
                << zero_sol.h1_error("Biharmonic", "u")
                << std::endl;
      std::cout << "H2-Norm is: "
                << zero_sol.h2_error("Biharmonic", "u")
                << std::endl
                << std::endl;
      std::cout << "L2-Error is: "
                << exact_sol.l2_error("Biharmonic", "u")
                << std::endl;
      std::cout << "H1-Error is: "
                << exact_sol.h1_error("Biharmonic", "u")
                << std::endl;
      std::cout << "H2-Error is: "
                << exact_sol.h2_error("Biharmonic", "u")
                << std::endl
                << std::endl;

      // Print to output file
      out << equation_systems.n_active_dofs() << " "
          << exact_sol.l2_error("Biharmonic", "u") << " "
          << exact_sol.h1_error("Biharmonic", "u") << " "
          << exact_sol.h2_error("Biharmonic", "u") << std::endl;

      // Possibly refine the mesh
      if (r_step+1 != max_r_steps)
        {
          std::cout << "  Refining the mesh..." << std::endl;

          if (uniform_refine == 0)
            {
              ErrorVector error;
              LaplacianErrorEstimator error_estimator;

              error_estimator.estimate_error(system, error);
              mesh_refinement.flag_elements_by_elem_fraction (error);

              std::cout << "Mean Error: " << error.mean() <<
                              std::endl;
              std::cout << "Error Variance: " << error.variance() <<
                              std::endl;

              mesh_refinement.refine_and_coarsen_elements();
            }
          else
            {
              mesh_refinement.uniformly_refine(1);
            }
              
          // This call reinitializes the \p EquationSystems object for
          // the newly refined mesh.  One of the steps in the
          // reinitialization is projecting the \p solution,
          // \p old_solution, etc... vectors from the old mesh to
          // the current one.
          equation_systems.reinit ();
        }
    }            
  
#ifdef LIBMESH_HAVE_EXODUS_API
  // Write out the solution
  // After solving the system write the solution
  // to a ExodusII-formatted plot file.
  ExodusII_IO (mesh).write_equation_systems (exd_file,
                                       equation_systems);
#endif // #ifdef LIBMESH_HAVE_EXODUS_API

  // Close up the output file.
  out << "];\n"
      << "hold on\n"
      << "loglog(e(:,1), e(:,2), 'bo-');\n"
      << "loglog(e(:,1), e(:,3), 'ro-');\n"
      << "loglog(e(:,1), e(:,4), 'go-');\n"
      << "xlabel('log(dofs)');\n"
      << "ylabel('log(error)');\n"
      << "title('C1 " << approx_type << " elements');\n"
      << "legend('L2-error', 'H1-error', 'H2-error');\n";
  
  // All done.  
  return 0;
#endif // #ifndef LIBMESH_ENABLE_SECOND_DERIVATIVES
#endif // #ifndef LIBMESH_ENABLE_AMR
}
Esempio n. 5
0
void AdjointRefinementEstimator::estimate_error (const System & _system,
                                                 ErrorVector & error_per_cell,
                                                 const NumericVector<Number> * solution_vector,
                                                 bool /*estimate_parent_error*/)
{
  // We have to break the rules here, because we can't refine a const System
  System & system = const_cast<System &>(_system);

  // An EquationSystems reference will be convenient.
  EquationSystems & es = system.get_equation_systems();

  // The current mesh
  MeshBase & mesh = es.get_mesh();

  // Get coarse grid adjoint solutions.  This should be a relatively
  // quick (especially with preconditioner reuse) way to get a good
  // initial guess for the fine grid adjoint solutions.  More
  // importantly, subtracting off a coarse adjoint approximation gives
  // us better local error indication, and subtracting off *some* lift
  // function is necessary for correctness if we have heterogeneous
  // adjoint Dirichlet conditions.

  // Solve the adjoint problem(s) on the coarse FE space
  // Only if the user didn't already solve it for us
  if (!system.is_adjoint_already_solved())
    system.adjoint_solve(_qoi_set);

  // Loop over all the adjoint problems and, if any have heterogenous
  // Dirichlet conditions, get the corresponding coarse lift
  // function(s)
  for (unsigned int j=0; j != system.qoi.size(); j++)
    {
      // Skip this QoI if it is not in the QoI Set or if there are no
      // heterogeneous Dirichlet boundaries for it
      if (_qoi_set.has_index(j) &&
          system.get_dof_map().has_adjoint_dirichlet_boundaries(j))
        {
          std::ostringstream liftfunc_name;
          liftfunc_name << "adjoint_lift_function" << j;
          NumericVector<Number> & liftvec =
            system.add_vector(liftfunc_name.str());

          system.get_dof_map().enforce_constraints_exactly
            (system, &liftvec, true);
        }
    }

  // We'll want to back up all coarse grid vectors
  std::map<std::string, NumericVector<Number> *> coarse_vectors;
  for (System::vectors_iterator vec = system.vectors_begin(); vec !=
         system.vectors_end(); ++vec)
    {
      // The (string) name of this vector
      const std::string & var_name = vec->first;

      coarse_vectors[var_name] = vec->second->clone().release();
    }
  // Back up the coarse solution and coarse local solution
  NumericVector<Number> * coarse_solution =
    system.solution->clone().release();
  NumericVector<Number> * coarse_local_solution =
    system.current_local_solution->clone().release();

  // And we'll need to temporarily change solution projection settings
  bool old_projection_setting;
  old_projection_setting = system.project_solution_on_reinit();

  // Make sure the solution is projected when we refine the mesh
  system.project_solution_on_reinit() = true;

  // And it'll be best to avoid any repartitioning
  UniquePtr<Partitioner> old_partitioner(mesh.partitioner().release());

  // And we can't allow any renumbering
  const bool old_renumbering_setting = mesh.allow_renumbering();
  mesh.allow_renumbering(false);

  // Use a non-standard solution vector if necessary
  if (solution_vector && solution_vector != system.solution.get())
    {
      NumericVector<Number> * newsol =
        const_cast<NumericVector<Number> *> (solution_vector);
      newsol->swap(*system.solution);
      system.update();
    }

  // Resize the error_per_cell vector to be
  // the number of elements, initialized to 0.
  error_per_cell.clear();
  error_per_cell.resize (mesh.max_elem_id(), 0.);

#ifndef NDEBUG
  // n_coarse_elem is only used in an assertion later so
  // avoid declaring it unless asserts are active.
  const dof_id_type n_coarse_elem = mesh.n_elem();
#endif

  // Uniformly refine the mesh
  MeshRefinement mesh_refinement(mesh);

  libmesh_assert (number_h_refinements > 0 || number_p_refinements > 0);

  // FIXME: this may break if there is more than one System
  // on this mesh but estimate_error was still called instead of
  // estimate_errors
  for (unsigned int i = 0; i != number_h_refinements; ++i)
    {
      mesh_refinement.uniformly_refine(1);
      es.reinit();
    }

  for (unsigned int i = 0; i != number_p_refinements; ++i)
    {
      mesh_refinement.uniformly_p_refine(1);
      es.reinit();
    }

  // Copy the projected coarse grid solutions, which will be
  // overwritten by solve()
  std::vector<NumericVector<Number> *> coarse_adjoints;
  for (unsigned int j=0; j != system.qoi.size(); j++)
    {
      if (_qoi_set.has_index(j))
        {
          NumericVector<Number> * coarse_adjoint =
            NumericVector<Number>::build(mesh.comm()).release();

          // Can do "fast" init since we're overwriting this in a sec
          coarse_adjoint->init(system.get_adjoint_solution(j),
                               /* fast = */ true);

          *coarse_adjoint = system.get_adjoint_solution(j);

          coarse_adjoints.push_back(coarse_adjoint);
        }
      else
        coarse_adjoints.push_back(static_cast<NumericVector<Number> *>(libmesh_nullptr));
    }

  // Rebuild the rhs with the projected primal solution
  (dynamic_cast<ImplicitSystem &>(system)).assembly(true, false);
  NumericVector<Number> & projected_residual = (dynamic_cast<ExplicitSystem &>(system)).get_vector("RHS Vector");
  projected_residual.close();

  // Solve the adjoint problem(s) on the refined FE space
  system.adjoint_solve(_qoi_set);

  // Now that we have the refined adjoint solution and the projected primal solution,
  // we first compute the global QoI error estimate

  // Resize the computed_global_QoI_errors vector to hold the error estimates for each QoI
  computed_global_QoI_errors.resize(system.qoi.size());

  // Loop over all the adjoint solutions and get the QoI error
  // contributions from all of them.  While we're looping anyway we'll
  // pull off the coarse adjoints
  for (unsigned int j=0; j != system.qoi.size(); j++)
    {
      // Skip this QoI if not in the QoI Set
      if (_qoi_set.has_index(j))
        {
          // If the adjoint solution has heterogeneous dirichlet
          // values, then to get a proper error estimate here we need
          // to subtract off a coarse grid lift function.  In any case
          // we can get a better error estimate by separating off a
          // coarse representation of the adjoint solution, so we'll
          // use that for our lift function.
          system.get_adjoint_solution(j) -= *coarse_adjoints[j];

          computed_global_QoI_errors[j] = projected_residual.dot(system.get_adjoint_solution(j));
        }
    }

  // Done with the global error estimates, now construct the element wise error indicators

  // We ought to account for 'spill-over' effects while computing the
  // element error indicators This happens because the same dof is
  // shared by multiple elements, one way of mitigating this is to
  // scale the contribution from each dof by the number of elements it
  // belongs to We first obtain the number of elements each node
  // belongs to

  // A map that relates a node id to an int that will tell us how many elements it is a node of
  LIBMESH_BEST_UNORDERED_MAP<dof_id_type, unsigned int>shared_element_count;

  // To fill this map, we will loop over elements, and then in each element, we will loop
  // over the nodes each element contains, and then query it for the number of coarse
  // grid elements it was a node of

  // Keep track of which nodes we have already dealt with
  LIBMESH_BEST_UNORDERED_SET<dof_id_type> processed_node_ids;

  // We will be iterating over all the active elements in the fine mesh that live on
  // this processor
  {
    MeshBase::const_element_iterator elem_it = mesh.active_local_elements_begin();
    const MeshBase::const_element_iterator elem_end = mesh.active_local_elements_end();

    // Start loop over elems
    for(; elem_it != elem_end; ++elem_it)
      {
        // Pointer to this element
        const Elem * elem = *elem_it;

        // Loop over the nodes in the element
        for(unsigned int n=0; n != elem->n_nodes(); ++n)
          {
            // Get a reference to the current node
            const Node & node = elem->node_ref(n);

            // Get the id of this node
            dof_id_type node_id = node.id();

            // If we havent already processed this node, do so now
            if(processed_node_ids.find(node_id) == processed_node_ids.end())
              {
                // Declare a neighbor_set to be filled by the find_point_neighbors
                std::set<const Elem *> fine_grid_neighbor_set;

                // Call find_point_neighbors to fill the neighbor_set
                elem->find_point_neighbors(node, fine_grid_neighbor_set);

                // A vector to hold the coarse grid parents neighbors
                std::vector<dof_id_type> coarse_grid_neighbors;

                // Iterators over the fine grid neighbors set
                std::set<const Elem *>::iterator fine_neighbor_it = fine_grid_neighbor_set.begin();
                const std::set<const Elem *>::iterator fine_neighbor_end = fine_grid_neighbor_set.end();

                // Loop over all the fine neighbors of this node
                for(; fine_neighbor_it != fine_neighbor_end ; ++fine_neighbor_it)
                  {
                    // Pointer to the current fine neighbor element
                    const Elem * fine_elem = *fine_neighbor_it;

                    // Find the element id for the corresponding coarse grid element
                    const Elem * coarse_elem = fine_elem;
                    for (unsigned int j = 0; j != number_h_refinements; ++j)
                      {
                        libmesh_assert (coarse_elem->parent());

                        coarse_elem = coarse_elem->parent();
                      }

                    // Loop over the existing coarse neighbors and check if this one is
                    // already in there
                    const dof_id_type coarse_id = coarse_elem->id();
                    std::size_t j = 0;
                    for (; j != coarse_grid_neighbors.size(); j++)
                      {
                        // If the set already contains this element break out of the loop
                        if(coarse_grid_neighbors[j] == coarse_id)
                          {
                            break;
                          }
                      }

                    // If we didn't leave the loop even at the last element,
                    // this is a new neighbour, put in the coarse_grid_neighbor_set
                    if(j == coarse_grid_neighbors.size())
                      {
                        coarse_grid_neighbors.push_back(coarse_id);
                      }

                  } // End loop over fine neighbors

                // Set the shared_neighbour index for this node to the
                // size of the coarse grid neighbor set
                shared_element_count[node_id] =
                  cast_int<unsigned int>(coarse_grid_neighbors.size());

                // Add this node to processed_node_ids vector
                processed_node_ids.insert(node_id);

              } // End if not processed node

          } // End loop over nodes

      }  // End loop over elems
  }

  // Get a DoF map, will be used to get the nodal dof_indices for each element
  DofMap & dof_map = system.get_dof_map();

  // The global DOF indices, we will use these later on when we compute the element wise indicators
  std::vector<dof_id_type> dof_indices;

  // Localize the global rhs and adjoint solution vectors (which might be shared on multiple processsors) onto a
  // local ghosted vector, this ensures each processor has all the dof_indices to compute an error indicator for
  // an element it owns
  UniquePtr<NumericVector<Number> > localized_projected_residual = NumericVector<Number>::build(system.comm());
  localized_projected_residual->init(system.n_dofs(), system.n_local_dofs(), system.get_dof_map().get_send_list(), false, GHOSTED);
  projected_residual.localize(*localized_projected_residual, system.get_dof_map().get_send_list());

  // Each adjoint solution will also require ghosting; for efficiency we'll reuse the same memory
  UniquePtr<NumericVector<Number> > localized_adjoint_solution = NumericVector<Number>::build(system.comm());
  localized_adjoint_solution->init(system.n_dofs(), system.n_local_dofs(), system.get_dof_map().get_send_list(), false, GHOSTED);

  // We will loop over each adjoint solution, localize that adjoint
  // solution and then loop over local elements
  for (unsigned int i=0; i != system.qoi.size(); i++)
    {
      // Skip this QoI if not in the QoI Set
      if (_qoi_set.has_index(i))
        {
          // Get the weight for the current QoI
          Real error_weight = _qoi_set.weight(i);

          (system.get_adjoint_solution(i)).localize(*localized_adjoint_solution, system.get_dof_map().get_send_list());

          // Loop over elements
          MeshBase::const_element_iterator elem_it = mesh.active_local_elements_begin();
          const MeshBase::const_element_iterator elem_end = mesh.active_local_elements_end();

          for(; elem_it != elem_end; ++elem_it)
            {
              // Pointer to the element
              const Elem * elem = *elem_it;

              // Go up number_h_refinements levels up to find the coarse parent
              const Elem * coarse = elem;

              for (unsigned int j = 0; j != number_h_refinements; ++j)
                {
                  libmesh_assert (coarse->parent());

                  coarse = coarse->parent();
                }

              const dof_id_type e_id = coarse->id();

              // Get the local to global degree of freedom maps for this element
              dof_map.dof_indices (elem, dof_indices);

              // We will have to manually do the dot products.
              Number local_contribution = 0.;

              for (unsigned int j=0; j != dof_indices.size(); j++)
                {
                  // The contribution to the error indicator for this element from the current QoI
                  local_contribution += (*localized_projected_residual)(dof_indices[j]) * (*localized_adjoint_solution)(dof_indices[j]);
                }

              // Multiply by the error weight for this QoI
              local_contribution *= error_weight;

              // FIXME: we're throwing away information in the
              // --enable-complex case
              error_per_cell[e_id] += static_cast<ErrorVectorReal>
                (std::abs(local_contribution));

            } // End loop over elements

        } // End if belong to QoI set

    } // End loop over QoIs

  for (unsigned int j=0; j != system.qoi.size(); j++)
    {
      if (_qoi_set.has_index(j))
        {
          delete coarse_adjoints[j];
        }
    }

  // Don't bother projecting the solution; we'll restore from backup
  // after coarsening
  system.project_solution_on_reinit() = false;

  // Uniformly coarsen the mesh, without projecting the solution
  libmesh_assert (number_h_refinements > 0 || number_p_refinements > 0);

  for (unsigned int i = 0; i != number_h_refinements; ++i)
    {
      mesh_refinement.uniformly_coarsen(1);
      // FIXME - should the reinits here be necessary? - RHS
      es.reinit();
    }

  for (unsigned int i = 0; i != number_p_refinements; ++i)
    {
      mesh_refinement.uniformly_p_coarsen(1);
      es.reinit();
    }

  // We should be back where we started
  libmesh_assert_equal_to (n_coarse_elem, mesh.n_elem());

  // Restore old solutions and clean up the heap
  system.project_solution_on_reinit() = old_projection_setting;

  // Restore the coarse solution vectors and delete their copies
  *system.solution = *coarse_solution;
  delete coarse_solution;
  *system.current_local_solution = *coarse_local_solution;
  delete coarse_local_solution;

  for (System::vectors_iterator vec = system.vectors_begin(); vec !=
         system.vectors_end(); ++vec)
    {
      // The (string) name of this vector
      const std::string & var_name = vec->first;

      // If it's a vector we already had (and not a newly created
      // vector like an adjoint rhs), we need to restore it.
      std::map<std::string, NumericVector<Number> *>::iterator it =
        coarse_vectors.find(var_name);
      if (it != coarse_vectors.end())
        {
          NumericVector<Number> * coarsevec = it->second;
          system.get_vector(var_name) = *coarsevec;

          coarsevec->clear();
          delete coarsevec;
        }
    }

  // Restore old partitioner and renumbering settings
  mesh.partitioner().reset(old_partitioner.release());
  mesh.allow_renumbering(old_renumbering_setting);

  // Fiinally sum the vector of estimated error values.
  this->reduce_error(error_per_cell, system.comm());

  // We don't take a square root here; this is a goal-oriented
  // estimate not a Hilbert norm estimate.
} // end estimate_error function
void ExactErrorEstimator::estimate_error (const System & system,
                                          ErrorVector & error_per_cell,
                                          const NumericVector<Number> * solution_vector,
                                          bool estimate_parent_error)
{
  // Ignore the fact that this variable is unused when !LIBMESH_ENABLE_AMR
  libmesh_ignore(estimate_parent_error);

  // The current mesh
  const MeshBase & mesh = system.get_mesh();

  // The dimensionality of the mesh
  const unsigned int dim = mesh.mesh_dimension();

  // The number of variables in the system
  const unsigned int n_vars = system.n_vars();

  // The DofMap for this system
  const DofMap & dof_map = system.get_dof_map();

  // Resize the error_per_cell vector to be
  // the number of elements, initialize it to 0.
  error_per_cell.resize (mesh.max_elem_id());
  std::fill (error_per_cell.begin(), error_per_cell.end(), 0.);

  // Prepare current_local_solution to localize a non-standard
  // solution vector if necessary
  if (solution_vector && solution_vector != system.solution.get())
    {
      NumericVector<Number> * newsol =
        const_cast<NumericVector<Number> *>(solution_vector);
      System & sys = const_cast<System &>(system);
      newsol->swap(*sys.solution);
      sys.update();
    }

  // Loop over all the variables in the system
  for (unsigned int var=0; var<n_vars; var++)
    {
      // Possibly skip this variable
      if (error_norm.weight(var) == 0.0) continue;

      // The (string) name of this variable
      const std::string & var_name = system.variable_name(var);

      // The type of finite element to use for this variable
      const FEType & fe_type = dof_map.variable_type (var);

      UniquePtr<FEBase> fe (FEBase::build (dim, fe_type));

      // Build an appropriate Gaussian quadrature rule
      UniquePtr<QBase> qrule =
        fe_type.default_quadrature_rule (dim,
                                         _extra_order);

      fe->attach_quadrature_rule (qrule.get());

      // Prepare a global solution and a MeshFunction of the fine system if we need one
      UniquePtr<MeshFunction> fine_values;
      UniquePtr<NumericVector<Number> > fine_soln = NumericVector<Number>::build(system.comm());
      if (_equation_systems_fine)
        {
          const System & fine_system = _equation_systems_fine->get_system(system.name());

          std::vector<Number> global_soln;
          // FIXME - we're assuming that the fine system solution gets
          // used even when a different vector is used for the coarse
          // system
          fine_system.update_global_solution(global_soln);
          fine_soln->init
            (cast_int<numeric_index_type>(global_soln.size()), true,
             SERIAL);
          (*fine_soln) = global_soln;

          fine_values = UniquePtr<MeshFunction>
            (new MeshFunction(*_equation_systems_fine,
                              *fine_soln,
                              fine_system.get_dof_map(),
                              fine_system.variable_number(var_name)));
          fine_values->init();
        } else {
        // Initialize functors if we're using them
        for (unsigned int i=0; i != _exact_values.size(); ++i)
          if (_exact_values[i])
            _exact_values[i]->init();

        for (unsigned int i=0; i != _exact_derivs.size(); ++i)
          if (_exact_derivs[i])
            _exact_derivs[i]->init();

        for (unsigned int i=0; i != _exact_hessians.size(); ++i)
          if (_exact_hessians[i])
            _exact_hessians[i]->init();
      }

      // Request the data we'll need to compute with
      fe->get_JxW();
      fe->get_phi();
      fe->get_dphi();
#ifdef LIBMESH_ENABLE_SECOND_DERIVATIVES
      fe->get_d2phi();
#endif
      fe->get_xyz();

#ifdef LIBMESH_ENABLE_AMR
      // If we compute on parent elements, we'll want to do so only
      // once on each, so we need to keep track of which we've done.
      std::vector<bool> computed_var_on_parent;

      if (estimate_parent_error)
        computed_var_on_parent.resize(error_per_cell.size(), false);
#endif

      // TODO: this ought to be threaded (and using subordinate
      // MeshFunction objects in each thread rather than a single
      // master)

      // Iterate over all the active elements in the mesh
      // that live on this processor.
      MeshBase::const_element_iterator
        elem_it  = mesh.active_local_elements_begin();
      const MeshBase::const_element_iterator
        elem_end = mesh.active_local_elements_end();

      for (;elem_it != elem_end; ++elem_it)
        {
          // e is necessarily an active element on the local processor
          const Elem * elem = *elem_it;
          const dof_id_type e_id = elem->id();

#ifdef LIBMESH_ENABLE_AMR
          // See if the parent of element e has been examined yet;
          // if not, we may want to compute the estimator on it
          const Elem * parent = elem->parent();

          // We only can compute and only need to compute on
          // parents with all active children
          bool compute_on_parent = true;
          if (!parent || !estimate_parent_error)
            compute_on_parent = false;
          else
            for (unsigned int c=0; c != parent->n_children(); ++c)
              if (!parent->child_ptr(c)->active())
                compute_on_parent = false;

          if (compute_on_parent &&
              !computed_var_on_parent[parent->id()])
            {
              computed_var_on_parent[parent->id()] = true;

              // Compute a projection onto the parent
              DenseVector<Number> Uparent;
              FEBase::coarsened_dof_values(*(system.current_local_solution),
                                           dof_map, parent, Uparent,
                                           var, false);

              error_per_cell[parent->id()] +=
                static_cast<ErrorVectorReal>
                (find_squared_element_error(system, var_name,
                                            parent, Uparent,
                                            fe.get(),
                                            fine_values.get()));
            }
#endif

          // Get the local to global degree of freedom maps
          std::vector<dof_id_type> dof_indices;
          dof_map.dof_indices (elem, dof_indices, var);
          const unsigned int n_dofs =
            cast_int<unsigned int>(dof_indices.size());
          DenseVector<Number> Uelem(n_dofs);
          for (unsigned int i=0; i != n_dofs; ++i)
            Uelem(i) = system.current_solution(dof_indices[i]);

          error_per_cell[e_id] +=
            static_cast<ErrorVectorReal>
            (find_squared_element_error(system, var_name, elem,
                                        Uelem, fe.get(),
                                        fine_values.get()));

        } // End loop over active local elements
    } // End loop over variables



  // Each processor has now computed the error contribuions
  // for its local elements.  We need to sum the vector
  // and then take the square-root of each component.  Note
  // that we only need to sum if we are running on multiple
  // processors, and we only need to take the square-root
  // if the value is nonzero.  There will in general be many
  // zeros for the inactive elements.

  // First sum the vector of estimated error values
  this->reduce_error(error_per_cell, system.comm());

  // Compute the square-root of each component.
  {
    LOG_SCOPE("std::sqrt()", "ExactErrorEstimator");
    for (dof_id_type i=0; i<error_per_cell.size(); i++)
      if (error_per_cell[i] != 0.)
        {
          libmesh_assert_greater (error_per_cell[i], 0.);
          error_per_cell[i] = std::sqrt(error_per_cell[i]);
        }
  }

  // If we used a non-standard solution before, now is the time to fix
  // the current_local_solution
  if (solution_vector && solution_vector != system.solution.get())
    {
      NumericVector<Number> * newsol =
        const_cast<NumericVector<Number> *>(solution_vector);
      System & sys = const_cast<System &>(system);
      newsol->swap(*sys.solution);
      sys.update();
    }
}
Esempio n. 7
0
int main(int argc, char** argv){

  //initialize libMesh
  LibMeshInit init(argc, argv);
  
  //parameters
  GetPot infile("fem_system_params.in");
  const bool transient                  = infile("transient", true);
  const Real deltat                     = infile("deltat", 0.005);
  unsigned int n_timesteps              = infile("n_timesteps", 20);
  const int nx                          = infile("nx",100);
  const int ny                          = infile("ny",100);
  const int nz                          = infile("nz",100);
  //const unsigned int dim                = 3;
  const unsigned int max_r_steps        = infile("max_r_steps", 3);
  const unsigned int max_r_level        = infile("max_r_level", 3);
  const Real refine_percentage          = infile("refine_percentage", 0.1);
  const Real coarsen_percentage         = infile("coarsen_percentage", 0.0);
  const std::string indicator_type      = infile("indicator_type", "kelly");
  const bool write_error                = infile("write_error",false);
  const bool flag_by_elem_frac          = infile("flag_by_elem_frac",true);
      
#ifdef LIBMESH_HAVE_EXODUS_API
  const unsigned int write_interval    = infile("write_interval", 5);
#endif

  // Create a mesh, with dimension to be overridden later, distributed
  // across the default MPI communicator.
  Mesh mesh(init.comm());
  
  //create mesh
  unsigned int dim;
  if(nz == 0){ //to check if oscillations happen in 2D as well...
    dim = 2;
    MeshTools::Generation::build_square(mesh, nx, ny, 497150.0, 501750.0, 537350.0, 540650.0, QUAD9);
  }else{
    dim = 3;
    MeshTools::Generation::build_cube(mesh, 
                                      nx, ny, nz, 
                                      497150.0, 501750.0, 
                                      537350.0, 540650.0, 
                                      0.0, 100.0, 
                                      HEX27);
  }
  
  // Print information about the mesh to the screen.
  mesh.print_info();
  
  // Create an equation systems object.
  EquationSystems equation_systems (mesh);
  
  //name system
  ContamTransSysInv & system = 
    equation_systems.add_system<ContamTransSysInv>("ContamTransInv");
    
  //solve as steady or transient
  if(transient){
    //system.time_solver = AutoPtr<TimeSolver>(new EulerSolver(system)); //backward Euler
    system.time_solver = AutoPtr<TimeSolver>(new SteadySolver(system));
    std::cout << "\n\nAaahhh transience not yet available!\n" << std::endl;
    n_timesteps = 1;
  }
  else{
    system.time_solver = AutoPtr<TimeSolver>(new SteadySolver(system));
    libmesh_assert_equal_to (n_timesteps, 1); //this doesn't seem to work?
  }
  
  // Initialize the system
  equation_systems.init ();
  
  //initial conditions
  read_initial_parameters();
  system.project_solution(initial_value, initial_grad,
                          equation_systems.parameters);
  finish_initialization();

  // Set the time stepping options...
  system.deltat = deltat;
  
  //...and the nonlinear solver options...
  NewtonSolver *solver = new NewtonSolver(system); 
  system.time_solver->diff_solver() = AutoPtr<DiffSolver>(solver); 
  solver->quiet = infile("solver_quiet", true);
  solver->verbose = !solver->quiet;
  solver->max_nonlinear_iterations =
    infile("max_nonlinear_iterations", 15);
  solver->relative_step_tolerance =
    infile("relative_step_tolerance", 1.e-3);
  solver->relative_residual_tolerance =
    infile("relative_residual_tolerance", 0.0);
  solver->absolute_residual_tolerance =
    infile("absolute_residual_tolerance", 0.0);

  // And the linear solver options
  solver->max_linear_iterations           = infile("max_linear_iterations", 10000);
  solver->initial_linear_tolerance        = infile("initial_linear_tolerance",1.e-13);
  solver->minimum_linear_tolerance        = infile("minimum_linear_tolerance",1.e-13);
  solver->linear_tolerance_multiplier     = infile("linear_tolerance_multiplier",1.e-3);
    
  // Mesh Refinement object - to test effect of constant refined mesh (not refined at every timestep)
  MeshRefinement mesh_refinement(mesh);
  mesh_refinement.refine_fraction() = refine_percentage;
  mesh_refinement.coarsen_fraction() = coarsen_percentage;
  mesh_refinement.max_h_level() = max_r_level;

  // Print information about the system to the screen.
  equation_systems.print_info();
  
  ExodusII_IO exodusIO = ExodusII_IO(mesh); //for writing multiple timesteps to one file
  
  for (unsigned int r_step=0; r_step<max_r_steps; r_step++)
    {
      std::cout << "\nBeginning Solve " << r_step+1 << std::endl;
      
      for (unsigned int t_step=0; t_step != n_timesteps; ++t_step)
        {
      
          std::cout << "\n\nSolving time step " << t_step << ", time = "
                    << system.time << std::endl;
          
          system.solve();
          system.postprocess();
          
          // Advance to the next timestep in a transient problem
          system.time_solver->advance_timestep();
   
      } //end stepping through time loop
      
      std::cout << "\n  Refining the mesh..." << std::endl;
      
      // The \p ErrorVector is a particular \p StatisticsVector
      // for computing error information on a finite element mesh.
      ErrorVector error;
      
      if (indicator_type == "patch")
        {
          // The patch recovery estimator should give a
          // good estimate of the solution interpolation
          // error.
          PatchRecoveryErrorEstimator error_estimator;
          error_estimator.set_patch_reuse(false); //anisotropy trips up reuse
          error_estimator.estimate_error (system, error);
        }
      else if (indicator_type == "kelly")
        {

          // The Kelly error estimator is based on
          // an error bound for the Poisson problem
          // on linear elements, but is useful for
          // driving adaptive refinement in many problems
          KellyErrorEstimator error_estimator;

          error_estimator.estimate_error (system, error);
        }
      
      // Write out the error distribution
      if(write_error){
        std::ostringstream ss;
        ss << r_step;
#ifdef LIBMESH_HAVE_EXODUS_API
        std::string error_output = "error_"+ss.str()+".e";
#else
        std::string error_output = "error_"+ss.str()+".gmv";
#endif
        error.plot_error( error_output, mesh );
      }
      
      // This takes the error in \p error and decides which elements
      // will be coarsened or refined. 
      if(flag_by_elem_frac)
        mesh_refinement.flag_elements_by_elem_fraction(error);
      else
        mesh_refinement.flag_elements_by_error_fraction (error);
      
      // This call actually refines and coarsens the flagged
      // elements.
      mesh_refinement.refine_and_coarsen_elements();
      
      // This call reinitializes the \p EquationSystems object for
      // the newly refined mesh.  One of the steps in the
      // reinitialization is projecting the \p solution,
      // \p old_solution, etc... vectors from the old mesh to
      // the current one.
      equation_systems.reinit ();
      
      std::cout << "System has: " << equation_systems.n_active_dofs()
                << " degrees of freedom."
                << std::endl;

    } //end refinement loop
    
  //use that final refinement
  for (unsigned int t_step=0; t_step != n_timesteps; ++t_step)
    {
  
      std::cout << "\n\nSolving time step " << t_step << ", time = "
                << system.time << std::endl;
      
      system.solve();
      system.postprocess();
      
      Number QoI_computed = system.get_QoI_value("computed", 0);
      std::cout<< "Computed QoI is " << std::setprecision(17) << QoI_computed << std::endl;
      
      // Advance to the next timestep in a transient problem
      system.time_solver->advance_timestep();

    } //end stepping through time loop
    
    
#ifdef LIBMESH_HAVE_EXODUS_API
  for (unsigned int t_step=0; t_step != n_timesteps; ++t_step)
    {
      // Write out this timestep if we're requested to
      if ((t_step+1)%write_interval == 0)
        {
          std::ostringstream ex_file_name;
          std::ostringstream tplot_file_name;

          // We write the file in the ExodusII format.
          //ex_file_name << "out_"
          //            << std::setw(3)
          //            << std::setfill('0')
          //            << std::right
          //            << t_step+1
          //            << ".e";
                      
          tplot_file_name << "out_"
                      << std::setw(3)
                      << std::setfill('0')
                      << std::right
                      << t_step+1
                      << ".plt";

          //ExodusII_IO(mesh).write_timestep(ex_file_name.str(),
          //                                 equation_systems,
          //                                 1, /* This number indicates how many time steps
          //                                       are being written to the file */
          //                                 system.time);
          exodusIO.write_timestep("output.exo", equation_systems, t_step+1, system.time); //outputs all timesteps in one file
          TecplotIO(mesh).write_equation_systems(tplot_file_name.str(), equation_systems);
        }
    }
#endif // #ifdef LIBMESH_HAVE_EXODUS_API     

  // All done.
  return 0;
  
} //end main
Esempio n. 8
0
// The main program
int main(int argc, char** argv)
{
    // Initialize libMesh
    LibMeshInit init(argc, argv);

    // Parameters
    GetPot infile("fem_system_params.in");
    const Real global_tolerance          = infile("global_tolerance", 0.);
    const unsigned int nelem_target      = infile("n_elements", 400);
    const bool transient                 = infile("transient", true);
    const Real deltat                    = infile("deltat", 0.005);
    unsigned int n_timesteps             = infile("n_timesteps", 1);
    //const unsigned int coarsegridsize    = infile("coarsegridsize", 1);
    const unsigned int coarserefinements = infile("coarserefinements", 0);
    const unsigned int max_adaptivesteps = infile("max_adaptivesteps", 10);
    //const unsigned int dim               = 2;

#ifdef LIBMESH_HAVE_EXODUS_API
    const unsigned int write_interval    = infile("write_interval", 5);
#endif

    // Create a mesh, with dimension to be overridden later, distributed
    // across the default MPI communicator.
    Mesh mesh(init.comm());
    GetPot infileForMesh("convdiff_mprime.in");
    std::string find_mesh_here = infileForMesh("mesh","psiLF_mesh.xda");
    mesh.read(find_mesh_here);

    std::cout << "Read in mesh from: " << find_mesh_here << "\n\n";

    // And an object to refine it
    MeshRefinement mesh_refinement(mesh);
    mesh_refinement.coarsen_by_parents() = true;
    mesh_refinement.absolute_global_tolerance() = global_tolerance;
    mesh_refinement.nelem_target() = nelem_target;
    mesh_refinement.refine_fraction() = 0.3;
    mesh_refinement.coarsen_fraction() = 0.3;
    mesh_refinement.coarsen_threshold() = 0.1;

    //mesh_refinement.uniformly_refine(coarserefinements);

    // Print information about the mesh to the screen.
    mesh.print_info();

    // Create an equation systems object.
    EquationSystems equation_systems (mesh);

    // Name system
    ConvDiff_MprimeSys & system =
        equation_systems.add_system<ConvDiff_MprimeSys>("Diff_ConvDiff_MprimeSys");

    // Steady-state problem
    system.time_solver =
        AutoPtr<TimeSolver>(new SteadySolver(system));

    // Sanity check that we are indeed solving a steady problem
    libmesh_assert_equal_to (n_timesteps, 1);

    // Read in all the equation systems data from the LF solve (system, solutions, rhs, etc)
    std::string find_psiLF_here = infileForMesh("psiLF_file","psiLF.xda");
    std::cout << "Looking for psiLF at: " << find_psiLF_here << "\n\n";

    equation_systems.read(find_psiLF_here, READ,
                          EquationSystems::READ_HEADER |
                          EquationSystems::READ_DATA |
                          EquationSystems::READ_ADDITIONAL_DATA);

    // Check that the norm of the solution read in is what we expect it to be
    Real readin_L2 = system.calculate_norm(*system.solution, 0, L2);
    std::cout << "Read in solution norm: "<< readin_L2 << std::endl << std::endl;

    //DEBUG
    //equation_systems.write("right_back_out.xda", WRITE, EquationSystems::WRITE_DATA |
    //		 EquationSystems::WRITE_ADDITIONAL_DATA);
#ifdef LIBMESH_HAVE_GMV
    //GMVIO(equation_systems.get_mesh()).write_equation_systems(std::string("right_back_out.gmv"), equation_systems);
#endif

    // Initialize the system
    //equation_systems.init ();  //already initialized by read-in

    // And the nonlinear solver options
    NewtonSolver *solver = new NewtonSolver(system);
    system.time_solver->diff_solver() = AutoPtr<DiffSolver>(solver);
    solver->quiet = infile("solver_quiet", true);
    solver->verbose = !solver->quiet;
    solver->max_nonlinear_iterations =
        infile("max_nonlinear_iterations", 15);
    solver->relative_step_tolerance =
        infile("relative_step_tolerance", 1.e-3);
    solver->relative_residual_tolerance =
        infile("relative_residual_tolerance", 0.0);
    solver->absolute_residual_tolerance =
        infile("absolute_residual_tolerance", 0.0);

    // And the linear solver options
    solver->max_linear_iterations =
        infile("max_linear_iterations", 50000);
    solver->initial_linear_tolerance =
        infile("initial_linear_tolerance", 1.e-3);

    // Print information about the system to the screen.
    equation_systems.print_info();

    // Now we begin the timestep loop to compute the time-accurate
    // solution of the equations...not that this is transient, but eh, why not...
    for (unsigned int t_step=0; t_step != n_timesteps; ++t_step)
    {
        // A pretty update message
        std::cout << "\n\nSolving time step " << t_step << ", time = "
                  << system.time << std::endl;

        // Adaptively solve the timestep
        unsigned int a_step = 0;
        for (; a_step != max_adaptivesteps; ++a_step)
        {   // VESTIGIAL for now ('vestigial' eh ? ;) )

            std::cout << "\n\n I should be skipped what are you doing here lalalalalalala *!**!*!*!*!*!* \n\n";

            system.solve();
            system.postprocess();
            ErrorVector error;
            AutoPtr<ErrorEstimator> error_estimator;

            // To solve to a tolerance in this problem we
            // need a better estimator than Kelly
            if (global_tolerance != 0.)
            {
                // We can't adapt to both a tolerance and a mesh
                // size at once
                libmesh_assert_equal_to (nelem_target, 0);

                UniformRefinementEstimator *u =
                    new UniformRefinementEstimator;

                // The lid-driven cavity problem isn't in H1, so
                // lets estimate L2 error
                u->error_norm = L2;

                error_estimator.reset(u);
            }
            else
            {
                // If we aren't adapting to a tolerance we need a
                // target mesh size
                libmesh_assert_greater (nelem_target, 0);

                // Kelly is a lousy estimator to use for a problem
                // not in H1 - if we were doing more than a few
                // timesteps we'd need to turn off or limit the
                // maximum level of our adaptivity eventually
                error_estimator.reset(new KellyErrorEstimator);
            }

            // Calculate error
            std::vector<Real> weights(9,1.0);  // based on u, v, p, c, their adjoints, and source parameter

            // Keep the same default norm type.
            std::vector<FEMNormType>
            norms(1, error_estimator->error_norm.type(0));
            error_estimator->error_norm = SystemNorm(norms, weights);

            error_estimator->estimate_error(system, error);

            // Print out status at each adaptive step.
            Real global_error = error.l2_norm();
            std::cout << "Adaptive step " << a_step << ": " << std::endl;
            if (global_tolerance != 0.)
                std::cout << "Global_error = " << global_error
                          << std::endl;
            if (global_tolerance != 0.)
                std::cout << "Worst element error = " << error.maximum()
                          << ", mean = " << error.mean() << std::endl;

            if (global_tolerance != 0.)
            {
                // If we've reached our desired tolerance, we
                // don't need any more adaptive steps
                if (global_error < global_tolerance)
                    break;
                mesh_refinement.flag_elements_by_error_tolerance(error);
            }
            else
            {
                // If flag_elements_by_nelem_target returns true, this
                // should be our last adaptive step.
                if (mesh_refinement.flag_elements_by_nelem_target(error))
                {
                    mesh_refinement.refine_and_coarsen_elements();
                    equation_systems.reinit();
                    a_step = max_adaptivesteps;
                    break;
                }
            }

            // Carry out the adaptive mesh refinement/coarsening
            mesh_refinement.refine_and_coarsen_elements();
            equation_systems.reinit();

            std::cout << "Refined mesh to "
                      << mesh.n_active_elem()
                      << " active elements and "
                      << equation_systems.n_active_dofs()
                      << " active dofs." << std::endl;
        } // End loop over adaptive steps

        // Do one last solve if necessary
        if (a_step == max_adaptivesteps)
        {
            QoISet qois;
            std::vector<unsigned int> qoi_indices;

            qoi_indices.push_back(0);
            qois.add_indices(qoi_indices);

            qois.set_weight(0, 1.0);

            system.assemble_qoi_sides = true; //QoI doesn't involve sides

            std::cout << "\n~*~*~*~*~*~*~*~*~ adjoint solve start ~*~*~*~*~*~*~*~*~\n" << std::endl;
            std::pair<unsigned int, Real> adjsolve = system.adjoint_solve();
            std::cout << "number of iterations to solve adjoint: " << adjsolve.first << std::endl;
            std::cout << "final residual of adjoint solve: " << adjsolve.second << std::endl;
            std::cout << "\n~*~*~*~*~*~*~*~*~ adjoint solve end ~*~*~*~*~*~*~*~*~" << std::endl;

            NumericVector<Number> &dual_solution = system.get_adjoint_solution(0);
            NumericVector<Number> &primal_solution = *system.solution;

            primal_solution.swap(dual_solution);
            ExodusII_IO(mesh).write_timestep("super_adjoint.exo",
                                             equation_systems,
                                             1, /* This number indicates how many time steps
	                                       are being written to the file */
                                             system.time);
            primal_solution.swap(dual_solution);

            system.assemble(); //overwrite residual read in from psiLF solve

            // The total error estimate
            system.postprocess(); //to compute M_HF(psiLF) and M_LF(psiLF) terms
            Real QoI_error_estimate = (-0.5*(system.rhs)->dot(dual_solution)) + system.get_MHF_psiLF() - system.get_MLF_psiLF();
            std::cout << "\n\n 0.5*M'_HF(psiLF)(superadj): " << std::setprecision(17) << 0.5*(system.rhs)->dot(dual_solution) << "\n";
            std::cout << " M_HF(psiLF): " << std::setprecision(17) << system.get_MHF_psiLF() << "\n";
            std::cout << " M_LF(psiLF): " << std::setprecision(17) << system.get_MLF_psiLF() << "\n";
            std::cout << "\n\n Residual L2 norm: " << system.calculate_norm(*system.rhs, L2) << "\n";
            std::cout << " Residual discrete L2 norm: " << system.calculate_norm(*system.rhs, DISCRETE_L2) << "\n";
            std::cout << " Super-adjoint L2 norm: " << system.calculate_norm(dual_solution, L2) << "\n";
            std::cout << " Super-adjoint discrete L2 norm: " << system.calculate_norm(dual_solution, DISCRETE_L2) << "\n";
            std::cout << "\n\n QoI error estimate: " << std::setprecision(17) << QoI_error_estimate << "\n\n";

            //DEBUG
            std::cout << "\n------------ herp derp ------------" << std::endl;
            //libMesh::out.precision(16);
            //dual_solution.print();
            //system.get_adjoint_rhs().print();

            AutoPtr<NumericVector<Number> > adjresid = system.solution->clone();
            (system.matrix)->vector_mult(*adjresid,system.get_adjoint_solution(0));
            SparseMatrix<Number>& adjmat = *system.matrix;
            (system.matrix)->get_transpose(adjmat);
            adjmat.vector_mult(*adjresid,system.get_adjoint_solution(0));
            //std::cout << "******************** matrix-superadj product (libmesh) ************************" << std::endl;
            //adjresid->print();
            adjresid->add(-1.0, system.get_adjoint_rhs(0));
            //std::cout << "******************** superadjoint system residual (libmesh) ***********************" << std::endl;
            //adjresid->print();
            std::cout << "\n\nadjoint system residual (discrete L2): " << system.calculate_norm(*adjresid,DISCRETE_L2) << std::endl;
            std::cout << "adjoint system residual (L2, all): " << system.calculate_norm(*adjresid,L2) << std::endl;
            std::cout << "adjoint system residual (L2, 0): " << system.calculate_norm(*adjresid,0,L2) << std::endl;
            std::cout << "adjoint system residual (L2, 1): " << system.calculate_norm(*adjresid,1,L2) << std::endl;
            std::cout << "adjoint system residual (L2, 2): " << system.calculate_norm(*adjresid,2,L2) << std::endl;
            std::cout << "adjoint system residual (L2, 3): " << system.calculate_norm(*adjresid,3,L2) << std::endl;
            std::cout << "adjoint system residual (L2, 4): " << system.calculate_norm(*adjresid,4,L2) << std::endl;
            std::cout << "adjoint system residual (L2, 5): " << system.calculate_norm(*adjresid,5,L2) << std::endl;
            /*
            	AutoPtr<NumericVector<Number> > sadj_matlab = system.solution->clone();
            	AutoPtr<NumericVector<Number> > adjresid_matlab = system.solution->clone();
            	if(FILE *fp=fopen("superadj_matlab.txt","r")){
              	Real value;
              	int counter = 0;
              	int flag = 1;
              	while(flag != -1){
              		flag = fscanf(fp,"%lf",&value);
              		if(flag != -1){
            				sadj_matlab->set(counter, value);
            				counter += 1;
              		}
              	}
              	fclose(fp);
            	}
            	(system.matrix)->vector_mult(*adjresid_matlab,*sadj_matlab);
            	//std::cout << "******************** matrix-superadj product (matlab) ***********************" << std::endl;
            	//adjresid_matlab->print();
            	adjresid_matlab->add(-1.0, system.get_adjoint_rhs(0));
            	//std::cout << "******************** superadjoint system residual (matlab) ***********************" << std::endl;
            	//adjresid_matlab->print();
            	std::cout << "\n\nmatlab import adjoint system residual (discrete L2): " << system.calculate_norm(*adjresid_matlab,DISCRETE_L2) << "\n" << std::endl;
            */
            /*
            	AutoPtr<NumericVector<Number> > sadj_fwd_hack = system.solution->clone();
            	AutoPtr<NumericVector<Number> > adjresid_fwd_hack = system.solution->clone();
            	if(FILE *fp=fopen("superadj_forward_hack.txt","r")){
              	Real value;
              	int counter = 0;
              	int flag = 1;
              	while(flag != -1){
              		flag = fscanf(fp,"%lf",&value);
              		if(flag != -1){
            				sadj_fwd_hack->set(counter, value);
            				counter += 1;
              		}
              	}
              	fclose(fp);
            	}
            	(system.matrix)->vector_mult(*adjresid_fwd_hack,*sadj_fwd_hack);
            	//std::cout << "******************** matrix-superadj product (fwd_hack) ***********************" << std::endl;
            	//adjresid_fwd_hack->print();
            	adjresid_fwd_hack->add(-1.0, system.get_adjoint_rhs(0));
            	//std::cout << "******************** superadjoint system residual (fwd_hack) ***********************" << std::endl;
            	//adjresid_fwd_hack->print();
            	std::cout << "\n\nfwd_hack import adjoint system residual (discrete L2): " << system.calculate_norm(*adjresid_fwd_hack,DISCRETE_L2) << "\n" << std::endl;
            	std::cout << "fwd_hack adjoint system residual (L2, 0): " << system.calculate_norm(*adjresid_fwd_hack,0,L2) << std::endl;
            	std::cout << "fwd_hack adjoint system residual (L2, 1): " << system.calculate_norm(*adjresid_fwd_hack,1,L2) << std::endl;
            	std::cout << "fwd_hack adjoint system residual (L2, 2): " << system.calculate_norm(*adjresid_fwd_hack,2,L2) << std::endl;
            	std::cout << "fwd_hack adjoint system residual (L2, 3): " << system.calculate_norm(*adjresid_fwd_hack,3,L2) << std::endl;
            	std::cout << "fwd_hack adjoint system residual (L2, 4): " << system.calculate_norm(*adjresid_fwd_hack,4,L2) << std::endl;
            	std::cout << "fwd_hack adjoint system residual (L2, 5): " << system.calculate_norm(*adjresid_fwd_hack,5,L2) << std::endl;
            */
            //std::cout << "************************ system.matrix ***********************" << std::endl;
            //system.matrix->print();

            std::cout << "\n------------ herp derp ------------" << std::endl;

            // The cell wise breakdown
            ErrorVector cell_wise_error;
            cell_wise_error.resize((system.rhs)->size());
            for(unsigned int i = 0; i < (system.rhs)->size() ; i++)
            {
                if(i < system.get_mesh().n_elem())
                    cell_wise_error[i] = fabs(-0.5*((system.rhs)->el(i) * dual_solution(i))
                                              + system.get_MHF_psiLF(i) - system.get_MLF_psiLF(i));
                else
                    cell_wise_error[i] = fabs(-0.5*((system.rhs)->el(i) * dual_solution(i)));

                /*csv from 'save data' from gmv output gives a few values at each node point (value
                for every element that shares that node), yet paraview display only seems to show one
                of them -> the value in an element is given at each of the nodes that it has, hence the
                repetition; what is displayed in paraview is each element's value; even though MHF_psiLF
                and MLF_psiLF are stored by element this seems to give elemental contributions that
                agree with if we had taken the superadj-residual dot product by integrating over elements*/

                /*at higher mesh resolutions and lower k, weird-looking artifacts start to appear and
                it no longer agrees with output from manual integration of superadj-residual...*/
            }
            // Plot it
            std::ostringstream error_gmv;
            error_gmv << "error.gmv";
            cell_wise_error.plot_error(error_gmv.str(), equation_systems.get_mesh());

            //alternate element-wise breakdown, outputed as values matched to element centroids; for matlab plotz
            primal_solution.swap(dual_solution);
            system.postprocess(1);
            primal_solution.swap(dual_solution);
            system.postprocess(2);
            std::cout << "\n\n -0.5*M'_HF(psiLF)(superadj): " << std::setprecision(17) << system.get_half_adj_weighted_resid() << "\n";
            primal_solution.swap(dual_solution);

            std::string write_error_here = infileForMesh("error_est_output_file", "error_est_breakdown.dat");
            std::ofstream output(write_error_here);
            for(unsigned int i = 0 ; i < system.get_mesh().n_elem(); i++) {
                Point elem_cent = system.get_mesh().elem(i)->centroid();
                if(output.is_open()) {
                    output << elem_cent(0) << " " << elem_cent(1) << " "
                           << fabs(system.get_half_adj_weighted_resid(i) + system.get_MHF_psiLF(i) - system.get_MLF_psiLF(i)) << "\n";
                }
            }
            output.close();

        } // End if at max adaptive steps

#ifdef LIBMESH_HAVE_EXODUS_API
        // Write out this timestep if we're requested to
        if ((t_step+1)%write_interval == 0)
        {
            std::ostringstream file_name;
            /*
                // We write the file in the ExodusII format.
                file_name << "out_"
                          << std::setw(3)
                          << std::setfill('0')
                          << std::right
                          << t_step+1
                          << ".e";
            			//this should write out the primal which should be the same as what's read in...
            			ExodusII_IO(mesh).write_timestep(file_name.str(),
            							                        equation_systems,
            							                        1, //number of time steps written to file
            							                        system.time);
            */
        }
#endif // #ifdef LIBMESH_HAVE_EXODUS_API
    }

    // All done.
    return 0;

} //end main
void AdjointResidualErrorEstimator::estimate_error (const System & _system,
                                                    ErrorVector & error_per_cell,
                                                    const NumericVector<Number> * solution_vector,
                                                    bool estimate_parent_error)
{
  LOG_SCOPE("estimate_error()", "AdjointResidualErrorEstimator");

  // The current mesh
  const MeshBase & mesh = _system.get_mesh();

  // Resize the error_per_cell vector to be
  // the number of elements, initialize it to 0.
  error_per_cell.resize (mesh.max_elem_id());
  std::fill (error_per_cell.begin(), error_per_cell.end(), 0.);

  // Get the number of variables in the system
  unsigned int n_vars = _system.n_vars();

  // We need to make a map of the pointer to the solution vector
  std::map<const System *, const NumericVector<Number> *>solutionvecs;
  solutionvecs[&_system] = _system.solution.get();

  // Solve the dual problem if we have to
  if (!_system.is_adjoint_already_solved())
    {
      // FIXME - we'll need to change a lot of APIs to make this trick
      // work with a const System...
      System &  system = const_cast<System &>(_system);
      system.adjoint_solve(_qoi_set);
    }

  // Flag to check whether we have not been asked to weight the variable error contributions in any specific manner
  bool error_norm_is_identity = error_norm.is_identity();

  // Create an ErrorMap/ErrorVector to store the primal, dual and total_dual variable errors
  ErrorMap primal_errors_per_cell;
  ErrorMap dual_errors_per_cell;
  ErrorMap total_dual_errors_per_cell;
  // Allocate ErrorVectors to this map if we're going to use it
  if (!error_norm_is_identity)
    for(unsigned int v = 0; v < n_vars; v++)
      {
        primal_errors_per_cell[std::make_pair(&_system, v)] = new ErrorVector;
        dual_errors_per_cell[std::make_pair(&_system, v)] = new ErrorVector;
        total_dual_errors_per_cell[std::make_pair(&_system, v)] = new ErrorVector;
      }
  ErrorVector primal_error_per_cell;
  ErrorVector dual_error_per_cell;
  ErrorVector total_dual_error_per_cell;

  // Have we been asked to weight the variable error contributions in any specific manner
  if(!error_norm_is_identity) // If we do
    {
      // Estimate the primal problem error for each variable
      _primal_error_estimator->estimate_errors
        (_system.get_equation_systems(), primal_errors_per_cell, &solutionvecs, estimate_parent_error);
    }
  else // If not
    {
      // Just get the combined error estimate
      _primal_error_estimator->estimate_error
        (_system, primal_error_per_cell, solution_vector, estimate_parent_error);
    }

  // Sum and weight the dual error estimate based on our QoISet
  for (unsigned int i = 0; i != _system.qoi.size(); ++i)
    {
      if (_qoi_set.has_index(i))
        {
          // Get the weight for the current QoI
          Real error_weight = _qoi_set.weight(i);

          // We need to make a map of the pointer to the adjoint solution vector
          std::map<const System *, const NumericVector<Number> *>adjointsolutionvecs;
          adjointsolutionvecs[&_system] = &_system.get_adjoint_solution(i);

          // Have we been asked to weight the variable error contributions in any specific manner
          if(!error_norm_is_identity) // If we have
            {
              _dual_error_estimator->estimate_errors
                (_system.get_equation_systems(), dual_errors_per_cell, &adjointsolutionvecs,
                 estimate_parent_error);
            }
          else // If not
            {
              // Just get the combined error estimate
              _dual_error_estimator->estimate_error
                (_system, dual_error_per_cell, &(_system.get_adjoint_solution(i)), estimate_parent_error);
            }

          std::size_t error_size;

          // Get the size of the first ErrorMap vector; this will give us the number of elements
          if(!error_norm_is_identity) // If in non default weights case
            {
              error_size = dual_errors_per_cell[std::make_pair(&_system, 0)]->size();
            }
          else // If in the standard default weights case
            {
              error_size = dual_error_per_cell.size();
            }

          // Resize the ErrorVector(s)
          if(!error_norm_is_identity)
            {
              // Loop over variables
              for(unsigned int v = 0; v < n_vars; v++)
                {
                  libmesh_assert(!total_dual_errors_per_cell[std::make_pair(&_system, v)]->size() ||
                                 total_dual_errors_per_cell[std::make_pair(&_system, v)]->size() == error_size) ;
                  total_dual_errors_per_cell[std::make_pair(&_system, v)]->resize(error_size);
                }
            }
          else
            {
              libmesh_assert(!total_dual_error_per_cell.size() ||
                             total_dual_error_per_cell.size() == error_size);
              total_dual_error_per_cell.resize(error_size);
            }

          for (std::size_t e = 0; e != error_size; ++e)
            {
              // Have we been asked to weight the variable error contributions in any specific manner
              if(!error_norm_is_identity) // If we have
                {
                  // Loop over variables
                  for(unsigned int v = 0; v < n_vars; v++)
                    {
                      // Now fill in total_dual_error ErrorMap with the weight
                      (*total_dual_errors_per_cell[std::make_pair(&_system, v)])[e] +=
                        static_cast<ErrorVectorReal>
                        (error_weight *
                         (*dual_errors_per_cell[std::make_pair(&_system, v)])[e]);
                    }
                }
              else // If not
                {
                  total_dual_error_per_cell[e] +=
                    static_cast<ErrorVectorReal>(error_weight * dual_error_per_cell[e]);
                }
            }
        }
    }

  // Do some debugging plots if requested
  if (!error_plot_suffix.empty())
    {
      if(!error_norm_is_identity) // If we have
        {
          // Loop over variables
          for(unsigned int v = 0; v < n_vars; v++)
            {
              std::ostringstream primal_out;
              std::ostringstream dual_out;
              primal_out << "primal_" << error_plot_suffix << ".";
              dual_out << "dual_" << error_plot_suffix << ".";

              primal_out << std::setw(1)
                         << std::setprecision(0)
                         << std::setfill('0')
                         << std::right
                         << v;

              dual_out << std::setw(1)
                       << std::setprecision(0)
                       << std::setfill('0')
                       << std::right
                       << v;

              (*primal_errors_per_cell[std::make_pair(&_system, v)]).plot_error(primal_out.str(), _system.get_mesh());
              (*total_dual_errors_per_cell[std::make_pair(&_system, v)]).plot_error(dual_out.str(), _system.get_mesh());

              primal_out.clear();
              dual_out.clear();
            }
        }
      else // If not
        {
          std::ostringstream primal_out;
          std::ostringstream dual_out;
          primal_out << "primal_" << error_plot_suffix ;
          dual_out << "dual_" << error_plot_suffix ;

          primal_error_per_cell.plot_error(primal_out.str(), _system.get_mesh());
          total_dual_error_per_cell.plot_error(dual_out.str(), _system.get_mesh());

          primal_out.clear();
          dual_out.clear();
        }
    }

  // Weight the primal error by the dual error using the system norm object
  // FIXME: we ought to thread this
  for (unsigned int i=0; i != error_per_cell.size(); ++i)
    {
      // Have we been asked to weight the variable error contributions in any specific manner
      if(!error_norm_is_identity) // If we do
        {
          // Create Error Vectors to pass to calculate_norm
          std::vector<Real> cell_primal_error;
          std::vector<Real> cell_dual_error;

          for(unsigned int v = 0; v < n_vars; v++)
            {
              cell_primal_error.push_back((*primal_errors_per_cell[std::make_pair(&_system, v)])[i]);
              cell_dual_error.push_back((*total_dual_errors_per_cell[std::make_pair(&_system, v)])[i]);
            }

          error_per_cell[i] =
            static_cast<ErrorVectorReal>
            (error_norm.calculate_norm(cell_primal_error, cell_dual_error));
        }
      else // If not
        {
          error_per_cell[i] = primal_error_per_cell[i]*total_dual_error_per_cell[i];
        }
    }

  // Deallocate the ErrorMap contents if we allocated them earlier
  if (!error_norm_is_identity)
    for(unsigned int v = 0; v < n_vars; v++)
      {
        delete primal_errors_per_cell[std::make_pair(&_system, v)];
        delete dual_errors_per_cell[std::make_pair(&_system, v)];
        delete total_dual_errors_per_cell[std::make_pair(&_system, v)];
      }
}
//-----------------------------------------------------------------
// Mesh refinement methods
void MeshRefinement::flag_elements_by_error_fraction (const ErrorVector& error_per_cell,
						      const Real refine_frac,
						      const Real coarsen_frac,
						      const unsigned int max_l)
{
  parallel_only();

  // The function arguments are currently just there for
  // backwards_compatibility
  if (!_use_member_parameters)
  {
    // If the user used non-default parameters, lets warn
    // that they're deprecated
    if (refine_frac != 0.3 ||
	coarsen_frac != 0.0 ||
	max_l != libMesh::invalid_uint)
      libmesh_deprecated();

    _refine_fraction = refine_frac;
    _coarsen_fraction = coarsen_frac;
    _max_h_level = max_l;
  }

  // Check for valid fractions..
  // The fraction values must be in [0,1]
  libmesh_assert_greater_equal (_refine_fraction, 0);
  libmesh_assert_less_equal (_refine_fraction, 1);
  libmesh_assert_greater_equal (_coarsen_fraction, 0);
  libmesh_assert_less_equal (_coarsen_fraction, 1);

  // Clean up the refinement flags.  These could be left
  // over from previous refinement steps.
  this->clean_refinement_flags();

  // We're getting the minimum and maximum error values
  // for the ACTIVE elements
  Real error_min = 1.e30;
  Real error_max = 0.;

  // And, if necessary, for their parents
  Real parent_error_min = 1.e30;
  Real parent_error_max = 0.;

  // Prepare another error vector if we need to sum parent errors
  ErrorVector error_per_parent;
  if (_coarsen_by_parents)
  {
    create_parent_error_vector(error_per_cell,
			       error_per_parent,
			       parent_error_min,
			       parent_error_max);
  }

  // We need to loop over all active elements to find the minimum
  MeshBase::element_iterator       el_it  =
    _mesh.active_local_elements_begin();
  const MeshBase::element_iterator el_end =
    _mesh.active_local_elements_end();

  for (; el_it != el_end; ++el_it)
  {
    const unsigned int id  = (*el_it)->id();
    libmesh_assert_less (id, error_per_cell.size());

    error_max = std::max (error_max, error_per_cell[id]);
    error_min = std::min (error_min, error_per_cell[id]);
  }
  CommWorld.max(error_max);
  CommWorld.min(error_min);

  // Compute the cutoff values for coarsening and refinement
  const Real error_delta = (error_max - error_min);
  const Real parent_error_delta = parent_error_max - parent_error_min;

  const Real refine_cutoff  = (1.- _refine_fraction)*error_max;
  const Real coarsen_cutoff = _coarsen_fraction*error_delta + error_min;
  const Real parent_cutoff = _coarsen_fraction*parent_error_delta + error_min;

//   // Print information about the error
//   libMesh::out << " Error Information:"                     << std::endl
// 	    << " ------------------"                     << std::endl
// 	    << "   min:              " << error_min      << std::endl
// 	    << "   max:              " << error_max      << std::endl
// 	    << "   delta:            " << error_delta    << std::endl
// 	    << "     refine_cutoff:  " << refine_cutoff  << std::endl
// 	    << "     coarsen_cutoff: " << coarsen_cutoff << std::endl;



  // Loop over the elements and flag them for coarsening or
  // refinement based on the element error

  MeshBase::element_iterator       e_it  =
    _mesh.active_elements_begin();
  const MeshBase::element_iterator e_end =
    _mesh.active_elements_end();
  for (; e_it != e_end; ++e_it)
  {
    Elem* elem             = *e_it;
    const unsigned int id  = elem->id();

    libmesh_assert_less (id, error_per_cell.size());

    const float elem_error = error_per_cell[id];

    if (_coarsen_by_parents)
    {
      Elem* parent           = elem->parent();
      if (parent)
      {
	const unsigned int parentid  = parent->id();
	if (error_per_parent[parentid] >= 0. &&
	    error_per_parent[parentid] <= parent_cutoff)
	  elem->set_refinement_flag(Elem::COARSEN);
      }
    }
    // Flag the element for coarsening if its error
    // is <= coarsen_fraction*delta + error_min
    else if (elem_error <= coarsen_cutoff)
    {
      elem->set_refinement_flag(Elem::COARSEN);
    }

    // Flag the element for refinement if its error
    // is >= refinement_cutoff.
    if (elem_error >= refine_cutoff)
      if (elem->level() < _max_h_level)
	elem->set_refinement_flag(Elem::REFINE);
  }
}
bool MeshRefinement::flag_elements_by_nelem_target (const ErrorVector& error_per_cell)
{
  parallel_only();

  // Check for valid fractions..
  // The fraction values must be in [0,1]
  libmesh_assert_greater_equal (_refine_fraction, 0);
  libmesh_assert_less_equal (_refine_fraction, 1);
  libmesh_assert_greater_equal (_coarsen_fraction, 0);
  libmesh_assert_less_equal (_coarsen_fraction, 1);

  // This function is currently only coded to work when coarsening by
  // parents - it's too hard to guess how many coarsenings will be
  // performed otherwise.
  libmesh_assert (_coarsen_by_parents);

  // The number of active elements in the mesh - hopefully less than
  // 2 billion on 32 bit machines
  const unsigned int n_active_elem  = _mesh.n_active_elem();

  // The maximum number of active elements to flag for coarsening
  const unsigned int max_elem_coarsen =
    static_cast<unsigned int>(_coarsen_fraction * n_active_elem) + 1;

  // The maximum number of elements to flag for refinement
  const unsigned int max_elem_refine  =
    static_cast<unsigned int>(_refine_fraction  * n_active_elem) + 1;

  // Clean up the refinement flags.  These could be left
  // over from previous refinement steps.
  this->clean_refinement_flags();

  // The target number of elements to add or remove
  const int n_elem_new = _nelem_target - n_active_elem;

  // Create an vector with active element errors and ids,
  // sorted by highest errors first
  const unsigned int max_elem_id = _mesh.max_elem_id();
  std::vector<std::pair<float, unsigned int> > sorted_error;

  sorted_error.reserve (n_active_elem);

  // On a ParallelMesh, we need to communicate to know which remote ids
  // correspond to active elements.
  {
    std::vector<bool> is_active(max_elem_id, false);

    MeshBase::element_iterator       elem_it  = _mesh.active_local_elements_begin();
    const MeshBase::element_iterator elem_end = _mesh.active_local_elements_end();
    for (; elem_it != elem_end; ++elem_it)
      {
        const unsigned int eid = (*elem_it)->id();
        is_active[eid] = true;
        libmesh_assert_less (eid, error_per_cell.size());
        sorted_error.push_back
          (std::make_pair(error_per_cell[eid], eid));
      }

    CommWorld.max(is_active);

    CommWorld.allgather(sorted_error);
  }

  // Default sort works since pairs are sorted lexicographically
  std::sort (sorted_error.begin(), sorted_error.end());
  std::reverse (sorted_error.begin(), sorted_error.end());

  // Create a sorted error vector with coarsenable parent elements
  // only, sorted by lowest errors first
  ErrorVector error_per_parent;
  std::vector<std::pair<float, unsigned int> > sorted_parent_error;
  Real parent_error_min, parent_error_max;

  create_parent_error_vector(error_per_cell,
                             error_per_parent,
                             parent_error_min,
                             parent_error_max);

  // create_parent_error_vector sets values for non-parents and
  // non-coarsenable parents to -1.  Get rid of them.
  for (unsigned int i=0; i != error_per_parent.size(); ++i)
    if (error_per_parent[i] != -1)
      sorted_parent_error.push_back(std::make_pair(error_per_parent[i], i));

  std::sort (sorted_parent_error.begin(), sorted_parent_error.end());

  // Keep track of how many elements we plan to coarsen & refine
  unsigned int coarsen_count = 0;
  unsigned int refine_count = 0;

  const unsigned int dim = _mesh.mesh_dimension();
  unsigned int twotodim = 1;
  for (unsigned int i=0; i!=dim; ++i)
    twotodim *= 2;

  // First, let's try to get our element count to target_nelem
  if (n_elem_new >= 0)
  {
    // Every element refinement creates at least
    // 2^dim-1 new elements
    refine_count =
      std::min(static_cast<unsigned int>(n_elem_new / (twotodim-1)),
	       max_elem_refine);
  }
  else
  {
    // Every successful element coarsening is likely to destroy
    // 2^dim-1 net elements.
    coarsen_count =
      std::min(static_cast<unsigned int>(-n_elem_new / (twotodim-1)),
	       max_elem_coarsen);
  }

  // Next, let's see if we can trade any refinement for coarsening
  while (coarsen_count < max_elem_coarsen &&
         refine_count < max_elem_refine &&
         coarsen_count < sorted_parent_error.size() &&
         refine_count < sorted_error.size() &&
         sorted_error[refine_count].first >
	 sorted_parent_error[coarsen_count].first * _coarsen_threshold)
  {
    coarsen_count++;
    refine_count++;
  }

  // On a ParallelMesh, we need to communicate to know which remote ids
  // correspond to refinable elements
  unsigned int successful_refine_count = 0;
  {
    std::vector<bool> is_refinable(max_elem_id, false);

    for (unsigned int i=0; i != sorted_error.size(); ++i)
      {
        unsigned int eid = sorted_error[i].second;
        Elem *elem = _mesh.query_elem(eid);
        if (elem && elem->level() < _max_h_level)
	  is_refinable[eid] = true;
      }
    CommWorld.max(is_refinable);

    if (refine_count > max_elem_refine)
      refine_count = max_elem_refine;
    for (unsigned int i=0; i != sorted_error.size(); ++i)
      {
        if (successful_refine_count >= refine_count)
          break;

        unsigned int eid = sorted_error[i].second;
        Elem *elem = _mesh.query_elem(eid);
        if (is_refinable[eid])
          {
            if (elem)
	      elem->set_refinement_flag(Elem::REFINE);
	    successful_refine_count++;
          }
      }
  }

  // If we couldn't refine enough elements, don't coarsen too many
  // either
  if (coarsen_count < (refine_count - successful_refine_count))
    coarsen_count = 0;
  else
    coarsen_count -= (refine_count - successful_refine_count);

  if (coarsen_count > max_elem_coarsen)
    coarsen_count = max_elem_coarsen;

  unsigned int successful_coarsen_count = 0;
  if (coarsen_count)
    {
      for (unsigned int i=0; i != sorted_parent_error.size(); ++i)
        {
          if (successful_coarsen_count >= coarsen_count * twotodim)
            break;

          unsigned int parent_id = sorted_parent_error[i].second;
          Elem *parent = _mesh.query_elem(parent_id);

          // On a ParallelMesh we skip remote elements
          if (!parent)
            continue;

          libmesh_assert(parent->has_children());
          for (unsigned int c=0; c != parent->n_children(); ++c)
            {
              Elem *elem = parent->child(c);
              if (elem && elem != remote_elem)
                {
                  libmesh_assert(elem->active());
                  elem->set_refinement_flag(Elem::COARSEN);
                  successful_coarsen_count++;
                }
            }
        }
    }

  // Return true if we've done all the AMR/C we can
  if (!successful_coarsen_count &&
      !successful_refine_count)
    return true;
  // And false if there may still be more to do.
  return false;
}
Esempio n. 12
0
Real ErrorVector::median() const
{
  ErrorVector ev = (*this);

  return ev.median();
}
Esempio n. 13
0
// The main program.
int main (int argc, char** argv)
{
  // Initialize libMesh.
  LibMeshInit init (argc, argv);

  // This example fails without at least double precision FP
#ifdef LIBMESH_DEFAULT_SINGLE_PRECISION
  libmesh_example_assert(false, "--disable-singleprecision");
#endif

#ifndef LIBMESH_ENABLE_AMR
  libmesh_example_assert(false, "--enable-amr");
#else

  // Trilinos solver NaNs by default on the zero pressure block.
  // We'll skip this example for now.
  if (libMesh::default_solver_package() == TRILINOS_SOLVERS)
    {
      std::cout << "We skip fem_system_ex1 when using the Trilinos solvers.\n"
                << std::endl;
      return 0;
    }

  // Parse the input file
  GetPot infile("fem_system_ex1.in");

  // Read in parameters from the input file
  const Real global_tolerance          = infile("global_tolerance", 0.);
  const unsigned int nelem_target      = infile("n_elements", 400);
  const bool transient                 = infile("transient", true);
  const Real deltat                    = infile("deltat", 0.005);
  unsigned int n_timesteps             = infile("n_timesteps", 20);
  const unsigned int write_interval    = infile("write_interval", 5);
  const unsigned int coarsegridsize    = infile("coarsegridsize", 1);
  const unsigned int coarserefinements = infile("coarserefinements", 0);
  const unsigned int max_adaptivesteps = infile("max_adaptivesteps", 10);
  const unsigned int dim               = infile("dimension", 2);

  // Skip higher-dimensional examples on a lower-dimensional libMesh build
  libmesh_example_assert(dim <= LIBMESH_DIM, "2D/3D support");
  
  // We have only defined 2 and 3 dimensional problems
  libmesh_assert (dim == 2 || dim == 3);

  // Create a mesh.
  Mesh mesh;
  
  // And an object to refine it
  MeshRefinement mesh_refinement(mesh);
  mesh_refinement.coarsen_by_parents() = true;
  mesh_refinement.absolute_global_tolerance() = global_tolerance;
  mesh_refinement.nelem_target() = nelem_target;
  mesh_refinement.refine_fraction() = 0.3;
  mesh_refinement.coarsen_fraction() = 0.3;
  mesh_refinement.coarsen_threshold() = 0.1;

  // Use the MeshTools::Generation mesh generator to create a uniform
  // grid on the square [-1,1]^D.  We instruct the mesh generator
  // to build a mesh of 8x8 \p Quad9 elements in 2D, or \p Hex27
  // elements in 3D.  Building these higher-order elements allows
  // us to use higher-order approximation, as in example 3.
  if (dim == 2)
    MeshTools::Generation::build_square (mesh,
                                         coarsegridsize,
                                         coarsegridsize,
                                         0., 1.,
                                         0., 1.,
                                         QUAD9);
  else if (dim == 3)
    MeshTools::Generation::build_cube (mesh,
                                       coarsegridsize,
                                       coarsegridsize,
                                       coarsegridsize,
                                       0., 1.,
                                       0., 1.,
                                       0., 1.,
                                       HEX27);

  mesh_refinement.uniformly_refine(coarserefinements);

  // Print information about the mesh to the screen.
  mesh.print_info();

  // Create an equation systems object.
  EquationSystems equation_systems (mesh);

  // Declare the system "Navier-Stokes" and its variables.
  NavierSystem & system = 
    equation_systems.add_system<NavierSystem> ("Navier-Stokes");

  // Solve this as a time-dependent or steady system
  if (transient)
    system.time_solver =
      AutoPtr<TimeSolver>(new EulerSolver(system));
  else
    {
      system.time_solver =
        AutoPtr<TimeSolver>(new SteadySolver(system));
      libmesh_assert_equal_to (n_timesteps, 1);
    }

  // Initialize the system
  equation_systems.init ();

  // Set the time stepping options
  system.deltat = deltat;

  // And the nonlinear solver options
  DiffSolver &solver = *(system.time_solver->diff_solver().get());
  solver.quiet = infile("solver_quiet", true);
  solver.verbose = !solver.quiet;
  solver.max_nonlinear_iterations =
    infile("max_nonlinear_iterations", 15);
  solver.relative_step_tolerance =
    infile("relative_step_tolerance", 1.e-3);
  solver.relative_residual_tolerance =
    infile("relative_residual_tolerance", 0.0);
  solver.absolute_residual_tolerance =
    infile("absolute_residual_tolerance", 0.0);
    
  // And the linear solver options
  solver.max_linear_iterations =
    infile("max_linear_iterations", 50000);
  solver.initial_linear_tolerance =
    infile("initial_linear_tolerance", 1.e-3);

  // Print information about the system to the screen.
  equation_systems.print_info();

  // Now we begin the timestep loop to compute the time-accurate
  // solution of the equations.
  for (unsigned int t_step=0; t_step != n_timesteps; ++t_step)
    {
      // A pretty update message
      std::cout << "\n\nSolving time step " << t_step << ", time = "
                << system.time << std::endl;

      // Adaptively solve the timestep
      unsigned int a_step = 0;
      for (; a_step != max_adaptivesteps; ++a_step)
        {
          system.solve();

          system.postprocess();

          ErrorVector error;

          AutoPtr<ErrorEstimator> error_estimator;

          // To solve to a tolerance in this problem we
          // need a better estimator than Kelly
          if (global_tolerance != 0.)
            {
              // We can't adapt to both a tolerance and a mesh
              // size at once
              libmesh_assert_equal_to (nelem_target, 0);

              UniformRefinementEstimator *u =
                new UniformRefinementEstimator;

              // The lid-driven cavity problem isn't in H1, so
              // lets estimate L2 error
              u->error_norm = L2;

              error_estimator.reset(u);
            }
          else
            {
              // If we aren't adapting to a tolerance we need a
              // target mesh size
              libmesh_assert_greater (nelem_target, 0);

              // Kelly is a lousy estimator to use for a problem
              // not in H1 - if we were doing more than a few
              // timesteps we'd need to turn off or limit the
              // maximum level of our adaptivity eventually
              error_estimator.reset(new KellyErrorEstimator);
            }

          // Calculate error based on u and v (and w?) but not p
	  std::vector<Real> weights(2,1.0);  // u, v
          if (dim == 3)
            weights.push_back(1.0);          // w
          weights.push_back(0.0);            // p
	  // Keep the same default norm type.
	  std::vector<FEMNormType>
	    norms(1, error_estimator->error_norm.type(0));
	  error_estimator->error_norm = SystemNorm(norms, weights);

          error_estimator->estimate_error(system, error);

          // Print out status at each adaptive step.
          Real global_error = error.l2_norm();
          std::cout << "Adaptive step " << a_step << ": " << std::endl;
          if (global_tolerance != 0.)
            std::cout << "Global_error = " << global_error 
                      << std::endl;
          if (global_tolerance != 0.)
            std::cout << "Worst element error = " << error.maximum()
                      << ", mean = " << error.mean() << std::endl;

          if (global_tolerance != 0.)
            {
              // If we've reached our desired tolerance, we
              // don't need any more adaptive steps
              if (global_error < global_tolerance)
                break;
              mesh_refinement.flag_elements_by_error_tolerance(error);
            }
          else
            {
              // If flag_elements_by_nelem_target returns true, this
              // should be our last adaptive step.
              if (mesh_refinement.flag_elements_by_nelem_target(error))
                {
                  mesh_refinement.refine_and_coarsen_elements();
                  equation_systems.reinit();
                  a_step = max_adaptivesteps;
                  break;
                }
            }

          // Carry out the adaptive mesh refinement/coarsening
          mesh_refinement.refine_and_coarsen_elements();
          equation_systems.reinit();

          std::cout << "Refined mesh to "
                    << mesh.n_active_elem()
                    << " active elements and "
                    << equation_systems.n_active_dofs()
                    << " active dofs." << std::endl;
        }
      // Do one last solve if necessary
      if (a_step == max_adaptivesteps)
        {
          system.solve();

          system.postprocess();
        }

      // Advance to the next timestep in a transient problem
      system.time_solver->advance_timestep();

#ifdef LIBMESH_HAVE_EXODUS_API
      // Write out this timestep if we're requested to
      if ((t_step+1)%write_interval == 0)
        {
          std::ostringstream file_name;

          // We write the file in the ExodusII format.
          file_name << "out_"
                    << std::setw(3)
                    << std::setfill('0')
                    << std::right
                    << t_step+1
                    << ".e";

          ExodusII_IO(mesh).write_timestep(file_name.str(),
					   equation_systems, 
					   1, /* This number indicates how many time steps 
						 are being written to the file */
					   system.time);
        }
#endif // #ifdef LIBMESH_HAVE_EXODUS_API
    }
#endif // #ifndef LIBMESH_ENABLE_AMR
  
  // All done.  
  return 0;
}
Esempio n. 14
0
// The main program.
int main (int argc, char ** argv)
{
  // Initialize libMesh.
  LibMeshInit init (argc, argv);

  // This example requires a linear solver package.
  libmesh_example_requires(libMesh::default_solver_package() != INVALID_SOLVER_PACKAGE,
                           "--enable-petsc, --enable-trilinos, or --enable-eigen");

#ifndef LIBMESH_ENABLE_AMR
  libmesh_example_requires(false, "--enable-amr");
#else

  // This doesn't converge with Eigen BICGSTAB for some reason...
  libmesh_example_requires(libMesh::default_solver_package() != EIGEN_SOLVERS, "--enable-petsc");

  // This doesn't converge without at least double precision
  libmesh_example_requires(sizeof(Real) > 4, "--disable-singleprecision");

  // Parse the input file
  GetPot infile("fem_system_ex4.in");

  // Read in parameters from the input file
  const Real global_tolerance          = infile("global_tolerance", 0.);
  const unsigned int nelem_target      = infile("n_elements", 400);
  const Real deltat                    = infile("deltat", 0.005);
  const unsigned int coarsegridsize    = infile("coarsegridsize", 20);
  const unsigned int coarserefinements = infile("coarserefinements", 0);
  const unsigned int max_adaptivesteps = infile("max_adaptivesteps", 10);
  const unsigned int dim               = infile("dimension", 2);

  // Skip higher-dimensional examples on a lower-dimensional libMesh build
  libmesh_example_requires(dim <= LIBMESH_DIM, "2D/3D support");

  // We have only defined 2 and 3 dimensional problems
  libmesh_assert (dim == 2 || dim == 3);

  // Create a mesh, with dimension to be overridden later, distributed
  // across the default MPI communicator.
  Mesh mesh(init.comm());

  // And an object to refine it
  MeshRefinement mesh_refinement(mesh);
  mesh_refinement.coarsen_by_parents() = true;
  mesh_refinement.absolute_global_tolerance() = global_tolerance;
  mesh_refinement.nelem_target() = nelem_target;
  mesh_refinement.refine_fraction() = 0.3;
  mesh_refinement.coarsen_fraction() = 0.3;
  mesh_refinement.coarsen_threshold() = 0.1;

  // Use the MeshTools::Generation mesh generator to create a uniform
  // grid on the square or cube.  We crop the domain at y=2/3 to allow
  // for a homogeneous Neumann BC in our benchmark there.
  boundary_id_type bcid = 3; // +y in 3D
  if (dim == 2)
    {
      MeshTools::Generation::build_square
        (mesh,
         coarsegridsize,
         coarsegridsize*2/3, // int arithmetic best we can do here
         0., 1.,
         0., 2./3.,
         QUAD9);
      bcid = 2; // +y in 2D
    }
  else if (dim == 3)
    {
      MeshTools::Generation::build_cube
        (mesh,
         coarsegridsize,
         coarsegridsize*2/3,
         coarsegridsize,
         0., 1.,
         0., 2./3.,
         0., 1.,
         HEX27);
    }

  {
    // Add boundary elements corresponding to the +y boundary of our
    // volume mesh
    std::set<boundary_id_type> bcids;
    bcids.insert(bcid);
    mesh.get_boundary_info().add_elements(bcids, mesh);
    mesh.prepare_for_use();
  }

  // To work around ExodusII file format limitations, we need elements
  // of different dimensionality to belong to different subdomains.
  // Our interior elements defaulted to subdomain id 0, so we'll set
  // boundary elements to subdomain 1.
  for (auto & elem : mesh.element_ptr_range())
    if (elem->dim() < dim)
      elem->subdomain_id() = 1;

  mesh_refinement.uniformly_refine(coarserefinements);

  // Print information about the mesh to the screen.
  mesh.print_info();

  // Create an equation systems object.
  EquationSystems equation_systems (mesh);

  // Declare the system "Heat" and its variables.
  HeatSystem & system =
    equation_systems.add_system<HeatSystem> ("Heat");

  // Solve this as a steady system
  system.time_solver = libmesh_make_unique<SteadySolver>(system);

  // Initialize the system
  equation_systems.init ();

  // Set the time stepping options
  system.deltat = deltat;

  // And the nonlinear solver options
  DiffSolver & solver = *(system.time_solver->diff_solver().get());
  solver.quiet = infile("solver_quiet", true);
  solver.verbose = !solver.quiet;
  solver.max_nonlinear_iterations = infile("max_nonlinear_iterations", 15);
  solver.relative_step_tolerance = infile("relative_step_tolerance", 1.e-3);
  solver.relative_residual_tolerance = infile("relative_residual_tolerance", 0.0);
  solver.absolute_residual_tolerance = infile("absolute_residual_tolerance", 0.0);

  // And the linear solver options
  solver.max_linear_iterations = infile("max_linear_iterations", 50000);
  solver.initial_linear_tolerance = infile("initial_linear_tolerance", 1.e-3);

  // Print information about the system to the screen.
  equation_systems.print_info();

  // Adaptively solve the steady solution
  unsigned int a_step = 0;
  for (; a_step != max_adaptivesteps; ++a_step)
    {
      system.solve();

      system.postprocess();

      ErrorVector error;

      std::unique_ptr<ErrorEstimator> error_estimator;

      // To solve to a tolerance in this problem we
      // need a better estimator than Kelly
      if (global_tolerance != 0.)
        {
          // We can't adapt to both a tolerance and a mesh
          // size at once
          libmesh_assert_equal_to (nelem_target, 0);

          UniformRefinementEstimator * u =
            new UniformRefinementEstimator;

          // The lid-driven cavity problem isn't in H1, so
          // lets estimate L2 error
          u->error_norm = L2;

          error_estimator.reset(u);
        }
      else
        {
          // If we aren't adapting to a tolerance we need a
          // target mesh size
          libmesh_assert_greater (nelem_target, 0);

          // Kelly is a lousy estimator to use for a problem
          // not in H1 - if we were doing more than a few
          // timesteps we'd need to turn off or limit the
          // maximum level of our adaptivity eventually
          error_estimator.reset(new KellyErrorEstimator);
        }

      error_estimator->estimate_error(system, error);

      // Print out status at each adaptive step.
      Real global_error = error.l2_norm();
      libMesh::out << "Adaptive step "
                   << a_step
                   << ": "
                   << std::endl;

      if (global_tolerance != 0.)
        libMesh::out << "Global_error = "
                     << global_error
                     << std::endl;

      if (global_tolerance != 0.)
        libMesh::out << "Worst element error = "
                     << error.maximum()
                     << ", mean = "
                     << error.mean()
                     << std::endl;

      if (global_tolerance != 0.)
        {
          // If we've reached our desired tolerance, we
          // don't need any more adaptive steps
          if (global_error < global_tolerance)
            break;
          mesh_refinement.flag_elements_by_error_tolerance(error);
        }
      else
        {
          // If flag_elements_by_nelem_target returns true, this
          // should be our last adaptive step.
          if (mesh_refinement.flag_elements_by_nelem_target(error))
            {
              mesh_refinement.refine_and_coarsen_elements();
              equation_systems.reinit();
              a_step = max_adaptivesteps;
              break;
            }
        }

      // Carry out the adaptive mesh refinement/coarsening
      mesh_refinement.refine_and_coarsen_elements();
      equation_systems.reinit();

      libMesh::out << "Refined mesh to "
                   << mesh.n_active_elem()
                   << " active elements and "
                   << equation_systems.n_active_dofs()
                   << " active dofs."
                   << std::endl;
    }
  // Do one last solve if necessary
  if (a_step == max_adaptivesteps)
    {
      system.solve();

      system.postprocess();
    }


#ifdef LIBMESH_HAVE_EXODUS_API
  ExodusII_IO(mesh).write_equation_systems
    ("out.e", equation_systems);
#endif // #ifdef LIBMESH_HAVE_EXODUS_API

#ifdef LIBMESH_HAVE_GMV
  GMVIO(mesh).write_equation_systems
    ("out.gmv", equation_systems);
#endif // #ifdef LIBMESH_HAVE_GMV

#ifdef LIBMESH_HAVE_FPARSER
  // Check that we got close to the analytic solution
  ExactSolution exact_sol(equation_systems);
  const std::string exact_str = (dim == 2) ?
    "sin(pi*x)*sin(pi*y)" : "sin(pi*x)*sin(pi*y)*sin(pi*z)";
  ParsedFunction<Number> exact_func(exact_str);
  exact_sol.attach_exact_value(0, &exact_func);
  exact_sol.compute_error("Heat", "T");

  Number err = exact_sol.l2_error("Heat", "T");

  // Print out the error value
  libMesh::out << "L2-Error is: " << err << std::endl;

  libmesh_assert_less(libmesh_real(err), 2e-3);

#endif // #ifdef LIBMESH_HAVE_FPARSER

#endif // #ifndef LIBMESH_ENABLE_AMR

  // All done.
  return 0;
}
Esempio n. 15
0
int main(int argc, char** argv){

	//initialize libMesh
	LibMeshInit init(argc, argv);
	
	//parameters
	GetPot infile("fem_system_params.in");
  const Real global_tolerance          = infile("global_tolerance", 0.);
  const unsigned int nelem_target      = infile("n_elements", 400);
  const bool transient                 = infile("transient", true);
  const Real deltat                    = infile("deltat", 0.005);
  unsigned int n_timesteps             = infile("n_timesteps", 1);
  //const unsigned int coarsegridsize    = infile("coarsegridsize", 1);
  const unsigned int coarserefinements = infile("coarserefinements", 0);
  const unsigned int max_adaptivesteps = infile("max_adaptivesteps", 10);
  const unsigned int dim               = 2;
  
#ifdef LIBMESH_HAVE_EXODUS_API
  const unsigned int write_interval    = infile("write_interval", 5);
#endif

  // Create a mesh, with dimension to be overridden later, distributed
  // across the default MPI communicator.
  Mesh mesh(init.comm());
  GetPot infileForMesh("diff_convdiff_inv.in");
  std::string find_mesh_here = infileForMesh("divided_mesh","meep.exo");
	mesh.read(find_mesh_here);

  // And an object to refine it
  MeshRefinement mesh_refinement(mesh);
  mesh_refinement.coarsen_by_parents() = true;
  mesh_refinement.absolute_global_tolerance() = global_tolerance;
  mesh_refinement.nelem_target() = nelem_target;
  mesh_refinement.refine_fraction() = 0.3;
  mesh_refinement.coarsen_fraction() = 0.3;
  mesh_refinement.coarsen_threshold() = 0.1;

  mesh_refinement.uniformly_refine(coarserefinements);
  
  // Print information about the mesh to the screen.
  mesh.print_info();

  // Create an equation systems object.
  EquationSystems equation_systems (mesh);
  
  //name system
  Diff_ConvDiff_InvSys & system = 
  	equation_systems.add_system<Diff_ConvDiff_InvSys>("Diff_ConvDiff_InvSys");
  
  //steady-state problem	
 	system.time_solver =
    AutoPtr<TimeSolver>(new SteadySolver(system));
  libmesh_assert_equal_to (n_timesteps, 1);
  
  std::string linearizeHere = "invHF.xda";
  equation_systems.read(linearizeHere, READ,
		EquationSystems::READ_HEADER |
		EquationSystems::READ_DATA |
		EquationSystems::READ_ADDITIONAL_DATA);
	std::cout << "\n READING IN INITIAL GUESS" << std::endl;
  
  // Initialize the system
  //equation_systems.init ();

  // Set the time stepping options
  system.deltat = deltat; //this is ignored for SteadySolver...right?

  // And the nonlinear solver options
  NewtonSolver *solver = new NewtonSolver(system); 
  system.time_solver->diff_solver() = AutoPtr<DiffSolver>(solver); 
  solver->quiet = infile("solver_quiet", true);
  solver->verbose = !solver->quiet;
  solver->max_nonlinear_iterations =
    infile("max_nonlinear_iterations", 15);
  solver->relative_step_tolerance =
    infile("relative_step_tolerance", 1.e-3);
  solver->relative_residual_tolerance =
    infile("relative_residual_tolerance", 0.0);
  solver->absolute_residual_tolerance =
    infile("absolute_residual_tolerance", 0.0);

  // And the linear solver options
  solver->max_linear_iterations =
    infile("max_linear_iterations", 50000);
  solver->initial_linear_tolerance =
    infile("initial_linear_tolerance", 1.e-3);

  // Print information about the system to the screen.
  equation_systems.print_info();
  
  // Now we begin the timestep loop to compute the time-accurate
  // solution of the equations...not that this is transient, but eh, why not...
	for (unsigned int t_step=0; t_step != n_timesteps; ++t_step){
    // A pretty update message
    std::cout << "\n\nSolving time step " << t_step << ", time = "
              << system.time << std::endl;

    // Adaptively solve the timestep
    unsigned int a_step = 0;
    for (; a_step != max_adaptivesteps; ++a_step)
      {
        system.solve();
        system.postprocess();
        ErrorVector error;
        AutoPtr<ErrorEstimator> error_estimator;

        // To solve to a tolerance in this problem we
        // need a better estimator than Kelly
        if (global_tolerance != 0.)
          {
            // We can't adapt to both a tolerance and a mesh
            // size at once
            libmesh_assert_equal_to (nelem_target, 0);

            UniformRefinementEstimator *u =
              new UniformRefinementEstimator;

            // The lid-driven cavity problem isn't in H1, so
            // lets estimate L2 error
            u->error_norm = L2;

            error_estimator.reset(u);
          }
        else
          {
            // If we aren't adapting to a tolerance we need a
            // target mesh size
            libmesh_assert_greater (nelem_target, 0);

            // Kelly is a lousy estimator to use for a problem
            // not in H1 - if we were doing more than a few
            // timesteps we'd need to turn off or limit the
            // maximum level of our adaptivity eventually
            error_estimator.reset(new KellyErrorEstimator);
          }

        // Calculate error
        std::vector<Real> weights(3,1.0); 

        // Keep the same default norm type.
        std::vector<FEMNormType>
          norms(1, error_estimator->error_norm.type(0));
        error_estimator->error_norm = SystemNorm(norms, weights);

        error_estimator->estimate_error(system, error);

        // Print out status at each adaptive step.
        Real global_error = error.l2_norm();
        std::cout << "Adaptive step " << a_step << ": " << std::endl;
        if (global_tolerance != 0.)
          std::cout << "Global_error = " << global_error
                    << std::endl;
        if (global_tolerance != 0.)
          std::cout << "Worst element error = " << error.maximum()
                    << ", mean = " << error.mean() << std::endl;

        if (global_tolerance != 0.)
          {
            // If we've reached our desired tolerance, we
            // don't need any more adaptive steps
            if (global_error < global_tolerance)
              break;
            mesh_refinement.flag_elements_by_error_tolerance(error);
          }
        else
          {
            // If flag_elements_by_nelem_target returns true, this
            // should be our last adaptive step.
            if (mesh_refinement.flag_elements_by_nelem_target(error))
              {
                mesh_refinement.refine_and_coarsen_elements();
                equation_systems.reinit();
                a_step = max_adaptivesteps;
                break;
              }
          }

        // Carry out the adaptive mesh refinement/coarsening
        mesh_refinement.refine_and_coarsen_elements();
        equation_systems.reinit();

        std::cout << "Refined mesh to "
                  << mesh.n_active_elem()
                  << " active elements and "
                  << equation_systems.n_active_dofs()
                  << " active dofs." << std::endl;
      }
    // Do one last solve if necessary
    if (a_step == max_adaptivesteps)
      {
        using std::chrono::duration_cast;
    		using std::chrono::milliseconds;
    		typedef std::chrono::high_resolution_clock clock;
				
				auto start = clock::now();
        system.solve();
        auto end = clock::now();
        std::cout << "\n  Solve took " << duration_cast<milliseconds>(end-start).count() << " ms\n" << std::endl;

        system.postprocess();
        
        Number QoI_computed = system.get_QoI_value("computed", 0);
        std::cout<< "Computed QoI is " << std::setprecision(17) << QoI_computed << std::endl;
      }

    // Advance to the next timestep in a transient problem
    system.time_solver->advance_timestep();

#ifdef LIBMESH_HAVE_EXODUS_API
    // Write out this timestep if we're requested to
    if ((t_step+1)%write_interval == 0)
      {
        std::ostringstream file_name;

        // We write the file in the ExodusII format.
        file_name << "out_"
                  << std::setw(3)
                  << std::setfill('0')
                  << std::right
                  << t_step+1
                  << ".e";

        ExodusII_IO(mesh).write_timestep(file_name.str(),
                                         equation_systems,
                                         1, /* This number indicates how many time steps
                                               are being written to the file */
                                         system.time);
                                         
       equation_systems.write("invHF.xda", WRITE, EquationSystems::WRITE_DATA | 
               EquationSystems::WRITE_ADDITIONAL_DATA);

      }
#endif // #ifdef LIBMESH_HAVE_EXODUS_API
  }
  
  // All done.
  return 0;
  
} //end main
Esempio n. 16
0
void JumpErrorEstimator::estimate_error (const System& system,
					 ErrorVector& error_per_cell,
					 const NumericVector<Number>* solution_vector,
					 bool estimate_parent_error)
{
  START_LOG("estimate_error()", "JumpErrorEstimator");
  /*

  Conventions for assigning the direction of the normal:

  - e & f are global element ids

  Case (1.) Elements are at the same level, e<f
            Compute the flux jump on the face and
	    add it as a contribution to error_per_cell[e]
	    and error_per_cell[f]

                   ----------------------
		  |           |          |
		  |           |    f     |
		  |           |          |
		  |    e      |---> n    |
		  |           |          |
		  |           |          |
                   ----------------------


   Case (2.) The neighbor is at a higher level.
             Compute the flux jump on e's face and
	     add it as a contribution to error_per_cell[e]
	     and error_per_cell[f]

                   ----------------------
		  |     |     |          |
		  |     |  e  |---> n    |
		  |     |     |          |
		  |-----------|    f     |
		  |     |     |          |
		  |     |     |          |
		  |     |     |          |
                   ----------------------
  */

  // The current mesh
  const MeshBase& mesh = system.get_mesh();

  // The dimensionality of the mesh
  const unsigned int dim = mesh.mesh_dimension();

  // The number of variables in the system
  const unsigned int n_vars = system.n_vars();

  // The DofMap for this system
  const DofMap& dof_map = system.get_dof_map();

  // Resize the error_per_cell vector to be
  // the number of elements, initialize it to 0.
  error_per_cell.resize (mesh.max_elem_id());
  std::fill (error_per_cell.begin(), error_per_cell.end(), 0.);

  // Declare a vector of floats which is as long as
  // error_per_cell above, and fill with zeros.  This vector will be
  // used to keep track of the number of edges (faces) on each active
  // element which are either:
  // 1) an internal edge
  // 2) an edge on a Neumann boundary for which a boundary condition
  //    function has been specified.
  // The error estimator can be scaled by the number of flux edges (faces)
  // which the element actually has to obtain a more uniform measure
  // of the error.  Use floats instead of ints since in case 2 (above)
  // f gets 1/2 of a flux face contribution from each of his
  // neighbors
  std::vector<float> n_flux_faces (error_per_cell.size());

  // Prepare current_local_solution to localize a non-standard
  // solution vector if necessary
  if (solution_vector && solution_vector != system.solution.get())
    {
      NumericVector<Number>* newsol =
        const_cast<NumericVector<Number>*>(solution_vector);
      System &sys = const_cast<System&>(system);
      newsol->swap(*sys.solution);
      sys.update();
    }

  // Loop over all the variables in the system
  for (var=0; var<n_vars; var++)
    {
      // Possibly skip this variable
      if (error_norm.weight(var) == 0.0) continue;

      // The type of finite element to use for this variable
      const FEType& fe_type = dof_map.variable_type (var);

      // Finite element objects for the same face from
      // different sides
      fe_fine = FEBase::build (dim, fe_type);
      fe_coarse = FEBase::build (dim, fe_type);

      // Build an appropriate Gaussian quadrature rule
      QGauss qrule (dim-1, fe_type.default_quadrature_order());

      // Tell the finite element for the fine element about the quadrature
      // rule.  The finite element for the coarse element need not know about it
      fe_fine->attach_quadrature_rule (&qrule);

      // By convention we will always do the integration
      // on the face of element e.  We'll need its Jacobian values and
      // physical point locations, at least
      fe_fine->get_JxW();
      fe_fine->get_xyz();

      // Our derived classes may want to do some initialization here
      this->initialize(system, error_per_cell, estimate_parent_error);

      // The global DOF indices for elements e & f
      std::vector<dof_id_type> dof_indices_fine;
      std::vector<dof_id_type> dof_indices_coarse;



      // Iterate over all the active elements in the mesh
      // that live on this processor.
      MeshBase::const_element_iterator       elem_it  = mesh.active_local_elements_begin();
      const MeshBase::const_element_iterator elem_end = mesh.active_local_elements_end();

      for (; elem_it != elem_end; ++elem_it)
	{
	  // e is necessarily an active element on the local processor
	  const Elem* e = *elem_it;
	  const dof_id_type e_id = e->id();

#ifdef LIBMESH_ENABLE_AMR
          // See if the parent of element e has been examined yet;
          // if not, we may want to compute the estimator on it
          const Elem* parent = e->parent();

          // We only can compute and only need to compute on
          // parents with all active children
          bool compute_on_parent = true;
          if (!parent || !estimate_parent_error)
            compute_on_parent = false;
          else
            for (unsigned int c=0; c != parent->n_children(); ++c)
              if (!parent->child(c)->active())
                compute_on_parent = false;

          if (compute_on_parent &&
              !error_per_cell[parent->id()])
	    {
              // Compute a projection onto the parent
              DenseVector<Number> Uparent;
              FEBase::coarsened_dof_values(*(system.solution),
                                           dof_map, parent, Uparent,
                                           var, false);

	      // Loop over the neighbors of the parent
	      for (unsigned int n_p=0; n_p<parent->n_neighbors(); n_p++)
                {
	          if (parent->neighbor(n_p) != NULL) // parent has a neighbor here
		    {
                      // Find the active neighbors in this direction
                      std::vector<const Elem*> active_neighbors;
                      parent->neighbor(n_p)->
		        active_family_tree_by_neighbor(active_neighbors,
                                                       parent);
                      // Compute the flux to each active neighbor
                      for (unsigned int a=0;
                           a != active_neighbors.size(); ++a)
                        {
                          const Elem *f = active_neighbors[a];
                      // FIXME - what about when f->level <
                      // parent->level()??
                          if (f->level() >= parent->level())
                            {
                              fine_elem = f;
                              coarse_elem = parent;
                              Ucoarse = Uparent;

		              dof_map.dof_indices (fine_elem, dof_indices_fine, var);
		              const unsigned int n_dofs_fine =
				libmesh_cast_int<unsigned int>(dof_indices_fine.size());
                              Ufine.resize(n_dofs_fine);

			      for (unsigned int i=0; i<n_dofs_fine; i++)
			        Ufine(i) = system.current_solution(dof_indices_fine[i]);
                              this->reinit_sides();
                              this->internal_side_integration();

                              error_per_cell[fine_elem->id()] +=
				static_cast<ErrorVectorReal>(fine_error);
                              error_per_cell[coarse_elem->id()] += 
				static_cast<ErrorVectorReal>(coarse_error);

                              // Keep track of the number of internal flux
                              // sides found on each element
                              n_flux_faces[fine_elem->id()]++;
                              n_flux_faces[coarse_elem->id()] += this->coarse_n_flux_faces_increment();
                            }
                        }
		    }
		  else if (integrate_boundary_sides)
		    {
                      fine_elem = parent;
                      Ufine = Uparent;

                      // Reinitialize shape functions on the fine element side
                      fe_fine->reinit (fine_elem, fine_side);

                      if (this->boundary_side_integration())
                        {
                          error_per_cell[fine_elem->id()] +=
			    static_cast<ErrorVectorReal>(fine_error);
                          n_flux_faces[fine_elem->id()]++;
                        }
                    }
		}
	    }
#endif // #ifdef LIBMESH_ENABLE_AMR

          // If we do any more flux integration, e will be the fine element
          fine_elem = e;

	  // Loop over the neighbors of element e
	  for (unsigned int n_e=0; n_e<e->n_neighbors(); n_e++)
	    {
              fine_side = n_e;

	      if (e->neighbor(n_e) != NULL) // e is not on the boundary
		{
		  const Elem* f           = e->neighbor(n_e);
		  const dof_id_type f_id = f->id();

		  // Compute flux jumps if we are in case 1 or case 2.
		  if ((f->active() && (f->level() == e->level()) && (e_id < f_id))
		      || (f->level() < e->level()))
		    {
                      // f is now the coarse element
                      coarse_elem = f;

		      // Get the DOF indices for the two elements
		      dof_map.dof_indices (fine_elem, dof_indices_fine, var);
		      dof_map.dof_indices (coarse_elem, dof_indices_coarse, var);

		      // The number of DOFS on each element
		      const unsigned int n_dofs_fine = 
			libmesh_cast_int<unsigned int>(dof_indices_fine.size());
		      const unsigned int n_dofs_coarse =
			libmesh_cast_int<unsigned int>(dof_indices_coarse.size());
                      Ufine.resize(n_dofs_fine);
                      Ucoarse.resize(n_dofs_coarse);

		      // The local solutions on each element
		      for (unsigned int i=0; i<n_dofs_fine; i++)
			Ufine(i) = system.current_solution(dof_indices_fine[i]);
		      for (unsigned int i=0; i<n_dofs_coarse; i++)
			Ucoarse(i) = system.current_solution(dof_indices_coarse[i]);

                      this->reinit_sides();
                      this->internal_side_integration();

                      error_per_cell[fine_elem->id()] +=
			static_cast<ErrorVectorReal>(fine_error);
                      error_per_cell[coarse_elem->id()] +=
			static_cast<ErrorVectorReal>(coarse_error);

                      // Keep track of the number of internal flux
                      // sides found on each element
                      n_flux_faces[fine_elem->id()]++;
                      n_flux_faces[coarse_elem->id()] += this->coarse_n_flux_faces_increment();
		    } // end if (case1 || case2)
		} // if (e->neigbor(n_e) != NULL)

	      // Otherwise, e is on the boundary.  If it happens to
	      // be on a Dirichlet boundary, we need not do anything.
	      // On the other hand, if e is on a Neumann (flux) boundary
	      // with grad(u).n = g, we need to compute the additional residual
	      // (h * \int |g - grad(u_h).n|^2 dS)^(1/2).
	      // We can only do this with some knowledge of the boundary
	      // conditions, i.e. the user must have attached an appropriate
	      // BC function.
	      else
		{
		  if (integrate_boundary_sides)
		    {
                      // Reinitialize shape functions on the fine element side
                      fe_fine->reinit (fine_elem, fine_side);

		      // Get the DOF indices
		      dof_map.dof_indices (fine_elem, dof_indices_fine, var);

		      // The number of DOFS on each element
		      const unsigned int n_dofs_fine =
			libmesh_cast_int<unsigned int>(dof_indices_fine.size());
                      Ufine.resize(n_dofs_fine);

                      for (unsigned int i=0; i<n_dofs_fine; i++)
                        Ufine(i) = system.current_solution(dof_indices_fine[i]);

                      if (this->boundary_side_integration())
                        {
                          error_per_cell[fine_elem->id()] +=
			    static_cast<ErrorVectorReal>(fine_error);
                          n_flux_faces[fine_elem->id()]++;
                        }
                    } // end if _bc_function != NULL
		} // end if (e->neighbor(n_e) == NULL)
	    } // end loop over neighbors
	} // End loop over active local elements
    } // End loop over variables



  // Each processor has now computed the error contribuions
  // for its local elements.  We need to sum the vector
  // and then take the square-root of each component.  Note
  // that we only need to sum if we are running on multiple
  // processors, and we only need to take the square-root
  // if the value is nonzero.  There will in general be many
  // zeros for the inactive elements.

  // First sum the vector of estimated error values
  this->reduce_error(error_per_cell);

  // Compute the square-root of each component.
  for (std::size_t i=0; i<error_per_cell.size(); i++)
    if (error_per_cell[i] != 0.)
      error_per_cell[i] = std::sqrt(error_per_cell[i]);


  if (this->scale_by_n_flux_faces)
    {
      // Sum the vector of flux face counts
      this->reduce_error(n_flux_faces);

      // Sanity check: Make sure the number of flux faces is
      // always an integer value
#ifdef DEBUG
      for (unsigned int i=0; i<n_flux_faces.size(); ++i)
	libmesh_assert_equal_to (n_flux_faces[i], static_cast<float>(static_cast<unsigned int>(n_flux_faces[i])) );
#endif

      // Scale the error by the number of flux faces for each element
      for (unsigned int i=0; i<n_flux_faces.size(); ++i)
	{
	  if (n_flux_faces[i] == 0.0) // inactive or non-local element
	    continue;

	  //libMesh::out << "Element " << i << " has " << n_flux_faces[i] << " flux faces." << std::endl;
	  error_per_cell[i] /= static_cast<ErrorVectorReal>(n_flux_faces[i]);
	}
    }

  // If we used a non-standard solution before, now is the time to fix
  // the current_local_solution
  if (solution_vector && solution_vector != system.solution.get())
    {
      NumericVector<Number>* newsol =
        const_cast<NumericVector<Number>*>(solution_vector);
      System &sys = const_cast<System&>(system);
      newsol->swap(*sys.solution);
      sys.update();
    }

  STOP_LOG("estimate_error()", "JumpErrorEstimator");
}
Esempio n. 17
0
void JumpErrorEstimator::estimate_error (const System& system,
                                         ErrorVector& error_per_cell,
                                         const NumericVector<Number>* solution_vector,
                                         bool estimate_parent_error)
{
  START_LOG("estimate_error()", "JumpErrorEstimator");
  /*

    Conventions for assigning the direction of the normal:

    - e & f are global element ids

    Case (1.) Elements are at the same level, e<f
    Compute the flux jump on the face and
    add it as a contribution to error_per_cell[e]
    and error_per_cell[f]

    ----------------------
    |           |          |
    |           |    f     |
    |           |          |
    |    e      |---> n    |
    |           |          |
    |           |          |
    ----------------------


    Case (2.) The neighbor is at a higher level.
    Compute the flux jump on e's face and
    add it as a contribution to error_per_cell[e]
    and error_per_cell[f]

    ----------------------
    |     |     |          |
    |     |  e  |---> n    |
    |     |     |          |
    |-----------|    f     |
    |     |     |          |
    |     |     |          |
    |     |     |          |
    ----------------------
  */

  // The current mesh
  const MeshBase& mesh = system.get_mesh();

  // The number of variables in the system
  const unsigned int n_vars = system.n_vars();

  // The DofMap for this system
  const DofMap& dof_map = system.get_dof_map();

  // Resize the error_per_cell vector to be
  // the number of elements, initialize it to 0.
  error_per_cell.resize (mesh.max_elem_id());
  std::fill (error_per_cell.begin(), error_per_cell.end(), 0.);

  // Declare a vector of floats which is as long as
  // error_per_cell above, and fill with zeros.  This vector will be
  // used to keep track of the number of edges (faces) on each active
  // element which are either:
  // 1) an internal edge
  // 2) an edge on a Neumann boundary for which a boundary condition
  //    function has been specified.
  // The error estimator can be scaled by the number of flux edges (faces)
  // which the element actually has to obtain a more uniform measure
  // of the error.  Use floats instead of ints since in case 2 (above)
  // f gets 1/2 of a flux face contribution from each of his
  // neighbors
  std::vector<float> n_flux_faces;
  if (scale_by_n_flux_faces)
    n_flux_faces.resize(error_per_cell.size(), 0);

  // Prepare current_local_solution to localize a non-standard
  // solution vector if necessary
  if (solution_vector && solution_vector != system.solution.get())
    {
      NumericVector<Number>* newsol =
        const_cast<NumericVector<Number>*>(solution_vector);
      System &sys = const_cast<System&>(system);
      newsol->swap(*sys.solution);
      sys.update();
    }

  fine_context.reset(new FEMContext(system));
  coarse_context.reset(new FEMContext(system));

  // Loop over all the variables we've been requested to find jumps in, to
  // pre-request
  for (var=0; var<n_vars; var++)
    {
      // Possibly skip this variable
      if (error_norm.weight(var) == 0.0) continue;

      // FIXME: Need to generalize this to vector-valued elements. [PB]
      FEBase* side_fe = NULL;

      const std::set<unsigned char>& elem_dims =
        fine_context->elem_dimensions();

      for (std::set<unsigned char>::const_iterator dim_it =
             elem_dims.begin(); dim_it != elem_dims.end(); ++dim_it)
        {
          const unsigned char dim = *dim_it;

          fine_context->get_side_fe( var, side_fe, dim );

          libmesh_assert_not_equal_to(side_fe->get_fe_type().family, SCALAR);

          side_fe->get_xyz();
        }
    }

  this->init_context(*fine_context);
  this->init_context(*coarse_context);

  // Iterate over all the active elements in the mesh
  // that live on this processor.
  MeshBase::const_element_iterator       elem_it  = mesh.active_local_elements_begin();
  const MeshBase::const_element_iterator elem_end = mesh.active_local_elements_end();

  for (; elem_it != elem_end; ++elem_it)
    {
      // e is necessarily an active element on the local processor
      const Elem* e = *elem_it;
      const dof_id_type e_id = e->id();

#ifdef LIBMESH_ENABLE_AMR
      // See if the parent of element e has been examined yet;
      // if not, we may want to compute the estimator on it
      const Elem* parent = e->parent();

      // We only can compute and only need to compute on
      // parents with all active children
      bool compute_on_parent = true;
      if (!parent || !estimate_parent_error)
        compute_on_parent = false;
      else
        for (unsigned int c=0; c != parent->n_children(); ++c)
          if (!parent->child(c)->active())
            compute_on_parent = false;

      if (compute_on_parent &&
          !error_per_cell[parent->id()])
        {
          // Compute a projection onto the parent
          DenseVector<Number> Uparent;
          FEBase::coarsened_dof_values
            (*(system.solution), dof_map, parent, Uparent, false);

          // Loop over the neighbors of the parent
          for (unsigned int n_p=0; n_p<parent->n_neighbors(); n_p++)
            {
              if (parent->neighbor(n_p) != NULL) // parent has a neighbor here
                {
                  // Find the active neighbors in this direction
                  std::vector<const Elem*> active_neighbors;
                  parent->neighbor(n_p)->
                    active_family_tree_by_neighbor(active_neighbors,
                                                   parent);
                  // Compute the flux to each active neighbor
                  for (unsigned int a=0;
                       a != active_neighbors.size(); ++a)
                    {
                      const Elem *f = active_neighbors[a];
                      // FIXME - what about when f->level <
                      // parent->level()??
                      if (f->level() >= parent->level())
                        {
                          fine_context->pre_fe_reinit(system, f);
                          coarse_context->pre_fe_reinit(system, parent);
                          libmesh_assert_equal_to
                            (coarse_context->get_elem_solution().size(),
                             Uparent.size());
                          coarse_context->get_elem_solution() = Uparent;

                          this->reinit_sides();

                          // Loop over all significant variables in the system
                          for (var=0; var<n_vars; var++)
                            if (error_norm.weight(var) != 0.0)
                              {
                                this->internal_side_integration();

                                error_per_cell[fine_context->get_elem().id()] +=
                                  static_cast<ErrorVectorReal>(fine_error);
                                error_per_cell[coarse_context->get_elem().id()] +=
                                  static_cast<ErrorVectorReal>(coarse_error);
                              }

                          // Keep track of the number of internal flux
                          // sides found on each element
                          if (scale_by_n_flux_faces)
                            {
                              n_flux_faces[fine_context->get_elem().id()]++;
                              n_flux_faces[coarse_context->get_elem().id()] +=
                                this->coarse_n_flux_faces_increment();
                            }
                        }
                    }
                }
              else if (integrate_boundary_sides)
                {
                  fine_context->pre_fe_reinit(system, parent);
                  libmesh_assert_equal_to
                    (fine_context->get_elem_solution().size(),
                     Uparent.size());
                  fine_context->get_elem_solution() = Uparent;
                  fine_context->side = n_p;
                  fine_context->side_fe_reinit();

                  // If we find a boundary flux for any variable,
                  // let's just count it as a flux face for all
                  // variables.  Otherwise we'd need to keep track of
                  // a separate n_flux_faces and error_per_cell for
                  // every single var.
                  bool found_boundary_flux = false;

                  for (var=0; var<n_vars; var++)
                    if (error_norm.weight(var) != 0.0)
                      {
                        if (this->boundary_side_integration())
                          {
                            error_per_cell[fine_context->get_elem().id()] +=
                              static_cast<ErrorVectorReal>(fine_error);
                            found_boundary_flux = true;
                          }
                      }

                  if (scale_by_n_flux_faces && found_boundary_flux)
                    n_flux_faces[fine_context->get_elem().id()]++;
                }
            }
        }
#endif // #ifdef LIBMESH_ENABLE_AMR

      // If we do any more flux integration, e will be the fine element
      fine_context->pre_fe_reinit(system, e);

      // Loop over the neighbors of element e
      for (unsigned int n_e=0; n_e<e->n_neighbors(); n_e++)
        {
          if ((e->neighbor(n_e) != NULL) ||
              integrate_boundary_sides)
            {
              fine_context->side = n_e;
              fine_context->side_fe_reinit();
            }

          if (e->neighbor(n_e) != NULL) // e is not on the boundary
            {
              const Elem* f           = e->neighbor(n_e);
              const dof_id_type f_id = f->id();

              // Compute flux jumps if we are in case 1 or case 2.
              if ((f->active() && (f->level() == e->level()) && (e_id < f_id))
                  || (f->level() < e->level()))
                {
                  // f is now the coarse element
                  coarse_context->pre_fe_reinit(system, f);

                  this->reinit_sides();

                  // Loop over all significant variables in the system
                  for (var=0; var<n_vars; var++)
                    if (error_norm.weight(var) != 0.0)
                      {
                        this->internal_side_integration();

                        error_per_cell[fine_context->get_elem().id()] +=
                          static_cast<ErrorVectorReal>(fine_error);
                        error_per_cell[coarse_context->get_elem().id()] +=
                          static_cast<ErrorVectorReal>(coarse_error);
                      }

                  // Keep track of the number of internal flux
                  // sides found on each element
                  if (scale_by_n_flux_faces)
                    {
                      n_flux_faces[fine_context->get_elem().id()]++;
                      n_flux_faces[coarse_context->get_elem().id()] +=
                        this->coarse_n_flux_faces_increment();
                    }
                } // end if (case1 || case2)
            } // if (e->neigbor(n_e) != NULL)

          // Otherwise, e is on the boundary.  If it happens to
          // be on a Dirichlet boundary, we need not do anything.
          // On the other hand, if e is on a Neumann (flux) boundary
          // with grad(u).n = g, we need to compute the additional residual
          // (h * \int |g - grad(u_h).n|^2 dS)^(1/2).
          // We can only do this with some knowledge of the boundary
          // conditions, i.e. the user must have attached an appropriate
          // BC function.
          else if (integrate_boundary_sides)
            {
              bool found_boundary_flux = false;

              for (var=0; var<n_vars; var++)
                if (error_norm.weight(var) != 0.0)
                  if (this->boundary_side_integration())
                    {
                      error_per_cell[fine_context->get_elem().id()] +=
                        static_cast<ErrorVectorReal>(fine_error);
                      found_boundary_flux = true;
                    }

              if (scale_by_n_flux_faces && found_boundary_flux)
                n_flux_faces[fine_context->get_elem().id()]++;
            } // end if (e->neighbor(n_e) == NULL)
        } // end loop over neighbors
    } // End loop over active local elements


  // Each processor has now computed the error contribuions
  // for its local elements.  We need to sum the vector
  // and then take the square-root of each component.  Note
  // that we only need to sum if we are running on multiple
  // processors, and we only need to take the square-root
  // if the value is nonzero.  There will in general be many
  // zeros for the inactive elements.

  // First sum the vector of estimated error values
  this->reduce_error(error_per_cell, system.comm());

  // Compute the square-root of each component.
  for (std::size_t i=0; i<error_per_cell.size(); i++)
    if (error_per_cell[i] != 0.)
      error_per_cell[i] = std::sqrt(error_per_cell[i]);


  if (this->scale_by_n_flux_faces)
    {
      // Sum the vector of flux face counts
      this->reduce_error(n_flux_faces, system.comm());

      // Sanity check: Make sure the number of flux faces is
      // always an integer value
#ifdef DEBUG
      for (unsigned int i=0; i<n_flux_faces.size(); ++i)
        libmesh_assert_equal_to (n_flux_faces[i], static_cast<float>(static_cast<unsigned int>(n_flux_faces[i])) );
#endif

      // Scale the error by the number of flux faces for each element
      for (unsigned int i=0; i<n_flux_faces.size(); ++i)
        {
          if (n_flux_faces[i] == 0.0) // inactive or non-local element
            continue;

          //libMesh::out << "Element " << i << " has " << n_flux_faces[i] << " flux faces." << std::endl;
          error_per_cell[i] /= static_cast<ErrorVectorReal>(n_flux_faces[i]);
        }
    }

  // If we used a non-standard solution before, now is the time to fix
  // the current_local_solution
  if (solution_vector && solution_vector != system.solution.get())
    {
      NumericVector<Number>* newsol =
        const_cast<NumericVector<Number>*>(solution_vector);
      System &sys = const_cast<System&>(system);
      newsol->swap(*sys.solution);
      sys.update();
    }

  STOP_LOG("estimate_error()", "JumpErrorEstimator");
}
Esempio n. 18
0
void assemble_and_solve(MeshBase & mesh,
                        EquationSystems & equation_systems)
{
  mesh.print_info();

  LinearImplicitSystem & system =
    equation_systems.add_system<LinearImplicitSystem> ("Poisson");

  unsigned int u_var = system.add_variable("u", FIRST, LAGRANGE);

  system.attach_assemble_function (assemble_poisson);

  // the cube has boundaries IDs 0, 1, 2, 3, 4 and 5
  std::set<boundary_id_type> boundary_ids;
  for (int j = 0; j<6; ++j)
    boundary_ids.insert(j);

  // Create a vector storing the variable numbers which the BC applies to
  std::vector<unsigned int> variables(1);
  variables[0] = u_var;

  ZeroFunction<> zf;
  DirichletBoundary dirichlet_bc(boundary_ids,
                                 variables,
                                 &zf);
  system.get_dof_map().add_dirichlet_boundary(dirichlet_bc);

  equation_systems.init();
  equation_systems.print_info();

#ifdef LIBMESH_ENABLE_AMR
  MeshRefinement mesh_refinement(mesh);

  mesh_refinement.refine_fraction()  = 0.7;
  mesh_refinement.coarsen_fraction() = 0.3;
  mesh_refinement.max_h_level()      = 5;

  const unsigned int max_r_steps = 2;

  for (unsigned int r_step=0; r_step<=max_r_steps; r_step++)
    {
      system.solve();
      if (r_step != max_r_steps)
        {
          ErrorVector error;
          KellyErrorEstimator error_estimator;

          error_estimator.estimate_error(system, error);

          libMesh::out << "Error estimate\nl2 norm = "
                       << error.l2_norm()
                       << "\nmaximum = "
                       << error.maximum()
                       << std::endl;

          mesh_refinement.flag_elements_by_error_fraction (error);

          mesh_refinement.refine_and_coarsen_elements();

          equation_systems.reinit();
        }
    }
#else
  system.solve();
#endif
}
Esempio n. 19
0
int main(int argc, char** argv)
{
  // Initialize the library.  This is necessary because the library
  // may depend on a number of other libraries (i.e. MPI and PETSc)
  // that require initialization before use.  When the LibMeshInit
  // object goes out of scope, other libraries and resources are
  // finalized.
  LibMeshInit init (argc, argv);

  // Skip adaptive examples on a non-adaptive libMesh build
#ifndef LIBMESH_ENABLE_AMR
  libmesh_example_requires(false, "--enable-amr");
#else

  // Create a mesh, with dimension to be overridden later, on the
  // default MPI communicator.
  Mesh mesh(init.comm());

  GetPot command_line (argc, argv);

  int n = 4;
  if ( command_line.search(1, "-n") )
    n = command_line.next(n);

  // Build a 1D mesh with 4 elements from x=0 to x=1, using
  // EDGE3 (i.e. quadratic) 1D elements. They are called EDGE3 elements
  // because a quadratic element contains 3 nodes.
  MeshTools::Generation::build_line(mesh,n,0.,1.,EDGE3);

  // Define the equation systems object and the system we are going
  // to solve. See Introduction Example 2 for more details.
  EquationSystems equation_systems(mesh);
  LinearImplicitSystem& system = equation_systems.add_system
    <LinearImplicitSystem>("1D");

  // Add a variable "u" to the system, using second-order approximation
  system.add_variable("u",SECOND);

  // Give the system a pointer to the matrix assembly function. This
  // will be called when needed by the library.
  system.attach_assemble_function(assemble_1D);

  // Define the mesh refinement object that takes care of adaptively
  // refining the mesh.
  MeshRefinement mesh_refinement(mesh);

  // These parameters determine the proportion of elements that will
  // be refined and coarsened. Any element within 30% of the maximum
  // error on any element will be refined, and any element within 30%
  // of the minimum error on any element might be coarsened
  mesh_refinement.refine_fraction()  = 0.7;
  mesh_refinement.coarsen_fraction() = 0.3;
  // We won't refine any element more than 5 times in total
  mesh_refinement.max_h_level()      = 5;

  // Initialize the data structures for the equation system.
  equation_systems.init();

  // Refinement parameters
  const unsigned int max_r_steps = 5; // Refine the mesh 5 times

  // Define the refinement loop
  for(unsigned int r_step=0; r_step<=max_r_steps; r_step++)
    {
      // Solve the equation system
      equation_systems.get_system("1D").solve();

      // We need to ensure that the mesh is not refined on the last iteration
      // of this loop, since we do not want to refine the mesh unless we are
      // going to solve the equation system for that refined mesh.
      if(r_step != max_r_steps)
        {
          // Error estimation objects, see Adaptivity Example 2 for details
          ErrorVector error;
          KellyErrorEstimator error_estimator;

          // Compute the error for each active element
          error_estimator.estimate_error(system, error);

          // Output error estimate magnitude
          libMesh::out << "Error estimate\nl2 norm = " << error.l2_norm() <<
            "\nmaximum = " << error.maximum() << std::endl;

          // Flag elements to be refined and coarsened
          mesh_refinement.flag_elements_by_error_fraction (error);

          // Perform refinement and coarsening
          mesh_refinement.refine_and_coarsen_elements();

          // Reinitialize the equation_systems object for the newly refined
          // mesh. One of the steps in this is project the solution onto the
          // new mesh
          equation_systems.reinit();
        }
    }

  // Construct gnuplot plotting object, pass in mesh, title of plot
  // and boolean to indicate use of grid in plot. The grid is used to
  // show the edges of each element in the mesh.
  GnuPlotIO plot(mesh,"Adaptivity Example 1", GnuPlotIO::GRID_ON);

  // Write out script to be called from within gnuplot:
  // Load gnuplot, then type "call 'gnuplot_script'" from gnuplot prompt
  plot.write_equation_systems("gnuplot_script",equation_systems);
#endif // #ifndef LIBMESH_ENABLE_AMR

  // All done.  libMesh objects are destroyed here.  Because the
  // LibMeshInit object was created first, its destruction occurs
  // last, and it's destructor finalizes any external libraries and
  // checks for leaked memory.
  return 0;
}
Esempio n. 20
0
int main(int argc, char** argv)
{
  // Initialize libMesh.
  LibMeshInit init (argc, argv);

  // Skip adaptive examples on a non-adaptive libMesh build
#ifndef LIBMESH_ENABLE_AMR
  libmesh_example_assert(false, "--enable-amr");
#else

  // Parse the input file
  GetPot input_file("adaptivity_ex3.in");

  // Read in parameters from the input file
  const unsigned int max_r_steps    = input_file("max_r_steps", 3);
  const unsigned int max_r_level    = input_file("max_r_level", 3);
  const Real refine_percentage      = input_file("refine_percentage", 0.5);
  const Real coarsen_percentage     = input_file("coarsen_percentage", 0.5);
  const unsigned int uniform_refine = input_file("uniform_refine",0);
  const std::string refine_type     = input_file("refinement_type", "h");
  const std::string approx_type     = input_file("approx_type", "LAGRANGE");
  const unsigned int approx_order   = input_file("approx_order", 1);
  const std::string element_type    = input_file("element_type", "tensor");
  const int extra_error_quadrature  = input_file("extra_error_quadrature", 0);
  const int max_linear_iterations   = input_file("max_linear_iterations", 5000);
  const bool output_intermediate    = input_file("output_intermediate", false);
  dim = input_file("dimension", 2);
  const std::string indicator_type = input_file("indicator_type", "kelly");
  singularity = input_file("singularity", true);
  
  // Skip higher-dimensional examples on a lower-dimensional libMesh build
  libmesh_example_assert(dim <= LIBMESH_DIM, "2D/3D support");
  
  // Output file for plotting the error as a function of
  // the number of degrees of freedom.
  std::string approx_name = "";
  if (element_type == "tensor")
    approx_name += "bi";
  if (approx_order == 1)
    approx_name += "linear";
  else if (approx_order == 2)
    approx_name += "quadratic";
  else if (approx_order == 3)
    approx_name += "cubic";
  else if (approx_order == 4)
    approx_name += "quartic";

  std::string output_file = approx_name;
  output_file += "_";
  output_file += refine_type;
  if (uniform_refine == 0)
    output_file += "_adaptive.m";
  else
    output_file += "_uniform.m";
  
  std::ofstream out (output_file.c_str());
  out << "% dofs     L2-error     H1-error" << std::endl;
  out << "e = [" << std::endl;
  
  // Create a mesh.
  Mesh mesh;
  
  // Read in the mesh
  if (dim == 1)
    MeshTools::Generation::build_line(mesh,1,-1.,0.);
  else if (dim == 2)
    mesh.read("lshaped.xda");
  else
    mesh.read("lshaped3D.xda");

  // Use triangles if the config file says so
  if (element_type == "simplex")
    MeshTools::Modification::all_tri(mesh);

  // We used first order elements to describe the geometry,
  // but we may need second order elements to hold the degrees
  // of freedom
  if (approx_order > 1 || refine_type != "h")
    mesh.all_second_order();

  // Mesh Refinement object
  MeshRefinement mesh_refinement(mesh);
  mesh_refinement.refine_fraction() = refine_percentage;
  mesh_refinement.coarsen_fraction() = coarsen_percentage;
  mesh_refinement.max_h_level() = max_r_level;

  // Create an equation systems object.
  EquationSystems equation_systems (mesh);

  // Declare the system and its variables.
  // Creates a system named "Laplace"
  LinearImplicitSystem& system =
    equation_systems.add_system<LinearImplicitSystem> ("Laplace");
  
  // Adds the variable "u" to "Laplace", using 
  // the finite element type and order specified
  // in the config file
  system.add_variable("u", static_cast<Order>(approx_order),
                      Utility::string_to_enum<FEFamily>(approx_type));

  // Give the system a pointer to the matrix assembly
  // function.
  system.attach_assemble_function (assemble_laplace);

  // Initialize the data structures for the equation system.
  equation_systems.init();

  // Set linear solver max iterations
  equation_systems.parameters.set<unsigned int>("linear solver maximum iterations")
    = max_linear_iterations;

  // Linear solver tolerance.
  equation_systems.parameters.set<Real>("linear solver tolerance") =
    std::pow(TOLERANCE, 2.5);
  
  // Prints information about the system to the screen.
  equation_systems.print_info();

  // Construct ExactSolution object and attach solution functions
  ExactSolution exact_sol(equation_systems);
  exact_sol.attach_exact_value(exact_solution);
  exact_sol.attach_exact_deriv(exact_derivative);

  // Use higher quadrature order for more accurate error results
  exact_sol.extra_quadrature_order(extra_error_quadrature);

  // A refinement loop.
  for (unsigned int r_step=0; r_step<max_r_steps; r_step++)
    {
      std::cout << "Beginning Solve " << r_step << std::endl;
      
      // Solve the system "Laplace", just like example 2.
      system.solve();

      std::cout << "System has: " << equation_systems.n_active_dofs()
                << " degrees of freedom."
                << std::endl;

      std::cout << "Linear solver converged at step: "
                << system.n_linear_iterations()
                << ", final residual: "
                << system.final_linear_residual()
                << std::endl;
      
#ifdef LIBMESH_HAVE_EXODUS_API
      // After solving the system write the solution
      // to a ExodusII-formatted plot file.
      if (output_intermediate)
        {
          OStringStream outfile;
          outfile << "lshaped_" << r_step << ".e";
          ExodusII_IO (mesh).write_equation_systems (outfile.str(),
                                               equation_systems);
        }
#endif // #ifdef LIBMESH_HAVE_EXODUS_API

      // Compute the error.
      exact_sol.compute_error("Laplace", "u");

      // Print out the error values
      std::cout << "L2-Error is: "
                << exact_sol.l2_error("Laplace", "u")
                << std::endl;
      std::cout << "H1-Error is: "
                << exact_sol.h1_error("Laplace", "u")
                << std::endl;

      // Print to output file
      out << equation_systems.n_active_dofs() << " "
          << exact_sol.l2_error("Laplace", "u") << " "
          << exact_sol.h1_error("Laplace", "u") << std::endl;

      // Possibly refine the mesh
      if (r_step+1 != max_r_steps)
        {
          std::cout << "  Refining the mesh..." << std::endl;

          if (uniform_refine == 0)
            {

              // The \p ErrorVector is a particular \p StatisticsVector
              // for computing error information on a finite element mesh.
              ErrorVector error;
              
              if (indicator_type == "exact")
                {
                  // The \p ErrorEstimator class interrogates a
                  // finite element solution and assigns to each
                  // element a positive error value.
                  // This value is used for deciding which elements to
                  // refine and which to coarsen.
                  // For these simple test problems, we can use
                  // numerical quadrature of the exact error between
                  // the approximate and analytic solutions.
                  // However, for real problems, we would need an error
                  // indicator which only relies on the approximate
                  // solution.
                  ExactErrorEstimator error_estimator;

                  error_estimator.attach_exact_value(exact_solution);
                  error_estimator.attach_exact_deriv(exact_derivative);

                  // We optimize in H1 norm, the default
                  // error_estimator.error_norm = H1;

                  // Compute the error for each active element using
                  // the provided indicator.  Note in general you
                  // will need to provide an error estimator
                  // specifically designed for your application.
                  error_estimator.estimate_error (system, error);
                }
              else if (indicator_type == "patch")
                {
                  // The patch recovery estimator should give a
                  // good estimate of the solution interpolation
                  // error.
                  PatchRecoveryErrorEstimator error_estimator;

                  error_estimator.estimate_error (system, error);
                }
              else if (indicator_type == "uniform")
                {
                  // Error indication based on uniform refinement
                  // is reliable, but very expensive.
                  UniformRefinementEstimator error_estimator;

                  error_estimator.estimate_error (system, error);
                }
              else
                {
                  libmesh_assert_equal_to (indicator_type, "kelly");

                  // The Kelly error estimator is based on 
                  // an error bound for the Poisson problem
                  // on linear elements, but is useful for
                  // driving adaptive refinement in many problems
                  KellyErrorEstimator error_estimator;

                  error_estimator.estimate_error (system, error);
                }

              // Write out the error distribution
	      OStringStream ss;
	      ss << r_step;
#ifdef LIBMESH_HAVE_EXODUS_API
	      std::string error_output = "error_"+ss.str()+".e";
#else
	      std::string error_output = "error_"+ss.str()+".gmv";
#endif
              error.plot_error( error_output, mesh );
 
              // This takes the error in \p error and decides which elements
              // will be coarsened or refined.  Any element within 20% of the
              // maximum error on any element will be refined, and any
              // element within 10% of the minimum error on any element might
              // be coarsened. Note that the elements flagged for refinement
              // will be refined, but those flagged for coarsening _might_ be
              // coarsened.
              mesh_refinement.flag_elements_by_error_fraction (error);

              // If we are doing adaptive p refinement, we want
              // elements flagged for that instead.
              if (refine_type == "p")
                mesh_refinement.switch_h_to_p_refinement();
              // If we are doing "matched hp" refinement, we
              // flag elements for both h and p
              if (refine_type == "matchedhp")
                mesh_refinement.add_p_to_h_refinement();
              // If we are doing hp refinement, we 
              // try switching some elements from h to p
              if (refine_type == "hp")
                {
                  HPCoarsenTest hpselector;
                  hpselector.select_refinement(system);
                }
              // If we are doing "singular hp" refinement, we 
              // try switching most elements from h to p
              if (refine_type == "singularhp")
                {
                  // This only differs from p refinement for
                  // the singular problem
                  libmesh_assert (singularity);
                  HPSingularity hpselector;
                  // Our only singular point is at the origin
                  hpselector.singular_points.push_back(Point());
                  hpselector.select_refinement(system);
                }
              
              // This call actually refines and coarsens the flagged
              // elements.
              mesh_refinement.refine_and_coarsen_elements();
            }

          else if (uniform_refine == 1)
            {
              if (refine_type == "h" || refine_type == "hp" ||
                  refine_type == "matchedhp")
                mesh_refinement.uniformly_refine(1);
              if (refine_type == "p" || refine_type == "hp" ||
                  refine_type == "matchedhp")
                mesh_refinement.uniformly_p_refine(1);
            }
        
          // This call reinitializes the \p EquationSystems object for
          // the newly refined mesh.  One of the steps in the
          // reinitialization is projecting the \p solution,
          // \p old_solution, etc... vectors from the old mesh to
          // the current one.
          equation_systems.reinit ();
        }
    }            
  
#ifdef LIBMESH_HAVE_EXODUS_API
  // Write out the solution
  // After solving the system write the solution
  // to a ExodusII-formatted plot file.
  ExodusII_IO (mesh).write_equation_systems ("lshaped.e",
                                       equation_systems);
#endif // #ifdef LIBMESH_HAVE_EXODUS_API

  // Close up the output file.
  out << "];" << std::endl;
  out << "hold on" << std::endl;
  out << "plot(e(:,1), e(:,2), 'bo-');" << std::endl;
  out << "plot(e(:,1), e(:,3), 'ro-');" << std::endl;
  //    out << "set(gca,'XScale', 'Log');" << std::endl;
  //    out << "set(gca,'YScale', 'Log');" << std::endl;
  out << "xlabel('dofs');" << std::endl;
  out << "title('" << approx_name << " elements');" << std::endl;
  out << "legend('L2-error', 'H1-error');" << std::endl;
  //     out << "disp('L2-error linear fit');" << std::endl;
  //     out << "polyfit(log10(e(:,1)), log10(e(:,2)), 1)" << std::endl;
  //     out << "disp('H1-error linear fit');" << std::endl;
  //     out << "polyfit(log10(e(:,1)), log10(e(:,3)), 1)" << std::endl;
#endif // #ifndef LIBMESH_ENABLE_AMR
  
  // All done.  
  return 0;
}