bool OSAtomicChecker::evalOSAtomicCompareAndSwap(const CallExpr *CE, ExprEngine &Eng, ExplodedNode *Pred, ExplodedNodeSet &Dst) const { // Not enough arguments to match OSAtomicCompareAndSwap? if (CE->getNumArgs() != 3) return false; ASTContext &Ctx = Eng.getContext(); const Expr *oldValueExpr = CE->getArg(0); QualType oldValueType = Ctx.getCanonicalType(oldValueExpr->getType()); const Expr *newValueExpr = CE->getArg(1); QualType newValueType = Ctx.getCanonicalType(newValueExpr->getType()); // Do the types of 'oldValue' and 'newValue' match? if (oldValueType != newValueType) return false; const Expr *theValueExpr = CE->getArg(2); const PointerType *theValueType=theValueExpr->getType()->getAs<PointerType>(); // theValueType not a pointer? if (!theValueType) return false; QualType theValueTypePointee = Ctx.getCanonicalType(theValueType->getPointeeType()).getUnqualifiedType(); // The pointee must match newValueType and oldValueType. if (theValueTypePointee != newValueType) return false; static SimpleProgramPointTag OSAtomicLoadTag("OSAtomicChecker : Load"); static SimpleProgramPointTag OSAtomicStoreTag("OSAtomicChecker : Store"); // Load 'theValue'. ProgramStateRef state = Pred->getState(); const LocationContext *LCtx = Pred->getLocationContext(); ExplodedNodeSet Tmp; SVal location = state->getSVal(theValueExpr, LCtx); // Here we should use the value type of the region as the load type, because // we are simulating the semantics of the function, not the semantics of // passing argument. So the type of theValue expr is not we are loading. // But usually the type of the varregion is not the type we want either, // we still need to do a CastRetrievedVal in store manager. So actually this // LoadTy specifying can be omitted. But we put it here to emphasize the // semantics. QualType LoadTy; if (const TypedValueRegion *TR = dyn_cast_or_null<TypedValueRegion>(location.getAsRegion())) { LoadTy = TR->getValueType(); } Eng.evalLoad(Tmp, CE, theValueExpr, Pred, state, location, &OSAtomicLoadTag, LoadTy); if (Tmp.empty()) { // If no nodes were generated, other checkers must have generated sinks. // We return an empty Dst. return true; } for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I != E; ++I) { ExplodedNode *N = *I; ProgramStateRef stateLoad = N->getState(); // Use direct bindings from the environment since we are forcing a load // from a location that the Environment would typically not be used // to bind a value. SVal theValueVal_untested = stateLoad->getSVal(theValueExpr, LCtx, true); SVal oldValueVal_untested = stateLoad->getSVal(oldValueExpr, LCtx); // FIXME: Issue an error. if (theValueVal_untested.isUndef() || oldValueVal_untested.isUndef()) { return false; } DefinedOrUnknownSVal theValueVal = cast<DefinedOrUnknownSVal>(theValueVal_untested); DefinedOrUnknownSVal oldValueVal = cast<DefinedOrUnknownSVal>(oldValueVal_untested); SValBuilder &svalBuilder = Eng.getSValBuilder(); // Perform the comparison. DefinedOrUnknownSVal Cmp = svalBuilder.evalEQ(stateLoad,theValueVal,oldValueVal); ProgramStateRef stateEqual = stateLoad->assume(Cmp, true); // Were they equal? if (stateEqual) { // Perform the store. ExplodedNodeSet TmpStore; SVal val = stateEqual->getSVal(newValueExpr, LCtx); // Handle implicit value casts. if (const TypedValueRegion *R = dyn_cast_or_null<TypedValueRegion>(location.getAsRegion())) { val = svalBuilder.evalCast(val,R->getValueType(), newValueExpr->getType()); } Eng.evalStore(TmpStore, CE, theValueExpr, N, stateEqual, location, val, &OSAtomicStoreTag); if (TmpStore.empty()) { // If no nodes were generated, other checkers must have generated sinks. // We return an empty Dst. return true; } StmtNodeBuilder B(TmpStore, Dst, Eng.getBuilderContext()); // Now bind the result of the comparison. for (ExplodedNodeSet::iterator I2 = TmpStore.begin(), E2 = TmpStore.end(); I2 != E2; ++I2) { ExplodedNode *predNew = *I2; ProgramStateRef stateNew = predNew->getState(); // Check for 'void' return type if we have a bogus function prototype. SVal Res = UnknownVal(); QualType T = CE->getType(); if (!T->isVoidType()) Res = Eng.getSValBuilder().makeTruthVal(true, T); B.generateNode(CE, predNew, stateNew->BindExpr(CE, LCtx, Res), this); } } // Were they not equal? if (ProgramStateRef stateNotEqual = stateLoad->assume(Cmp, false)) { // Check for 'void' return type if we have a bogus function prototype. SVal Res = UnknownVal(); QualType T = CE->getType(); if (!T->isVoidType()) Res = Eng.getSValBuilder().makeTruthVal(false, CE->getType()); StmtNodeBuilder B(N, Dst, Eng.getBuilderContext()); B.generateNode(CE, N, stateNotEqual->BindExpr(CE, LCtx, Res), this); } } return true; }
void UnreachableCodeChecker::checkEndAnalysis(ExplodedGraph &G, BugReporter &B, ExprEngine &Eng) const { CFGBlocksSet reachable, visited; if (Eng.hasWorkRemaining()) return; const Decl *D = nullptr; CFG *C = nullptr; ParentMap *PM = nullptr; const LocationContext *LC = nullptr; // Iterate over ExplodedGraph for (ExplodedGraph::node_iterator I = G.nodes_begin(), E = G.nodes_end(); I != E; ++I) { const ProgramPoint &P = I->getLocation(); LC = P.getLocationContext(); if (!LC->inTopFrame()) continue; if (!D) D = LC->getAnalysisDeclContext()->getDecl(); // Save the CFG if we don't have it already if (!C) C = LC->getAnalysisDeclContext()->getUnoptimizedCFG(); if (!PM) PM = &LC->getParentMap(); if (Optional<BlockEntrance> BE = P.getAs<BlockEntrance>()) { const CFGBlock *CB = BE->getBlock(); reachable.insert(CB->getBlockID()); } } // Bail out if we didn't get the CFG or the ParentMap. if (!D || !C || !PM) return; // Don't do anything for template instantiations. Proving that code // in a template instantiation is unreachable means proving that it is // unreachable in all instantiations. if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) if (FD->isTemplateInstantiation()) return; // Find CFGBlocks that were not covered by any node for (CFG::const_iterator I = C->begin(), E = C->end(); I != E; ++I) { const CFGBlock *CB = *I; // Check if the block is unreachable if (reachable.count(CB->getBlockID())) continue; // Check if the block is empty (an artificial block) if (isEmptyCFGBlock(CB)) continue; // Find the entry points for this block if (!visited.count(CB->getBlockID())) FindUnreachableEntryPoints(CB, reachable, visited); // This block may have been pruned; check if we still want to report it if (reachable.count(CB->getBlockID())) continue; // Check for false positives if (isInvalidPath(CB, *PM)) continue; // It is good practice to always have a "default" label in a "switch", even // if we should never get there. It can be used to detect errors, for // instance. Unreachable code directly under a "default" label is therefore // likely to be a false positive. if (const Stmt *label = CB->getLabel()) if (label->getStmtClass() == Stmt::DefaultStmtClass) continue; // Special case for __builtin_unreachable. // FIXME: This should be extended to include other unreachable markers, // such as llvm_unreachable. if (!CB->empty()) { bool foundUnreachable = false; for (CFGBlock::const_iterator ci = CB->begin(), ce = CB->end(); ci != ce; ++ci) { if (Optional<CFGStmt> S = (*ci).getAs<CFGStmt>()) if (const CallExpr *CE = dyn_cast<CallExpr>(S->getStmt())) { if (CE->getBuiltinCallee() == Builtin::BI__builtin_unreachable || CE->isBuiltinAssumeFalse(Eng.getContext())) { foundUnreachable = true; break; } } } if (foundUnreachable) continue; } // We found a block that wasn't covered - find the statement to report SourceRange SR; PathDiagnosticLocation DL; SourceLocation SL; if (const Stmt *S = getUnreachableStmt(CB)) { // In macros, 'do {...} while (0)' is often used. Don't warn about the // condition 0 when it is unreachable. if (S->getBeginLoc().isMacroID()) if (const auto *I = dyn_cast<IntegerLiteral>(S)) if (I->getValue() == 0ULL) if (const Stmt *Parent = PM->getParent(S)) if (isa<DoStmt>(Parent)) continue; SR = S->getSourceRange(); DL = PathDiagnosticLocation::createBegin(S, B.getSourceManager(), LC); SL = DL.asLocation(); if (SR.isInvalid() || !SL.isValid()) continue; } else continue; // Check if the SourceLocation is in a system header const SourceManager &SM = B.getSourceManager(); if (SM.isInSystemHeader(SL) || SM.isInExternCSystemHeader(SL)) continue; B.EmitBasicReport(D, this, "Unreachable code", "Dead code", "This statement is never executed", DL, SR); } }
void ento::RegisterObjCAtSyncChecker(ExprEngine &Eng) { // @synchronized is an Objective-C 2 feature. if (Eng.getContext().getLangOptions().ObjC2) Eng.registerCheck(new ObjCAtSyncChecker()); }