Esempio n. 1
0
LongstaffSchwartzExerciseStrategy::LongstaffSchwartzExerciseStrategy(
    const Clone<MarketModelBasisSystem>& basisSystem,
    const std::vector<std::vector<Real> >& basisCoefficients,
    const EvolutionDescription& evolution,
    const std::vector<Size>& numeraires,
    const Clone<MarketModelExerciseValue>& exercise,
    const Clone<MarketModelExerciseValue>& control)
    : basisSystem_(basisSystem), basisCoefficients_(basisCoefficients),
      exercise_(exercise), control_(control),
      numeraires_(numeraires) {

    checkCompatibility(evolution, numeraires);
    relevantTimes_ = evolution.evolutionTimes();

    isBasisTime_.resize(relevantTimes_.size());
    isBasisTime_ = isInSubset(relevantTimes_,
                              basisSystem_->evolution().evolutionTimes());
    isRebateTime_.resize(relevantTimes_.size());
    isRebateTime_ = isInSubset(relevantTimes_,
                               exercise_->evolution().evolutionTimes());
    isControlTime_.resize(relevantTimes_.size());
    isControlTime_ = isInSubset(relevantTimes_,
                                control_->evolution().evolutionTimes());

    exerciseIndex_ = std::vector<Size>(relevantTimes_.size());
    isExerciseTime_.resize(relevantTimes_.size(), false);
    std::valarray<bool> v = exercise_->isExerciseTime();
    Size exercises = 0, idx = 0;
    Size i;
    for (i=0; i<relevantTimes_.size(); ++i) {
        exerciseIndex_[i] = exercises;
        if (isRebateTime_[i]) {
            isExerciseTime_[i] = v[idx++];
            if (isExerciseTime_[i]) {
                exerciseTimes_.push_back(relevantTimes_[i]);
                ++exercises;
            }
        }
    }

    std::vector<Time> rateTimes = evolution.rateTimes();
    std::vector<Time> rebateTimes = exercise_->possibleCashFlowTimes();
    rebateDiscounters_.reserve(rebateTimes.size());
    for (i=0; i<rebateTimes.size(); ++i)
        rebateDiscounters_.push_back(
            MarketModelDiscounter(rebateTimes[i], rateTimes));

    std::vector<Time> controlTimes = control_->possibleCashFlowTimes();
    controlDiscounters_.reserve(controlTimes.size());
    for (i=0; i<controlTimes.size(); ++i)
        controlDiscounters_.push_back(
            MarketModelDiscounter(controlTimes[i], rateTimes));

    std::vector<Size> basisSizes = basisSystem_->numberOfFunctions();
    basisValues_.resize(basisSystem_->numberOfExercises());
    for (i=0; i<basisValues_.size(); ++i)
        basisValues_[i].resize(basisSizes[i]);
}
Esempio n. 2
0
    shared_ptr<MarketModel>
    FlatVolFactory::create(const EvolutionDescription& evolution,
                                  Size numberOfFactors) const {
        const vector<Time>& rateTimes = evolution.rateTimes();
        Size numberOfRates = rateTimes.size()-1;

        vector<Rate> initialRates(numberOfRates);
        for (Size i=0; i<numberOfRates; ++i)
            initialRates[i] = yieldCurve_->forwardRate(rateTimes[i],
                                                       rateTimes[i+1],
                                                       Simple);

        vector<Volatility> displacedVolatilities(numberOfRates);
        for (Size i=0; i<numberOfRates; ++i) {
            Volatility vol = // to be changes
                volatility_(rateTimes[i]);
            displacedVolatilities[i] =
                initialRates[i]*vol/(initialRates[i]+displacement_);
        }

        vector<Spread> displacements(numberOfRates, displacement_);

        Matrix correlations = exponentialCorrelations(evolution.rateTimes(),
                                                      longTermCorrelation_,
                                                      beta_);
        shared_ptr<PiecewiseConstantCorrelation> corr(new
            TimeHomogeneousForwardCorrelation(correlations,
                                              rateTimes));
        return shared_ptr<MarketModel>(new
            FlatVol(displacedVolatilities,
                           corr,
                           evolution,
                           numberOfFactors,
                           initialRates,
                           displacements));
    }
Esempio n. 3
0
    FlatVol::FlatVol(
            const vector<Volatility>& vols,
            const shared_ptr<PiecewiseConstantCorrelation>& corr,
            const EvolutionDescription& evolution,
            Size numberOfFactors,
            const vector<Rate>& initialRates,
            const vector<Spread>& displacements)
    : numberOfFactors_(numberOfFactors),
      numberOfRates_(initialRates.size()),
      numberOfSteps_(evolution.evolutionTimes().size()),
      initialRates_(initialRates),
      displacements_(displacements),
      evolution_(evolution),
      pseudoRoots_(numberOfSteps_, Matrix(numberOfRates_, numberOfFactors_))
    {
        const vector<Time>& rateTimes = evolution.rateTimes();
        QL_REQUIRE(numberOfRates_==rateTimes.size()-1,
                   "mismatch between number of rates (" << numberOfRates_ <<
                   ") and rate times");
        QL_REQUIRE(numberOfRates_==displacements.size(),
                   "mismatch between number of rates (" << numberOfRates_ <<
                   ") and displacements (" << displacements.size() << ")");
        QL_REQUIRE(numberOfRates_==vols.size(),
                   "mismatch between number of rates (" << numberOfRates_ <<
                   ") and vols (" << vols.size() << ")");
        QL_REQUIRE(numberOfRates_<=numberOfFactors_*numberOfSteps_,
                   "number of rates (" << numberOfRates_ <<
                   ") greater than number of factors (" << numberOfFactors_
                   << ") times number of steps (" << numberOfSteps_ << ")");
        QL_REQUIRE(numberOfFactors<=numberOfRates_,
                   "number of factors (" << numberOfFactors <<
                   ") cannot be greater than numberOfRates (" <<
                   numberOfRates_ << ")");
        QL_REQUIRE(numberOfFactors>0,
                   "number of factors (" << numberOfFactors <<
                   ") must be greater than zero");

        Time effStopTime = 0.0;
        const vector<Time>& corrTimes = corr->times();
        const vector<Time>& evolTimes = evolution.evolutionTimes();
        Matrix covariance(numberOfRates_, numberOfRates_);
        for (Size k=0, kk=0; k<numberOfSteps_; ++k) {
            // one covariance per evolution step
            std::fill(covariance.begin(), covariance.end(), 0.0);

            // there might be more than one correlation matrix
            // in a single evolution step
            for (; corrTimes[kk]<evolTimes[k]; ++kk) {
                Time effStartTime = effStopTime;
                effStopTime = corrTimes[kk];
                const Matrix& corrMatrix = corr->correlation(kk);
                for (Size i=0; i<numberOfRates_; ++i) {
                    for (Size j=i; j<numberOfRates_; ++j) {
                        Real cov = flatVolCovariance(effStartTime, effStopTime,
                                                     rateTimes[i], rateTimes[j],
                                                     vols[i], vols[j]);
                        covariance[i][j] += cov * corrMatrix[i][j];
                     }
                }
            }
            // last part in the evolution step
            Time effStartTime = effStopTime;
            effStopTime = evolTimes[k];
            const Matrix& corrMatrix = corr->correlation(kk);
            for (Size i=0; i<numberOfRates_; ++i) {
                for (Size j=i; j<numberOfRates_; ++j) {
                    Real cov = flatVolCovariance(effStartTime, effStopTime,
                                                 rateTimes[i], rateTimes[j],
                                                 vols[i], vols[j]);
                    covariance[i][j] += cov * corrMatrix[i][j];
                 }
            }
            // no more use for the kk-th correlation matrix
            while (kk<corrTimes.size() && corrTimes[kk]<=evolTimes[k])
                ++kk;

            // make it symmetric
            for (Size i=0; i<numberOfRates_; ++i) {
                for (Size j=i+1; j<numberOfRates_; ++j) {
                     covariance[j][i] = covariance[i][j];
                 }
            }

            pseudoRoots_[k] = rankReducedSqrt(covariance,
                                              numberOfFactors, 1.0,
                                              SalvagingAlgorithm::None);

            QL_ENSURE(pseudoRoots_[k].rows()==numberOfRates_,
                      "step " << k
                      << " flat vol wrong number of rows: "
                      << pseudoRoots_[k].rows()
                      << " instead of " << numberOfRates_);
            QL_ENSURE(pseudoRoots_[k].columns()==numberOfFactors,
                      "step " << k
                      << " flat vol wrong number of columns: "
                      << pseudoRoots_[k].columns()
                      << " instead of " << numberOfFactors_);
        }
    }
Esempio n. 4
0
void SwapForwardMappingsTest::testSwaptionImpliedVolatility() 
{

    BOOST_TEST_MESSAGE("Testing implied swaption vol in LMM using HW approximation...");
    MarketModelData marketData;
    const std::vector<Time>& rateTimes = marketData.rateTimes();
    const std::vector<Rate>& forwards = marketData.forwards();
    const Size nbRates = marketData.nbRates();
    LMMCurveState lmmCurveState(rateTimes);
    lmmCurveState.setOnForwardRates(forwards);

    const Real longTermCorr=0.5;
    const Real beta = .2;
    Real strike = .03;

    for (Size startIndex = 1; startIndex+2 < nbRates; startIndex = startIndex+5)
    {
        
        Size endIndex = nbRates-2;

        boost::shared_ptr<StrikedTypePayoff> payoff(new   
            PlainVanillaPayoff(Option::Call, strike));
        MultiStepSwaption product(rateTimes, startIndex, endIndex,payoff );

        const EvolutionDescription evolution = product.evolution();
        const Size numberOfFactors = nbRates;
        Spread displacement = marketData.displacements().front();
        Matrix jacobian =
            SwapForwardMappings::coterminalSwapZedMatrix(
            lmmCurveState, displacement);

        Matrix correlations = exponentialCorrelations(evolution.rateTimes(),
            longTermCorr,
            beta);
        boost::shared_ptr<PiecewiseConstantCorrelation> corr(new
            TimeHomogeneousForwardCorrelation(correlations,
            rateTimes));
        boost::shared_ptr<MarketModel> lmmMarketModel(new
            FlatVol(marketData.volatilities(),
            corr,
            evolution,
            numberOfFactors,
            lmmCurveState.forwardRates(),
            marketData.displacements()));


        SobolBrownianGeneratorFactory generatorFactory(SobolBrownianGenerator::Diagonal);
        std::vector<Size> numeraires(nbRates,
            nbRates);
        boost::shared_ptr<MarketModelEvolver> evolver(new LogNormalFwdRatePc
            (lmmMarketModel, generatorFactory, numeraires));

        boost::shared_ptr<SequenceStatisticsInc> stats =
            simulate(marketData.discountFactors(), evolver, product);
        std::vector<Real> results = stats->mean();
        std::vector<Real> errors = stats->errorEstimate();


        Real estimatedImpliedVol = SwapForwardMappings::swaptionImpliedVolatility(*lmmMarketModel,startIndex,endIndex);

        Real swapRate = lmmCurveState.cmSwapRate(startIndex,endIndex-startIndex);
        Real swapAnnuity = lmmCurveState.cmSwapAnnuity(startIndex,startIndex,endIndex-startIndex)*marketData.discountFactors()[startIndex];

        boost::shared_ptr<PlainVanillaPayoff> payoffDis( new PlainVanillaPayoff(Option::Call, strike+displacement));

        Real expectedSwaption = BlackCalculator(payoffDis,
            swapRate+displacement, estimatedImpliedVol *sqrt(rateTimes[startIndex]),
            swapAnnuity).value();

        Real error = expectedSwaption - results[0];
        Real errorInSds = error/errors[0];
        if (fabs(errorInSds) > 3.5 )
            BOOST_ERROR(
            "expected\t" << expectedSwaption <<
            "\tLMM\t" << results[0]
        << "\tstdev:\t" << errors[0] <<
            "\t" <<errorInSds);
    }

}
Esempio n. 5
0
void SwapForwardMappingsTest::testForwardCoterminalMappings() {

    BOOST_TEST_MESSAGE("Testing forward-rate coterminal-swap mappings...");
    MarketModelData marketData;
    const std::vector<Time>& rateTimes = marketData.rateTimes();
    const std::vector<Rate>& forwards = marketData.forwards();
    const Size nbRates = marketData.nbRates();
    LMMCurveState lmmCurveState(rateTimes);
    lmmCurveState.setOnForwardRates(forwards);

    const Real longTermCorr=0.5;
    const Real beta = .2;
    Real strike = .03;
    MultiStepCoterminalSwaptions product
        = makeMultiStepCoterminalSwaptions(rateTimes, strike);

    const EvolutionDescription evolution = product.evolution();
    const Size numberOfFactors = nbRates;
    Spread displacement = marketData.displacements().front();
    Matrix jacobian =
        SwapForwardMappings::coterminalSwapZedMatrix(
        lmmCurveState, displacement);

    Matrix correlations = exponentialCorrelations(evolution.rateTimes(),
        longTermCorr,
        beta);
    boost::shared_ptr<PiecewiseConstantCorrelation> corr(new
        TimeHomogeneousForwardCorrelation(correlations,
        rateTimes));
    boost::shared_ptr<MarketModel> smmMarketModel(new
        FlatVol(marketData.volatilities(),
        corr,
        evolution,
        numberOfFactors,
        lmmCurveState.coterminalSwapRates(),
        marketData.displacements()));

    boost::shared_ptr<MarketModel>
        lmmMarketModel(new CotSwapToFwdAdapter(smmMarketModel));

    SobolBrownianGeneratorFactory generatorFactory(SobolBrownianGenerator::Diagonal);
    std::vector<Size> numeraires(nbRates,
        nbRates);
    boost::shared_ptr<MarketModelEvolver> evolver(new LogNormalFwdRatePc
        (lmmMarketModel, generatorFactory, numeraires));

    boost::shared_ptr<SequenceStatisticsInc> stats =
        simulate(marketData.discountFactors(), evolver, product);
    std::vector<Real> results = stats->mean();
    std::vector<Real> errors = stats->errorEstimate();

    const std::vector<DiscountFactor>& todaysDiscounts = marketData.discountFactors();
    const std::vector<Rate>& todaysCoterminalSwapRates = lmmCurveState.coterminalSwapRates();
    for (Size i=0; i<nbRates; ++i) {
        const Matrix& cotSwapsCovariance = smmMarketModel->totalCovariance(i);
        //Matrix cotSwapsCovariance= jacobian * forwardsCovariance * transpose(jacobian);
        //Time expiry = rateTimes[i];
        boost::shared_ptr<PlainVanillaPayoff> payoff(
            new PlainVanillaPayoff(Option::Call, strike+displacement));
        //const std::vector<Time>&  taus = lmmCurveState.rateTaus();
        Real expectedSwaption = BlackCalculator(payoff,
            todaysCoterminalSwapRates[i]+displacement,
            std::sqrt(cotSwapsCovariance[i][i]),
            lmmCurveState.coterminalSwapAnnuity(i,i) *
            todaysDiscounts[i]).value();
        if (fabs(expectedSwaption-results[i]) > 0.0001)
            BOOST_ERROR(
            "expected\t" << expectedSwaption <<
            "\tLMM\t" << results[i]
        << "\tstdev:\t" << errors[i] <<
            "\t" <<std::fabs(results[i]- expectedSwaption)/errors[i]);
    }
}
Esempio n. 6
0
 MultiStepNothing::MultiStepNothing(const EvolutionDescription& evolution,
                                    Size numberOfProducts,
                                    Size doneIndex)
 : MultiProductMultiStep(evolution.rateTimes()),
   numberOfProducts_(numberOfProducts), doneIndex_(doneIndex) {}