void AssemblyA0::interior_assembly(FEMContext & c) { const unsigned int n_components = rb_sys.n_vars(); // make sure we have three components libmesh_assert_equal_to (n_components, 3); const unsigned int u_var = rb_sys.u_var; const unsigned int v_var = rb_sys.v_var; const unsigned int w_var = rb_sys.w_var; FEBase * elem_fe = libmesh_nullptr; c.get_element_fe(u_var, elem_fe); const std::vector<Real> & JxW = elem_fe->get_JxW(); // The velocity shape function gradients at interior // quadrature points. const std::vector<std::vector<RealGradient> > & dphi = elem_fe->get_dphi(); // Now we will build the affine operator unsigned int n_qpoints = c.get_element_qrule().n_points(); std::vector<unsigned int> n_var_dofs(n_components); n_var_dofs[u_var] = c.get_dof_indices(u_var).size(); n_var_dofs[v_var] = c.get_dof_indices(v_var).size(); n_var_dofs[w_var] = c.get_dof_indices(w_var).size(); for (unsigned int C_i = 0; C_i < n_components; C_i++) { unsigned int C_j = 0; for (unsigned int C_k = 0; C_k < n_components; C_k++) for (unsigned int C_l = 1; C_l < n_components; C_l++) { Real C_ijkl = elasticity_tensor(C_i, C_j, C_k, C_l); for (unsigned int qp=0; qp<n_qpoints; qp++) for (unsigned int i=0; i<n_var_dofs[C_i]; i++) for (unsigned int j=0; j<n_var_dofs[C_k]; j++) (c.get_elem_jacobian(C_i,C_k))(i,j) += JxW[qp]*(C_ijkl * dphi[i][qp](C_j)*dphi[j][qp](C_l)); } } for (unsigned int C_i = 0; C_i < n_components; C_i++) for (unsigned int C_j = 1; C_j < n_components; C_j++) for (unsigned int C_k = 0; C_k < n_components; C_k++) { unsigned int C_l = 0; Real C_ijkl = elasticity_tensor(C_i, C_j, C_k, C_l); for (unsigned int qp=0; qp<n_qpoints; qp++) for (unsigned int i=0; i<n_var_dofs[C_i]; i++) for (unsigned int j=0; j<n_var_dofs[C_k]; j++) (c.get_elem_jacobian(C_i,C_k))(i,j) += JxW[qp]*(C_ijkl * dphi[i][qp](C_j)*dphi[j][qp](C_l)); } }
void RBEIMConstruction::init_context(FEMContext &c) { // default implementation of init_context // for compute_best_fit for(unsigned int var=0; var<n_vars(); var++) { FEBase* elem_fe = NULL; c.get_element_fe( var, elem_fe ); elem_fe->get_JxW(); elem_fe->get_phi(); elem_fe->get_xyz(); } }
void InnerProductAssembly::interior_assembly(FEMContext & c) { const unsigned int u_var = rb_sys.u_var; const unsigned int v_var = rb_sys.v_var; const unsigned int w_var = rb_sys.w_var; FEBase * elem_fe = libmesh_nullptr; c.get_element_fe(u_var, elem_fe); const std::vector<Real> & JxW = elem_fe->get_JxW(); // The velocity shape function gradients at interior // quadrature points. const std::vector<std::vector<RealGradient> >& dphi = elem_fe->get_dphi(); // The number of local degrees of freedom in each variable const unsigned int n_u_dofs = c.get_dof_indices(u_var).size(); const unsigned int n_v_dofs = c.get_dof_indices(v_var).size(); const unsigned int n_w_dofs = c.get_dof_indices(w_var).size(); // Now we will build the affine operator unsigned int n_qpoints = c.get_element_qrule().n_points(); DenseSubMatrix<Number> & Kuu = c.get_elem_jacobian(u_var, u_var); DenseSubMatrix<Number> & Kvv = c.get_elem_jacobian(v_var, v_var); DenseSubMatrix<Number> & Kww = c.get_elem_jacobian(w_var, w_var); for (unsigned int qp=0; qp<n_qpoints; qp++) { for (unsigned int i=0; i<n_u_dofs; i++) for (unsigned int j=0; j<n_u_dofs; j++) Kuu(i,j) += JxW[qp]*(dphi[i][qp]*dphi[j][qp]); for (unsigned int i=0; i<n_v_dofs; i++) for (unsigned int j=0; j<n_v_dofs; j++) Kvv(i,j) += JxW[qp]*(dphi[i][qp]*dphi[j][qp]); for (unsigned int i=0; i<n_w_dofs; i++) for (unsigned int j=0; j<n_w_dofs; j++) Kww(i,j) += JxW[qp]*(dphi[i][qp]*dphi[j][qp]); } }