//============================================================================= // decay particle //============================================================================= void EvtBToDDalitzCPK::decay( EvtParticle * p ) { if ( _flag == 1 ) { // PHSP p -> initializePhaseSpace( getNDaug() , getDaugs() ) ; vertex ( 0. ) ; } else if ( _flag == 2 ) { // SVS p->initializePhaseSpace(getNDaug(),getDaugs()); EvtParticle *v; v = p->getDaug(0); double massv = v->mass(); EvtVector4R momv = v->getP4(); EvtVector4R moms = p->getDaug(1)->getP4(); double m_parent = p->mass(); EvtVector4R p4_parent = momv+moms; double norm=massv/(momv.d3mag()*m_parent); p4_parent = norm*p4_parent; vertex(0,p4_parent*(v->epsParent(0))); vertex(1,p4_parent*(v->epsParent(1))); vertex(2,p4_parent*(v->epsParent(2))); } }
void EvtSSD_DirectCP::decay( EvtParticle *p) { bool flip = false ; EvtId daugs[2]; // decide it is B or Bbar: if ( EvtRandom::Flat(0.,1.) < ( ( 1. - _acp ) / 2. ) ) { // it is a B if ( EvtPDL::getStdHep( getParentId() ) < 0 ) flip = true ; } else { // it is a Bbar if ( EvtPDL::getStdHep( getParentId() ) > 0 ) flip = true ; } if ( flip ) { if ( ( isB0Mixed( p ) ) || ( isBsMixed( p ) ) ) { p->getParent() ->setId( EvtPDL::chargeConj( p->getParent()->getId() ) ) ; p->setId( EvtPDL::chargeConj( p->getId() ) ) ; } else { p->setId( EvtPDL::chargeConj( p->getId() ) ) ; } } if (!flip) { daugs[0]=getDaug(0); daugs[1]=getDaug(1); } else { daugs[0]=EvtPDL::chargeConj(getDaug(0)); daugs[1]=EvtPDL::chargeConj(getDaug(1)); } EvtParticle *d; p->initializePhaseSpace(2, daugs); EvtVector4R p4_parent=p->getP4Restframe(); double m_parent=p4_parent.mass(); EvtSpinType::spintype d2type=EvtPDL::getSpinType(getDaug(1)); EvtVector4R momv; EvtVector4R moms; if (d2type==EvtSpinType::SCALAR) { d2type=EvtPDL::getSpinType(getDaug(0)); d= p->getDaug(0); momv = d->getP4(); moms = p->getDaug(1)->getP4(); } else { d= p->getDaug(1); momv = d->getP4(); moms = p->getDaug(0)->getP4(); } if (d2type==EvtSpinType::SCALAR) { vertex(1.); } if (d2type==EvtSpinType::VECTOR) { double norm=momv.mass()/(momv.d3mag()*p->mass()); vertex(0,norm*p4_parent*(d->epsParent(0))); vertex(1,norm*p4_parent*(d->epsParent(1))); vertex(2,norm*p4_parent*(d->epsParent(2))); } if (d2type==EvtSpinType::TENSOR) { double norm= d->mass()*d->mass()/(m_parent*d->getP4().d3mag()*d->getP4().d3mag()); vertex(0,norm*d->epsTensorParent(0).cont1(p4_parent)*p4_parent); vertex(1,norm*d->epsTensorParent(1).cont1(p4_parent)*p4_parent); vertex(2,norm*d->epsTensorParent(2).cont1(p4_parent)*p4_parent); vertex(3,norm*d->epsTensorParent(3).cont1(p4_parent)*p4_parent); vertex(4,norm*d->epsTensorParent(4).cont1(p4_parent)*p4_parent); } }
void EvtVectorIsr::decay( EvtParticle *p ){ //the elctron mass double electMass=EvtPDL::getMeanMass(EvtPDL::getId("e-")); static EvtId gammaId=EvtPDL::getId("gamma"); EvtParticle *phi; EvtParticle *gamma; //4-mom of the two colinear photons to the decay of the vphoton EvtVector4R p4softg1(0.,0.,0.,0.); EvtVector4R p4softg2(0.,0.,0.,0.); //get pointers to the daughters set //get masses/initial phase space - will overwrite the //p4s below to get the kinematic distributions correct p->initializePhaseSpace(getNDaug(),getDaugs()); phi=p->getDaug(0); gamma=p->getDaug(1); //Generate soft colinear photons and the electron and positron energies after emission. //based on method of AfkQed and notes of Vladimir Druzhinin. // //function ckhrad(eb,q2m,r1,r2,e01,e02,f_col) //eb: energy of incoming electrons in CM frame //q2m: minimum invariant mass of the virtual photon after soft colinear photon emission //returned arguments //e01,e02: energies of e+ and e- after soft colinear photon emission //fcol: weighting factor for Born cross section for use in an accept/reject test. double wcm=p->mass(); double eb=0.5*wcm; //TO guarantee the collinear photons are softer than the ISR photon, require q2m > m*wcm double q2m=phi->mass()*wcm; double f_col(0.); double e01(0.); double e02(0.); double ebeam=eb; double wcm_new = wcm; double s_new = wcm*wcm; double fran = 1.; double f = 0; int m = 0; double largest_f=0;//only used when determining max weight for this vector particle mass if (!firstorder){ while (fran > f){ m++; int n=0; while (f_col == 0.){ n++; ckhrad(eb,q2m,e01,e02,f_col); if (n > 10000){ report(Severity::Info,"EvtGen") << "EvtVectorIsr is having problems. Called ckhrad 10000 times.\n"; assert(0); } } //Effective beam energy after soft photon emission (neglecting electron mass) ebeam = sqrt(e01*e02); wcm_new = 2*ebeam; s_new = wcm_new*wcm_new; //The Vector mass should never be greater than wcm_new if (phi->mass() > wcm_new){ report(Severity::Info,"EvtGen") << "EvtVectorIsr finds Vector mass="<<phi->mass()<<" > Weff=" << wcm_new<<". Should not happen\n"; assert(0); } //Determine Born cross section @ wcm_new for e+e- -> gamma V. We aren't interested in the absolute normalization //Just the functional dependence. Assuming a narrow resonance when determining cs_Born double cs_Born = 1.; if (EvtPDL::getMaxRange(phi->getId()) > 0.) { double x0 = 1 - EvtPDL::getMeanMass(phi->getId())*EvtPDL::getMeanMass(phi->getId())/s_new; //L = log(s/(electMass*electMass) double L = 2.*log(wcm_new/electMass); // W(x0) is actually 2*alpha/pi times the following double W = (L-1.)*(1. - x0 +0.5*x0*x0); //Born cross section is actually 12*pi*pi*Gammaee/EvtPDL::getMeanMass(phi->getId()) times the following //(we'd need the full W(x0) as well) cs_Born = W/s_new; } f = cs_Born*f_col; //if fmax was set properly, f should NEVER be larger than fmax if (f > fmax && fmax > 0.){ report(Severity::Info,"EvtGen") << "EvtVectorIsr finds a problem with fmax, the maximum weight setting\n" << "fmax is the third decay argument in the .dec file. VectorIsr attempts to set it reasonably if it wasn't provided\n" << "To determine a more appropriate value, build GeneratorQAApp, and set the third argument for this decay <0.\n" << "If you haven't been providing the first 2 arguments, set them to be 1. 1.). The program will report\n" << "the largest weight it finds. You should set fmax to be slightly larger.\n" << "Alternatively try the following values for various vector particles: " << "phi->1.15 J/psi-psi(4415)->0.105\n" << "The current value of f and fmax for " << EvtPDL::name(phi->getId()) << " are " << f << " " << fmax << "\n" << "Will now assert\n"; assert(0); } if (fmax > 0.) { fran = fmax*EvtRandom::Flat(0.0,1.0); } else { //determine max weight for this vector particle mass if (f>largest_f) { largest_f = f; report(Severity::Info,"EvtGen") << m << " " << EvtPDL::name(phi->getId()) << " " << "vector_mass " << " " << EvtPDL::getMeanMass(phi->getId()) << " fmax should be at least " << largest_f << ". f_col cs_B = " << f_col << " " << cs_Born << std::endl; } if (m%10000 == 0) { report(Severity::Info,"EvtGen") << m << " " << EvtPDL::name(phi->getId()) << " " << "vector_mass " << " " << EvtPDL::getMeanMass(phi->getId()) << " fmax should be at least " << largest_f << ". f_col cs_B = " << f_col << " " << cs_Born << std::endl; } f_col = 0.; f = 0.; //determine max weight for this vector particle mass } if (m > 100000){ if (fmax > 0.) report(Severity::Info,"EvtGen") << "EvtVectorIsr is having problems. Check the fmax value - the 3rd argument in the .dec file\n" << "Recommended values for various vector particles: " << "phi->1.15 J/psi-psi(4415)->0.105 " << "Upsilon(1S,2S,3S)->0.14\n"; assert(0); } }//while (fran > f) }//if (firstorder) //Compute parameters for boost to/from the system after colinear radiation double bet_l; double gam_l; double betgam_l; double csfrmn_new; double csbkmn_new; if (firstorder){ bet_l = 0.; gam_l = 1.; betgam_l = 0.; csfrmn_new = csfrmn; csbkmn_new = csbkmn; } else { double xx = e02/e01; double sq_xx = sqrt(xx); bet_l = (1.-xx)/(1.+xx); gam_l = (1.+xx)/(2.*sq_xx); betgam_l = (1.-xx)/(2.*sq_xx); //Boost photon cos_theta limits in lab to limits in the system after colinear rad csfrmn_new=(csfrmn - bet_l)/(1. - bet_l*csfrmn); csbkmn_new=(csbkmn - bet_l)/(1. - bet_l*csbkmn); } // //generate kinematics according to Bonneau-Martin article // //Nucl. Phys. B27 (1971) 381-397 // For backward compatibility with .dec files before SP5, the backward cos limit for //the ISR photon is actually given as *minus* the actual limit. Sorry, this wouldn't be //my choice. -Joe //gamma momentum in the vpho restframe *after* soft colinear radiation double pg = (s_new - phi->mass()*phi->mass())/(2.*wcm_new); //calculate the beta of incoming electrons after colinear rad in the frame where e= and e- have equal momentum double beta=electMass/ebeam; //electMass/Ebeam = 1/gamma beta=sqrt(1. - beta*beta); //sqrt (1 - (1/gamma)**2) double ymax=log((1.+beta*csfrmn_new)/(1.-beta*csfrmn_new)); double ymin=log((1.-beta*csbkmn_new)/(1.+beta*csbkmn_new)); // photon theta distributed as 2*beta/(1-beta**2*cos(theta)**2) double y=(ymax-ymin)*EvtRandom::Flat(0.0,1.0) + ymin; double cs=exp(y); cs=(cs - 1.)/(cs + 1.)/beta; double sn=sqrt(1-cs*cs); double fi=EvtRandom::Flat(EvtConst::twoPi); //four-vector for the phi double phi_p0 = sqrt(phi->mass()*phi->mass()+pg*pg); double phi_p3 = -pg*cs; //boost back to frame before colinear radiation. EvtVector4R p4phi(gam_l*phi_p0 + betgam_l*phi_p3, -pg*sn*cos(fi), -pg*sn*sin(fi), betgam_l*phi_p0 + gam_l*phi_p3); double isr_p0 = pg; double isr_p3 = -phi_p3; EvtVector4R p4gamma(gam_l*isr_p0 + betgam_l*isr_p3, -p4phi.get(1), -p4phi.get(2), betgam_l*isr_p0 + gam_l*isr_p3); //four-vectors of the collinear photons if (!firstorder) { p4softg1.set(0, eb-e02); p4softg1.set(3, e02-eb); p4softg2.set(0, eb-e01); p4softg2.set(3, eb-e01); } //save momenta for particles phi->init( getDaug(0),p4phi); gamma->init( getDaug(1),p4gamma); //add the two colinear photons as vphoton daughters EvtPhotonParticle *softg1=new EvtPhotonParticle;; EvtPhotonParticle *softg2=new EvtPhotonParticle;; softg1->init(gammaId,p4softg1); softg2->init(gammaId,p4softg2); softg1->addDaug(p); softg2->addDaug(p); //try setting the spin density matrix of the phi //get polarization vector for phi in its parents restframe. EvtVector4C phi0=phi->epsParent(0); EvtVector4C phi1=phi->epsParent(1); EvtVector4C phi2=phi->epsParent(2); //get polarization vector for a photon in its parents restframe. EvtVector4C gamma0=gamma->epsParentPhoton(0); EvtVector4C gamma1=gamma->epsParentPhoton(1); EvtComplex r1p=phi0*gamma0; EvtComplex r2p=phi1*gamma0; EvtComplex r3p=phi2*gamma0; EvtComplex r1m=phi0*gamma1; EvtComplex r2m=phi1*gamma1; EvtComplex r3m=phi2*gamma1; EvtComplex rho33=r3p*conj(r3p)+r3m*conj(r3m); EvtComplex rho22=r2p*conj(r2p)+r2m*conj(r2m); EvtComplex rho11=r1p*conj(r1p)+r1m*conj(r1m); EvtComplex rho13=r3p*conj(r1p)+r3m*conj(r1m); EvtComplex rho12=r2p*conj(r1p)+r2m*conj(r1m); EvtComplex rho23=r3p*conj(r2p)+r3m*conj(r2m); EvtComplex rho31=conj(rho13); EvtComplex rho32=conj(rho23); EvtComplex rho21=conj(rho12); EvtSpinDensity rho; rho.setDim(3); rho.set(0,0,rho11); rho.set(0,1,rho12); rho.set(0,2,rho13); rho.set(1,0,rho21); rho.set(1,1,rho22); rho.set(1,2,rho23); rho.set(2,0,rho31); rho.set(2,1,rho32); rho.set(2,2,rho33); setDaughterSpinDensity(0); phi->setSpinDensityForward(rho); return ; }