Esempio n. 1
0
/// HandleFloatingPointIV - If the loop has floating induction variable
/// then insert corresponding integer induction variable if possible.
/// For example,
/// for(double i = 0; i < 10000; ++i)
///   bar(i)
/// is converted into
/// for(int i = 0; i < 10000; ++i)
///   bar((double)i);
///
void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) {
  unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
  unsigned BackEdge     = IncomingEdge^1;

  // Check incoming value.
  ConstantFP *InitValueVal =
    dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));

  int64_t InitValue;
  if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
    return;

  // Check IV increment. Reject this PN if increment operation is not
  // an add or increment value can not be represented by an integer.
  BinaryOperator *Incr =
    dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
  if (Incr == 0 || Incr->getOpcode() != Instruction::FAdd) return;

  // If this is not an add of the PHI with a constantfp, or if the constant fp
  // is not an integer, bail out.
  ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
  int64_t IncValue;
  if (IncValueVal == 0 || Incr->getOperand(0) != PN ||
      !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
    return;

  // Check Incr uses. One user is PN and the other user is an exit condition
  // used by the conditional terminator.
  Value::use_iterator IncrUse = Incr->use_begin();
  Instruction *U1 = cast<Instruction>(*IncrUse++);
  if (IncrUse == Incr->use_end()) return;
  Instruction *U2 = cast<Instruction>(*IncrUse++);
  if (IncrUse != Incr->use_end()) return;

  // Find exit condition, which is an fcmp.  If it doesn't exist, or if it isn't
  // only used by a branch, we can't transform it.
  FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
  if (!Compare)
    Compare = dyn_cast<FCmpInst>(U2);
  if (Compare == 0 || !Compare->hasOneUse() ||
      !isa<BranchInst>(Compare->use_back()))
    return;

  BranchInst *TheBr = cast<BranchInst>(Compare->use_back());

  // We need to verify that the branch actually controls the iteration count
  // of the loop.  If not, the new IV can overflow and no one will notice.
  // The branch block must be in the loop and one of the successors must be out
  // of the loop.
  assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
  if (!L->contains(TheBr->getParent()) ||
      (L->contains(TheBr->getSuccessor(0)) &&
       L->contains(TheBr->getSuccessor(1))))
    return;


  // If it isn't a comparison with an integer-as-fp (the exit value), we can't
  // transform it.
  ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
  int64_t ExitValue;
  if (ExitValueVal == 0 ||
      !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
    return;

  // Find new predicate for integer comparison.
  CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
  switch (Compare->getPredicate()) {
  default: return;  // Unknown comparison.
  case CmpInst::FCMP_OEQ:
  case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
  case CmpInst::FCMP_ONE:
  case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
  case CmpInst::FCMP_OGT:
  case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
  case CmpInst::FCMP_OGE:
  case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
  case CmpInst::FCMP_OLT:
  case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
  case CmpInst::FCMP_OLE:
  case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
  }

  // We convert the floating point induction variable to a signed i32 value if
  // we can.  This is only safe if the comparison will not overflow in a way
  // that won't be trapped by the integer equivalent operations.  Check for this
  // now.
  // TODO: We could use i64 if it is native and the range requires it.

  // The start/stride/exit values must all fit in signed i32.
  if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
    return;

  // If not actually striding (add x, 0.0), avoid touching the code.
  if (IncValue == 0)
    return;

  // Positive and negative strides have different safety conditions.
  if (IncValue > 0) {
    // If we have a positive stride, we require the init to be less than the
    // exit value and an equality or less than comparison.
    if (InitValue >= ExitValue ||
        NewPred == CmpInst::ICMP_SGT || NewPred == CmpInst::ICMP_SGE)
      return;

    uint32_t Range = uint32_t(ExitValue-InitValue);
    if (NewPred == CmpInst::ICMP_SLE) {
      // Normalize SLE -> SLT, check for infinite loop.
      if (++Range == 0) return;  // Range overflows.
    }

    unsigned Leftover = Range % uint32_t(IncValue);

    // If this is an equality comparison, we require that the strided value
    // exactly land on the exit value, otherwise the IV condition will wrap
    // around and do things the fp IV wouldn't.
    if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
        Leftover != 0)
      return;

    // If the stride would wrap around the i32 before exiting, we can't
    // transform the IV.
    if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
      return;

  } else {
    // If we have a negative stride, we require the init to be greater than the
    // exit value and an equality or greater than comparison.
    if (InitValue >= ExitValue ||
        NewPred == CmpInst::ICMP_SLT || NewPred == CmpInst::ICMP_SLE)
      return;

    uint32_t Range = uint32_t(InitValue-ExitValue);
    if (NewPred == CmpInst::ICMP_SGE) {
      // Normalize SGE -> SGT, check for infinite loop.
      if (++Range == 0) return;  // Range overflows.
    }

    unsigned Leftover = Range % uint32_t(-IncValue);

    // If this is an equality comparison, we require that the strided value
    // exactly land on the exit value, otherwise the IV condition will wrap
    // around and do things the fp IV wouldn't.
    if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
        Leftover != 0)
      return;

    // If the stride would wrap around the i32 before exiting, we can't
    // transform the IV.
    if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
      return;
  }

  const IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());

  // Insert new integer induction variable.
  PHINode *NewPHI = PHINode::Create(Int32Ty, PN->getName()+".int", PN);
  NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
                      PN->getIncomingBlock(IncomingEdge));

  Value *NewAdd =
    BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
                              Incr->getName()+".int", Incr);
  NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));

  ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
                                      ConstantInt::get(Int32Ty, ExitValue),
                                      Compare->getName());

  // In the following deletions, PN may become dead and may be deleted.
  // Use a WeakVH to observe whether this happens.
  WeakVH WeakPH = PN;

  // Delete the old floating point exit comparison.  The branch starts using the
  // new comparison.
  NewCompare->takeName(Compare);
  Compare->replaceAllUsesWith(NewCompare);
  RecursivelyDeleteTriviallyDeadInstructions(Compare);

  // Delete the old floating point increment.
  Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
  RecursivelyDeleteTriviallyDeadInstructions(Incr);

  // If the FP induction variable still has uses, this is because something else
  // in the loop uses its value.  In order to canonicalize the induction
  // variable, we chose to eliminate the IV and rewrite it in terms of an
  // int->fp cast.
  //
  // We give preference to sitofp over uitofp because it is faster on most
  // platforms.
  if (WeakPH) {
    Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
                                 PN->getParent()->getFirstNonPHI());
    PN->replaceAllUsesWith(Conv);
    RecursivelyDeleteTriviallyDeadInstructions(PN);
  }

  // Add a new IVUsers entry for the newly-created integer PHI.
  IU->AddUsersIfInteresting(NewPHI);
}
/// HandleFloatingPointIV - If the loop has floating induction variable
/// then insert corresponding integer induction variable if possible.
/// For example,
/// for(double i = 0; i < 10000; ++i)
///   bar(i)
/// is converted into
/// for(int i = 0; i < 10000; ++i)
///   bar((double)i);
///
void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PH) {

  unsigned IncomingEdge = L->contains(PH->getIncomingBlock(0));
  unsigned BackEdge     = IncomingEdge^1;

  // Check incoming value.
  ConstantFP *InitValue = dyn_cast<ConstantFP>(PH->getIncomingValue(IncomingEdge));
  if (!InitValue) return;
  uint64_t newInitValue =
              Type::getInt32Ty(PH->getContext())->getPrimitiveSizeInBits();
  if (!convertToInt(InitValue->getValueAPF(), &newInitValue))
    return;

  // Check IV increment. Reject this PH if increment operation is not
  // an add or increment value can not be represented by an integer.
  BinaryOperator *Incr =
    dyn_cast<BinaryOperator>(PH->getIncomingValue(BackEdge));
  if (!Incr) return;
  if (Incr->getOpcode() != Instruction::FAdd) return;
  ConstantFP *IncrValue = NULL;
  unsigned IncrVIndex = 1;
  if (Incr->getOperand(1) == PH)
    IncrVIndex = 0;
  IncrValue = dyn_cast<ConstantFP>(Incr->getOperand(IncrVIndex));
  if (!IncrValue) return;
  uint64_t newIncrValue =
              Type::getInt32Ty(PH->getContext())->getPrimitiveSizeInBits();
  if (!convertToInt(IncrValue->getValueAPF(), &newIncrValue))
    return;

  // Check Incr uses. One user is PH and the other users is exit condition used
  // by the conditional terminator.
  Value::use_iterator IncrUse = Incr->use_begin();
  Instruction *U1 = cast<Instruction>(IncrUse++);
  if (IncrUse == Incr->use_end()) return;
  Instruction *U2 = cast<Instruction>(IncrUse++);
  if (IncrUse != Incr->use_end()) return;

  // Find exit condition.
  FCmpInst *EC = dyn_cast<FCmpInst>(U1);
  if (!EC)
    EC = dyn_cast<FCmpInst>(U2);
  if (!EC) return;

  if (BranchInst *BI = dyn_cast<BranchInst>(EC->getParent()->getTerminator())) {
    if (!BI->isConditional()) return;
    if (BI->getCondition() != EC) return;
  }

  // Find exit value. If exit value can not be represented as an integer then
  // do not handle this floating point PH.
  ConstantFP *EV = NULL;
  unsigned EVIndex = 1;
  if (EC->getOperand(1) == Incr)
    EVIndex = 0;
  EV = dyn_cast<ConstantFP>(EC->getOperand(EVIndex));
  if (!EV) return;
  uint64_t intEV = Type::getInt32Ty(PH->getContext())->getPrimitiveSizeInBits();
  if (!convertToInt(EV->getValueAPF(), &intEV))
    return;

  // Find new predicate for integer comparison.
  CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
  switch (EC->getPredicate()) {
  case CmpInst::FCMP_OEQ:
  case CmpInst::FCMP_UEQ:
    NewPred = CmpInst::ICMP_EQ;
    break;
  case CmpInst::FCMP_OGT:
  case CmpInst::FCMP_UGT:
    NewPred = CmpInst::ICMP_UGT;
    break;
  case CmpInst::FCMP_OGE:
  case CmpInst::FCMP_UGE:
    NewPred = CmpInst::ICMP_UGE;
    break;
  case CmpInst::FCMP_OLT:
  case CmpInst::FCMP_ULT:
    NewPred = CmpInst::ICMP_ULT;
    break;
  case CmpInst::FCMP_OLE:
  case CmpInst::FCMP_ULE:
    NewPred = CmpInst::ICMP_ULE;
    break;
  default:
    break;
  }
  if (NewPred == CmpInst::BAD_ICMP_PREDICATE) return;

  // Insert new integer induction variable.
  PHINode *NewPHI = PHINode::Create(Type::getInt32Ty(PH->getContext()),
                                    PH->getName()+".int", PH);
  NewPHI->addIncoming(ConstantInt::get(Type::getInt32Ty(PH->getContext()),
                                       newInitValue),
                      PH->getIncomingBlock(IncomingEdge));

  Value *NewAdd = BinaryOperator::CreateAdd(NewPHI,
                           ConstantInt::get(Type::getInt32Ty(PH->getContext()),
                                                             newIncrValue),
                                            Incr->getName()+".int", Incr);
  NewPHI->addIncoming(NewAdd, PH->getIncomingBlock(BackEdge));

  // The back edge is edge 1 of newPHI, whatever it may have been in the
  // original PHI.
  ConstantInt *NewEV = ConstantInt::get(Type::getInt32Ty(PH->getContext()),
                                        intEV);
  Value *LHS = (EVIndex == 1 ? NewPHI->getIncomingValue(1) : NewEV);
  Value *RHS = (EVIndex == 1 ? NewEV : NewPHI->getIncomingValue(1));
  ICmpInst *NewEC = new ICmpInst(EC->getParent()->getTerminator(),
                                 NewPred, LHS, RHS, EC->getName());

  // In the following deletions, PH may become dead and may be deleted.
  // Use a WeakVH to observe whether this happens.
  WeakVH WeakPH = PH;

  // Delete old, floating point, exit comparison instruction.
  NewEC->takeName(EC);
  EC->replaceAllUsesWith(NewEC);
  RecursivelyDeleteTriviallyDeadInstructions(EC);

  // Delete old, floating point, increment instruction.
  Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
  RecursivelyDeleteTriviallyDeadInstructions(Incr);

  // Replace floating induction variable, if it isn't already deleted.
  // Give SIToFPInst preference over UIToFPInst because it is faster on
  // platforms that are widely used.
  if (WeakPH && !PH->use_empty()) {
    if (useSIToFPInst(*InitValue, *EV, newInitValue, intEV)) {
      SIToFPInst *Conv = new SIToFPInst(NewPHI, PH->getType(), "indvar.conv",
                                        PH->getParent()->getFirstNonPHI());
      PH->replaceAllUsesWith(Conv);
    } else {
      UIToFPInst *Conv = new UIToFPInst(NewPHI, PH->getType(), "indvar.conv",
                                        PH->getParent()->getFirstNonPHI());
      PH->replaceAllUsesWith(Conv);
    }
    RecursivelyDeleteTriviallyDeadInstructions(PH);
  }

  // Add a new IVUsers entry for the newly-created integer PHI.
  IU->AddUsersIfInteresting(NewPHI);
}