Esempio n. 1
0
void
TransientMultiApp::setupApp(unsigned int i, Real /*time*/)  // FIXME: Should we be passing time?
{
  MooseApp * app = _apps[i];
  Transient * ex = dynamic_cast<Transient *>(app->getExecutioner());
  if (!ex)
    mooseError("MultiApp " << _name << " is not using a Transient Executioner!");

  // Get the FEProblem and OutputWarehouse for the current MultiApp
  FEProblem * problem = appProblem(_first_local_app + i);
  OutputWarehouse & output_warehouse = app->getOutputWarehouse();

  // Update the file numbers for the outputs from the parent application
  output_warehouse.setFileNumbers(_app.getOutputFileNumbers());

  // Call initialization method of Executioner (Note, this preforms the output of the initial time step, if desired)
  ex->init();

  if (_interpolate_transfers)
  {
    AuxiliarySystem & aux_system = problem->getAuxiliarySystem();
    System & libmesh_aux_system = aux_system.system();

    // We'll store a copy of the auxiliary system's solution at the old time in here
    libmesh_aux_system.add_vector("transfer_old", false);

    // This will be where we'll transfer the value to for the "target" time
    libmesh_aux_system.add_vector("transfer", false);
  }

  ex->preExecute();
  problem->advanceState();
  _transient_executioners[i] = ex;
}
void
MultiAppProjectionTransfer::projectSolution(FEProblem & to_problem, unsigned int app)
{
  EquationSystems & proj_es = to_problem.es();
  LinearImplicitSystem & ls = *_proj_sys[app];
  // activate the current transfer
  proj_es.parameters.set<MultiAppProjectionTransfer *>("transfer") = this;
  proj_es.parameters.set<unsigned int>("app") = app;

  // TODO: specify solver params in an input file
  // solver tolerance
  Real tol = proj_es.parameters.get<Real>("linear solver tolerance");
  proj_es.parameters.set<Real>("linear solver tolerance") = 1e-10;      // set our tolerance
  // solve it
  ls.solve();
  proj_es.parameters.set<Real>("linear solver tolerance") = tol;        // restore the original tolerance

  // copy projected solution into target es
  MeshBase & to_mesh = proj_es.get_mesh();

  MooseVariable & to_var = to_problem.getVariable(0, _to_var_name);
  System & to_sys = to_var.sys().system();
  NumericVector<Number> * to_solution = to_sys.solution.get();

  {
    MeshBase::const_node_iterator it = to_mesh.local_nodes_begin();
    const MeshBase::const_node_iterator end_it = to_mesh.local_nodes_end();
    for ( ; it != end_it; ++it)
    {
      const Node * node = *it;
      if (node->n_comp(to_sys.number(), to_var.number()) > 0)
      {
        const dof_id_type proj_index = node->dof_number(ls.number(), _proj_var_num, 0);
        const dof_id_type to_index = node->dof_number(to_sys.number(), to_var.number(), 0);
        to_solution->set(to_index, (*ls.solution)(proj_index));
      }
    }
  }
  {
    MeshBase::const_element_iterator it = to_mesh.active_local_elements_begin();
    const MeshBase::const_element_iterator end_it = to_mesh.active_local_elements_end();
    for ( ; it != end_it; ++it)
    {
      const Elem * elem = *it;
      if (elem->n_comp(to_sys.number(), to_var.number()) > 0)
      {
        const dof_id_type proj_index = elem->dof_number(ls.number(), _proj_var_num, 0);
        const dof_id_type to_index = elem->dof_number(to_sys.number(), to_var.number(), 0);
        to_solution->set(to_index, (*ls.solution)(proj_index));
      }
    }
  }

  to_solution->close();
  to_sys.update();
}
Esempio n. 3
0
void
Executioner::addAttributeReporter(const std::string & name, Real & attribute, const std::string execute_on)
{
    FEProblem * problem = parameters().getCheckedPointerParam<FEProblem *>("_fe_problem", "Failed to retrieve FEProblem when adding a attribute reporter in Executioner");
    InputParameters params = _app.getFactory().getValidParams("ExecutionerAttributeReporter");
    params.set<Real *>("value") = &attribute;
    if (!execute_on.empty())
        params.set<MultiMooseEnum>("execute_on") = execute_on;
    problem->addPostprocessor("ExecutionerAttributeReporter", name, params);
}
Esempio n. 4
0
RandomInterface::RandomInterface(const std::string & name, InputParameters & parameters,
                                 FEProblem & problem, THREAD_ID tid, bool is_nodal) :
    _random_data(NULL),
    _generator(NULL),
    _ri_problem(problem),
    _ri_name(name),
    _master_seed(parameters.get<unsigned int>("seed")),
    _is_nodal(is_nodal),
    _reset_on(EXEC_RESIDUAL),
    _curr_node(problem.assembly(tid).node()),
    _curr_element(problem.assembly(tid).elem())
{
}
Esempio n. 5
0
FunctionPeriodicBoundary::FunctionPeriodicBoundary(FEProblem & feproblem, std::vector<std::string> fn_names) :
    _dim(fn_names.size()),
    _tr_x(&feproblem.getFunction(fn_names[0])),
    _tr_y(fn_names.size() > 1 ? &feproblem.getFunction(fn_names[1]) : NULL),
    _tr_z(fn_names.size() > 2 ? &feproblem.getFunction(fn_names[2]) : NULL)
{

  // Make certain the the dimensions agree
  if (_dim != feproblem.mesh().dimension())
    mooseError("Transform function has to have the same dimension as the problem being solved.");

  // Initialize the functions (i.e., call thier initialSetup methods)
  init();
}
void
TransientMultiApp::setupApp(unsigned int i, Real /*time*/, bool output_initial)  // FIXME: Should we be passing time?
{

  MooseApp * app = _apps[i];
  Transient * ex = dynamic_cast<Transient *>(app->getExecutioner());
  if (!ex)
    mooseError("MultiApp " << _name << " is not using a Transient Executioner!");

  // Get the FEProblem and OutputWarehouse for the current MultiApp
  FEProblem * problem = appProblem(_first_local_app + i);
  OutputWarehouse & output_warehouse = _apps[i]->getOutputWarehouse();

  if (!output_initial)
  {
    ex->outputInitial(false);//\todo{Remove; handled within ex->init()}
    output_warehouse.allowOutput(false);
  }

  // Set the file numbers of the i-th app to that of the parent app
  output_warehouse.setFileNumbers(app->getOutputFileNumbers());

  // Call initialization method of Executioner (Note, this preforms the output of the initial time step, if desired)
  ex->init();

  // Enable output after setup
  output_warehouse.allowOutput(true);

  if (_interpolate_transfers)
  {
    AuxiliarySystem & aux_system = problem->getAuxiliarySystem();
    System & libmesh_aux_system = aux_system.system();

    // We'll store a copy of the auxiliary system's solution at the old time in here
    libmesh_aux_system.add_vector("transfer_old", false);

    // This will be where we'll transfer the value to for the "target" time
    libmesh_aux_system.add_vector("transfer", false);
  }

  ex->preExecute();
  problem->copyOldSolutions();
  _transient_executioners[i] = ex;

  if (_detect_steady_state || _tolerate_failure)
  {
    _apps[i]->getOutputWarehouse().allowOutput(false);
    ex->allowOutput(false);
  }
}
Esempio n. 7
0
MeshTools::BoundingBox
MultiApp::getBoundingBox(unsigned int app)
{
  if (!_has_an_app)
    mooseError("No app for " << name() << " on processor " << _orig_rank);

  FEProblem * problem = appProblem(app);

  MPI_Comm swapped = Moose::swapLibMeshComm(_my_comm);

  MooseMesh & mesh = problem->mesh();
  MeshTools::BoundingBox bbox = MeshTools::bounding_box(mesh);

  Moose::swapLibMeshComm(swapped);

  Point min = bbox.min();
  Point max = bbox.max();

  Point inflation_amount = (max-min)*_inflation;

  Point inflated_min = min - inflation_amount;
  Point inflated_max = max + inflation_amount;

  // This is where the app is located.  We need to shift by this amount.
  Point p = position(app);

  Point shifted_min = inflated_min;
  Point shifted_max = inflated_max;

  // If the problem is RZ then we're going to invent a box that would cover the whole "3D" app
  // FIXME: Assuming all subdomains are the same coordinate system type!
  if (problem->getCoordSystem(*(problem->mesh().meshSubdomains().begin())) == Moose::COORD_RZ)
  {
    shifted_min(0) = -inflated_max(0);
    shifted_min(1) = inflated_min(1);
    shifted_min(2) = -inflated_max(0);

    shifted_max(0) = inflated_max(0);
    shifted_max(1) = inflated_max(1);
    shifted_max(2) = inflated_max(0);
  }

  // Shift them to the position they're supposed to be
  shifted_min += p;
  shifted_max += p;

  return MeshTools::BoundingBox(shifted_min, shifted_max);
}
Esempio n. 8
0
ComputeElemDampingThread::ComputeElemDampingThread(FEProblem & feproblem) :
    ThreadedElementLoop<ConstElemRange>(feproblem),
    _damping(1.0),
    _nl(feproblem.getNonlinearSystem()),
    _element_dampers(_nl.getElementDamperWarehouse())
{
}
Esempio n. 9
0
ComputeNodalDampingThread::ComputeNodalDampingThread(FEProblem & feproblem) :
    ThreadedNodeLoop<ConstNodeRange, ConstNodeRange::const_iterator>(feproblem),
    _damping(1.0),
    _nl(feproblem.getNonlinearSystem()),
    _nodal_dampers(_nl.getNodalDamperWarehouse())
{
}
Esempio n. 10
0
std::string
outputExecutionInformation(MooseApp & app, FEProblem & problem)
{

  std::stringstream oss;
  oss << std::left;

  Executioner * exec = app.getExecutioner();

  oss << "Execution Information:\n"
      << std::setw(console_field_width) << "  Executioner: " << demangle(typeid(*exec).name()) << '\n';

  std::string time_stepper = exec->getTimeStepperName();
  if (time_stepper != "")
    oss << std::setw(console_field_width) << "  TimeStepper: " << time_stepper << '\n';

  oss << std::setw(console_field_width) << "  Solver Mode: " << Moose::stringify<Moose::SolveType>(problem.solverParams()._type) << '\n';

  const std::string & pc_desc = problem.getPetscOptions().pc_description;
  if (!pc_desc.empty())
    oss << std::setw(console_field_width) << "  Preconditioner: " << pc_desc << '\n';
  oss << '\n';

  return oss.str();
}
Esempio n. 11
0
std::string outputLegacyInformation(MooseApp & /*app*/, FEProblem & problem)
{
  std::stringstream oss;
  oss << std::left;

  if (problem.legacyUoAuxComputation() || problem.legacyUoInitialization())
  {
    oss << COLOR_RED << "LEGACY MODES ENABLED:" << COLOR_DEFAULT << '\n';
    if (problem.legacyUoAuxComputation())
      oss << COLOR_RED << "  Computing EXEC_LINEAR AuxKernel types when any UserObject type is executed." << COLOR_DEFAULT << '\n';
    if (problem.legacyUoInitialization())
      oss << COLOR_RED << "  Computing all UserObjects during initial setup." << COLOR_DEFAULT << '\n';
  }

  return oss.str();
}
Esempio n. 12
0
ComputeNodalKernelBcsThread::ComputeNodalKernelBcsThread(FEProblem & fe_problem,
                                                         const MooseObjectWarehouse<NodalKernel> & nodal_kernels) :
    ThreadedNodeLoop<ConstBndNodeRange, ConstBndNodeRange::const_iterator>(fe_problem),
    _aux_sys(fe_problem.getAuxiliarySystem()),
    _nodal_kernels(nodal_kernels),
    _num_cached(0)
{
}
ComputeNodalKernelJacobiansThread::ComputeNodalKernelJacobiansThread(FEProblem & fe_problem,
                                                                     const MooseObjectWarehouse<NodalKernel> & nodal_kernels,
                                                                     SparseMatrix<Number> & jacobian) :
    ThreadedNodeLoop<ConstNodeRange, ConstNodeRange::const_iterator>(fe_problem),
    _aux_sys(fe_problem.getAuxiliarySystem()),
    _nodal_kernels(nodal_kernels),
    _jacobian(jacobian),
    _num_cached(0)
{
}
Esempio n. 14
0
ComputeJacobianBlockThread::ComputeJacobianBlockThread(FEProblem & fe_problem, libMesh::System & precond_system, SparseMatrix<Number> & jacobian, unsigned int ivar, unsigned int jvar) :
    _fe_problem(fe_problem),
    _precond_system(precond_system),
    _nl(_fe_problem.getNonlinearSystem()),
    _mesh(fe_problem.mesh()),
    _jacobian(jacobian),
    _ivar(ivar),
    _jvar(jvar)
{
}
Esempio n. 15
0
void
petscSetOptions(FEProblem & problem)
{
  // Reference to the options stored in FEPRoblem
  PetscOptions & petsc = problem.getPetscOptions();

  if (petsc.inames.size() != petsc.values.size())
    mooseError("PETSc names and options are not the same length");

#if PETSC_VERSION_LESS_THAN(3,7,0)
  PetscOptionsClear();
#else
  PetscOptionsClear(PETSC_NULL);
#endif

  setSolverOptions(problem.solverParams());

  // Add any additional options specified in the input file
  for (const auto & flag : petsc.flags)
    setSinglePetscOption(flag.c_str());
  for (unsigned int i=0; i<petsc.inames.size(); ++i)
    setSinglePetscOption(petsc.inames[i], petsc.values[i]);

  // set up DM which is required if use a field split preconditioner
  if (problem.getNonlinearSystem().haveFieldSplitPreconditioner())
    petscSetupDM(problem.getNonlinearSystem());

  // commandline options always win
  // the options from a user commandline will overwrite the existing ones if any conflicts
  { // Get any options specified on the command-line
    int argc;
    char ** args;

    PetscGetArgs(&argc, &args);
#if PETSC_VERSION_LESS_THAN(3,7,0)
    PetscOptionsInsert(&argc, &args, NULL);
#else
    PetscOptionsInsert(PETSC_NULL, &argc, &args, NULL);
#endif
  }
}
Esempio n. 16
0
std::string
outputMeshInformation(FEProblem & problem, bool verbose)
{
  std::stringstream oss;
  oss << std::left;

  MooseMesh & moose_mesh = problem.mesh();
  MeshBase & mesh = moose_mesh.getMesh();

  if (verbose)
  {
    oss << "Mesh: " << '\n'
        << std::setw(console_field_width) << "  Distribution: " << (moose_mesh.isParallelMesh() ? "parallel" : "serial")
        << (moose_mesh.isDistributionForced() ? " (forced) " : "") << '\n'
        << std::setw(console_field_width) << "  Mesh Dimension: " << mesh.mesh_dimension() << '\n'
        << std::setw(console_field_width) << "  Spatial Dimension: " << mesh.spatial_dimension() << '\n';
  }

  oss << std::setw(console_field_width) << "  Nodes:" << '\n'
      << std::setw(console_field_width) << "    Total:" << mesh.n_nodes() << '\n'
      << std::setw(console_field_width) << "    Local:" << mesh.n_local_nodes() << '\n'
      << std::setw(console_field_width) << "  Elems:" << '\n'
      << std::setw(console_field_width) << "    Total:" << mesh.n_elem() << '\n'
      << std::setw(console_field_width) << "    Local:" << mesh.n_local_elem() << '\n';

  if (verbose)
  {

    oss << std::setw(console_field_width) << "  Num Subdomains: "       << static_cast<std::size_t>(mesh.n_subdomains()) << '\n'
        << std::setw(console_field_width) << "  Num Partitions: "       << static_cast<std::size_t>(mesh.n_partitions()) << '\n';
  if (problem.n_processors() > 1 && moose_mesh.partitionerName() != "")
    oss << std::setw(console_field_width) << "  Partitioner: "       << moose_mesh.partitionerName()
        << (moose_mesh.isPartitionerForced() ? " (forced) " : "")
        << '\n';
  }

  oss << '\n';

  return oss.str();
}
Esempio n. 17
0
void
petscSetOptions(FEProblem & problem)
{
  // Reference to the options stored in FEPRoblem
  PetscOptions & petsc = problem.getPetscOptions();

  if (petsc.inames.size() != petsc.values.size())
    mooseError("PETSc names and options are not the same length");

  PetscOptionsClear();

  { // Get any options specified on the command-line
    int argc;
    char ** args;

    PetscGetArgs(&argc, &args);
    PetscOptionsInsert(&argc, &args, NULL);
  }

  setSolverOptions(problem.solverParams());

  // Add any additional options specified in the input file
  for (MooseEnumIterator it = petsc.flags.begin(); it != petsc.flags.end(); ++it)
    PetscOptionsSetValue(it->c_str(), PETSC_NULL);
  for (unsigned int i=0; i<petsc.inames.size(); ++i)
    PetscOptionsSetValue(petsc.inames[i].c_str(), petsc.values[i].c_str());

  SolverParams& solver_params = problem.solverParams();
  if (solver_params._type != Moose::ST_JFNK  &&
      solver_params._type != Moose::ST_FD &&
      !problem.getNonlinearSystem().haveFiniteDifferencedPreconditioner() &&
      problem.getNonlinearSystem().haveDecomposition())
  {
    // Set up DM only if have a decomposition. Additionally, turn DM OFF if not using FD-based solvers,
    // (both -snes_mf and -snes_fd) and FDP. This is all rather crufty, but what's a good generic rule here?
    // In principle at least, splits should be able to work with ST_FD (-snes_fd) and FDP (a coloring-based
    // version of -snes_fd), but one has to be careful about the initialization order so as not to override
    // SNESComputeJacobianDefaultColor() set up by FDP, for instance.  However, it's unlikely that splits
    // will be used when running an FD solver (debugging).
    problem.getNonlinearSystem().setupDecomposition();
    petscSetupDM(problem.getNonlinearSystem());
  } else {
    // Otherwise turn off the decomposition
    std::vector<std::string> nosplits;
    problem.getNonlinearSystem().setDecomposition(nosplits);
  }

}
Esempio n. 18
0
void
CreateExecutionerAction::storeCommonExecutionerParams(FEProblem & fe_problem, InputParameters & params)
{
  // Note: Options set in the Preconditioner block will override those set in the Executioner block
  if (params.isParamValid("solve_type"))
  {
    // Extract the solve type
    const std::string & solve_type = params.get<MooseEnum>("solve_type");
    fe_problem.solverParams()._type = Moose::stringToEnum<Moose::SolveType>(solve_type);
  }

  MooseEnum line_search = params.get<MooseEnum>("line_search");
  if (fe_problem.solverParams()._line_search == Moose::LS_INVALID || line_search != "default")
    fe_problem.solverParams()._line_search = Moose::stringToEnum<Moose::LineSearchType>(line_search);

#ifdef LIBMESH_HAVE_PETSC
  MultiMooseEnum           petsc_options       = params.get<MultiMooseEnum>("petsc_options");
  std::vector<std::string> petsc_options_iname = params.get<std::vector<std::string> >("petsc_options_iname");
  std::vector<std::string> petsc_options_value = params.get<std::vector<std::string> >("petsc_options_value");

  fe_problem.storePetscOptions(petsc_options, petsc_options_iname, petsc_options_value);
#endif //LIBMESH_HAVE_PETSC
}
Esempio n. 19
0
void petscSetupDampers(NonlinearImplicitSystem& sys)
{
  FEProblem * problem = sys.get_equation_systems().parameters.get<FEProblem *>("_fe_problem");
  NonlinearSystem & nl = problem->getNonlinearSystem();
  PetscNonlinearSolver<Number> * petsc_solver = dynamic_cast<PetscNonlinearSolver<Number> *>(nl.sys().nonlinear_solver.get());
  SNES snes = petsc_solver->snes();

#if PETSC_VERSION_LESS_THAN(3,3,0)
  // PETSc 3.2.x-
  SNESLineSearchSetPostCheck(snes, dampedCheck, problem);
#else
  // PETSc 3.3.0+
  SNESLineSearch linesearch;
#if PETSC_VERSION_LESS_THAN(3,4,0)
  PetscErrorCode ierr = SNESGetSNESLineSearch(snes, &linesearch);
#else
  PetscErrorCode ierr = SNESGetLineSearch(snes, &linesearch);
#endif
  CHKERRABORT(problem->comm().get(),ierr);

  ierr = SNESLineSearchSetPostCheck(linesearch, dampedCheck, problem);
  CHKERRABORT(problem->comm().get(),ierr);
#endif
}
Esempio n. 20
0
DisplacedProblem::DisplacedProblem(FEProblem & mproblem, MooseMesh & displaced_mesh, InputParameters params) :
    SubProblem(mproblem.name() + "_disp", params),
    _mproblem(mproblem),
    _mesh(displaced_mesh),
    _eq(displaced_mesh),
    _ref_mesh(_mproblem.mesh()),
    _displacements(params.get<std::vector<std::string> >("displacements")),
    _displaced_nl(*this, _mproblem.getNonlinearSystem(), _mproblem.getNonlinearSystem().name() + "_displaced", Moose::VAR_NONLINEAR),
    _displaced_aux(*this, _mproblem.getAuxiliarySystem(), _mproblem.getAuxiliarySystem().name() + "_displaced", Moose::VAR_AUXILIARY),
    _geometric_search_data(_mproblem, _mesh)
{
    unsigned int n_threads = libMesh::n_threads();
    _assembly.resize(n_threads);
    for (unsigned int i = 0; i < n_threads; ++i)
        _assembly[i] = new Assembly(_displaced_nl, _mproblem.couplingMatrix(), i);
}
Esempio n. 21
0
void
petscSetDefaults(FEProblem & problem)
{
  // dig out Petsc solver
  NonlinearSystem & nl = problem.getNonlinearSystem();
  PetscNonlinearSolver<Number> * petsc_solver = dynamic_cast<PetscNonlinearSolver<Number> *>(nl.sys().nonlinear_solver.get());
  SNES snes = petsc_solver->snes();
  KSP ksp;
  SNESGetKSP(snes, &ksp);
  PCSide pcside = getPetscPCSide(nl.getPCSide());
#if PETSC_VERSION_LESS_THAN(3,2,0)
  // PETSc 3.1.x-
  KSPSetPreconditionerSide(ksp, pcside);
#else
  // PETSc 3.2.x+
  KSPSetPCSide(ksp, pcside);
#endif
  SNESSetMaxLinearSolveFailures(snes, 1000000);

#if PETSC_VERSION_LESS_THAN(3,0,0)
  // PETSc 2.3.3-
  KSPSetConvergenceTest(ksp, petscConverged, &problem);
  SNESSetConvergenceTest(snes, petscNonlinearConverged, &problem);
#else
  // PETSc 3.0.0+

  // In 3.0.0, the context pointer must actually be used, and the
  // final argument to KSPSetConvergenceTest() is a pointer to a
  // routine for destroying said private data context.  In this case,
  // we use the default context provided by PETSc in addition to
  // a few other tests.
  {
    PetscErrorCode ierr = KSPSetConvergenceTest(ksp,
                                                petscConverged,
                                                &problem,
                                                PETSC_NULL);
    CHKERRABORT(nl.comm().get(),ierr);
    ierr = SNESSetConvergenceTest(snes,
                                  petscNonlinearConverged,
                                  &problem,
                                  PETSC_NULL);
    CHKERRABORT(nl.comm().get(),ierr);
  }
#endif
}
Esempio n. 22
0
void
CoupledExecutioner::projectVariables(FEProblem & fep)
{
  std::string dest = _fep_mapping[&fep];
  if (_var_mapping.find(dest) == _var_mapping.end())
    return;

  std::vector<ProjInfo *> & proj_list = _var_mapping[dest];
  for (std::vector<ProjInfo *>::iterator it = proj_list.begin(); it != proj_list.end(); ++it)
  {
    ProjInfo * pi = *it;

    unsigned int isrc = _name_index[pi->src];
    FEProblem * src_fep = _fe_problems[isrc];
    MooseVariable & src_mv = src_fep->getVariable(0, pi->src_var);
    SystemBase & src_sys = src_mv.sys();

    MooseVariable & dest_mv = fep.getVariable(0, pi->dest_var);
    SystemBase & dest_sys = dest_mv.sys();

    // get dof indices for source variable
    unsigned int src_vn = src_sys.system().variable_number(src_mv.name());
    std::set<dof_id_type> src_var_indices;
    src_sys.system().local_dof_indices(src_vn, src_var_indices);

    // get dof indices for destination variable
    unsigned int dest_vn = dest_sys.system().variable_number(dest_mv.name());
    std::set<dof_id_type> dest_var_indices;
    dest_sys.system().local_dof_indices(dest_vn, dest_var_indices);

    // NOTE: this is not very robust code. It relies on the same node numbering and that inserting values in the set in the same order will result
    // in a std::set with the same ordering, i.e. items in src_var_indices and dest_var_indices correspond to each other.

    // copy the values from src solution vector to dest solution vector
    std::set<dof_id_type>::iterator src_it = src_var_indices.begin();
    std::set<dof_id_type>::iterator src_it_end = src_var_indices.end();
    std::set<dof_id_type>::iterator dest_it = dest_var_indices.begin();
    for (; src_it != src_it_end; ++src_it, ++dest_it)
      dest_sys.solution().set(*dest_it, src_sys.solution()(*src_it));

    dest_sys.solution().close();
    dest_sys.update();
  }
}
Esempio n. 23
0
Adaptivity::Adaptivity(FEProblem & subproblem) :
    ConsoleStreamInterface(subproblem.getMooseApp()),
    _subproblem(subproblem),
    _mesh(_subproblem.mesh()),
    _mesh_refinement_on(false),
    _initial_steps(0),
    _steps(0),
    _print_mesh_changed(false),
    _t(_subproblem.time()),
    _step(_subproblem.timeStep()),
    _interval(1),
    _start_time(-std::numeric_limits<Real>::max()),
    _stop_time(std::numeric_limits<Real>::max()),
    _cycles_per_step(1),
    _use_new_system(false),
    _max_h_level(0),
    _recompute_markers_during_cycles(false)
{
}
Esempio n. 24
0
Adaptivity::Adaptivity(FEProblem & subproblem) :
    ConsoleStreamInterface(subproblem.getMooseApp()),
    _subproblem(subproblem),
    _mesh(_subproblem.mesh()),
    _mesh_refinement_on(false),
    _mesh_refinement(NULL),
    _error_estimator(NULL),
    _error(NULL),
    _displaced_problem(_subproblem.getDisplacedProblem()),
    _displaced_mesh_refinement(NULL),
    _initial_steps(0),
    _steps(0),
    _print_mesh_changed(false),
    _t(_subproblem.time()),
    _start_time(-std::numeric_limits<Real>::max()),
    _stop_time(std::numeric_limits<Real>::max()),
    _cycles_per_step(1),
    _use_new_system(false),
    _max_h_level(0)
{
}
Esempio n. 25
0
std::string
outputAuxiliarySystemInformation(FEProblem & problem)
{
  return outputSystemInformationHelper(problem.getAuxiliarySystem().system());
}
Esempio n. 26
0
std::string
outputNonlinearSystemInformation(FEProblem & problem)
{
  return outputSystemInformationHelper(problem.getNonlinearSystem().system());
}
Esempio n. 27
0
void
TransientMultiApp::solveStep(Real dt, Real target_time, bool auto_advance)
{
  if (_sub_cycling && !auto_advance)
    mooseError("TransientMultiApp with sub_cycling=true is not compatible with auto_advance=false");

  if (_catch_up && !auto_advance)
    mooseError("TransientMultiApp with catch_up=true is not compatible with auto_advance=false");

  if (!_has_an_app)
    return;

  _auto_advance = auto_advance;

  Moose::out << "Solving MultiApp " << _name << std::endl;

// "target_time" must always be in global time
  target_time += _app.getGlobalTimeOffset();

  MPI_Comm swapped = Moose::swapLibMeshComm(_my_comm);

  int rank;
  int ierr;
  ierr = MPI_Comm_rank(_orig_comm, &rank); mooseCheckMPIErr(ierr);

  for (unsigned int i=0; i<_my_num_apps; i++)
  {

    FEProblem * problem = appProblem(_first_local_app + i);
    OutputWarehouse & output_warehouse = _apps[i]->getOutputWarehouse();

    Transient * ex = _transient_executioners[i];

    // The App might have a different local time from the rest of the problem
    Real app_time_offset = _apps[i]->getGlobalTimeOffset();

    if ((ex->getTime() + app_time_offset) + 2e-14 >= target_time) // Maybe this MultiApp was already solved
      continue;

    if (_sub_cycling)
    {
      Real time_old = ex->getTime() + app_time_offset;

      if (_interpolate_transfers)
      {
        AuxiliarySystem & aux_system = problem->getAuxiliarySystem();
        System & libmesh_aux_system = aux_system.system();

        NumericVector<Number> & solution = *libmesh_aux_system.solution;
        NumericVector<Number> & transfer_old = libmesh_aux_system.get_vector("transfer_old");

        solution.close();

        // Save off the current auxiliary solution
        transfer_old = solution;

        transfer_old.close();

        // Snag all of the local dof indices for all of these variables
        AllLocalDofIndicesThread aldit(libmesh_aux_system, _transferred_vars);
        ConstElemRange & elem_range = *problem->mesh().getActiveLocalElementRange();
        Threads::parallel_reduce(elem_range, aldit);

        _transferred_dofs = aldit._all_dof_indices;
      }

      if (_output_sub_cycles)
        output_warehouse.allowOutput(true);
      else
        output_warehouse.allowOutput(false);

      ex->setTargetTime(target_time-app_time_offset);

//      unsigned int failures = 0;

      bool at_steady = false;

      // Now do all of the solves we need
      while(true)
      {
        if (_first != true)
          ex->incrementStepOrReject();
        _first = false;

        if (!(!at_steady && ex->getTime() + app_time_offset + 2e-14 < target_time))
          break;

        ex->computeDT();

        if (_interpolate_transfers)
        {
          // See what time this executioner is going to go to.
          Real future_time = ex->getTime() + app_time_offset + ex->getDT();

          // How far along we are towards the target time:
          Real step_percent = (future_time - time_old) / (target_time - time_old);

          Real one_minus_step_percent = 1.0 - step_percent;

          // Do the interpolation for each variable that was transferred to
          FEProblem * problem = appProblem(_first_local_app + i);
          AuxiliarySystem & aux_system = problem->getAuxiliarySystem();
          System & libmesh_aux_system = aux_system.system();

          NumericVector<Number> & solution = *libmesh_aux_system.solution;
          NumericVector<Number> & transfer = libmesh_aux_system.get_vector("transfer");
          NumericVector<Number> & transfer_old = libmesh_aux_system.get_vector("transfer_old");

          solution.close(); // Just to be sure
          transfer.close();
          transfer_old.close();

          std::set<dof_id_type>::iterator it  = _transferred_dofs.begin();
          std::set<dof_id_type>::iterator end = _transferred_dofs.end();

          for(; it != end; ++it)
          {
            dof_id_type dof = *it;
            solution.set(dof, (transfer_old(dof) * one_minus_step_percent) + (transfer(dof) * step_percent));
//            solution.set(dof, transfer_old(dof));
//            solution.set(dof, transfer(dof));
//            solution.set(dof, 1);
          }

          solution.close();
        }

        ex->takeStep();

        bool converged = ex->lastSolveConverged();

        if (!converged)
        {
          mooseWarning("While sub_cycling "<<_name<<_first_local_app+i<<" failed to converge!"<<std::endl);
          _failures++;

          if (_failures > _max_failures)
            mooseError("While sub_cycling "<<_name<<_first_local_app+i<<" REALLY failed!"<<std::endl);
        }

        Real solution_change_norm = ex->getSolutionChangeNorm();

        if (_detect_steady_state)
          Moose::out << "Solution change norm: " << solution_change_norm << std::endl;

        if (converged && _detect_steady_state && solution_change_norm < _steady_state_tol)
        {
          Moose::out << "Detected Steady State!  Fast-forwarding to " << target_time << std::endl;

          at_steady = true;

         // Indicate that the next output call (occurs in ex->endStep()) should output, regarless of intervals etc...
          output_warehouse.forceOutput();

          // Clean up the end
          ex->endStep(target_time-app_time_offset);
        }
        else
          ex->endStep();
      }

      // If we were looking for a steady state, but didn't reach one, we still need to output one more time
      if (!at_steady)
      {
        output_warehouse.forceOutput();
        output_warehouse.outputStep();
     }

    }
    else if (_tolerate_failure)
    {
      ex->takeStep(dt);
      output_warehouse.forceOutput();
      ex->endStep(target_time-app_time_offset);
    }
    else
    {
      Moose::out << "Solving Normal Step!" << std::endl;
      if (auto_advance)
        if (_first != true)
          ex->incrementStepOrReject();

      if (auto_advance)
        output_warehouse.allowOutput(true);

      ex->takeStep(dt);

      if (auto_advance)
      {
        ex->endStep();

        if (!ex->lastSolveConverged())
        {
          mooseWarning(_name << _first_local_app+i << " failed to converge!" << std::endl);

          if (_catch_up)
          {
            Moose::out << "Starting Catch Up!" << std::endl;

            bool caught_up = false;

            unsigned int catch_up_step = 0;

            Real catch_up_dt = dt/2;

            while(!caught_up && catch_up_step < _max_catch_up_steps)
            {
              Moose::err << "Solving " << _name << "catch up step " << catch_up_step << std::endl;
              ex->incrementStepOrReject();

              ex->computeDT();
              ex->takeStep(catch_up_dt); // Cut the timestep in half to try two half-step solves

              if (ex->lastSolveConverged())
              {
                if (ex->getTime() + app_time_offset + ex->timestepTol()*std::abs(ex->getTime()) >= target_time)
                {
                  output_warehouse.forceOutput();
                  output_warehouse.outputStep();
                  caught_up = true;
                }
              }
              else
                catch_up_dt /= 2.0;

              ex->endStep();

              catch_up_step++;
            }

            if (!caught_up)
              mooseError(_name << " Failed to catch up!\n");

            output_warehouse.allowOutput(true);
           }
        }
      }
    }
  }

  _first = false;

  // Swap back
  Moose::swapLibMeshComm(swapped);

  _transferred_vars.clear();

  Moose::out << "Finished Solving MultiApp " << _name << std::endl;
}
Esempio n. 28
0
void
storePetscOptions(FEProblem & fe_problem, const InputParameters & params)
{
  // Note: Options set in the Preconditioner block will override those set in the Executioner block
  if (params.isParamValid("solve_type"))
  {
    // Extract the solve type
    const std::string & solve_type = params.get<MooseEnum>("solve_type");
    fe_problem.solverParams()._type = Moose::stringToEnum<Moose::SolveType>(solve_type);
  }

  if (params.isParamValid("line_search"))
  {
      MooseEnum line_search = params.get<MooseEnum>("line_search");
      if (fe_problem.solverParams()._line_search == Moose::LS_INVALID || line_search != "default")
        fe_problem.solverParams()._line_search = Moose::stringToEnum<Moose::LineSearchType>(line_search);
  }

  // The parameters contained in the Action
  const MultiMooseEnum & petsc_options = params.get<MultiMooseEnum>("petsc_options");
  const MultiMooseEnum & petsc_options_inames = params.get<MultiMooseEnum>("petsc_options_iname");
  const std::vector<std::string> & petsc_options_values = params.get<std::vector<std::string> >("petsc_options_value");

  // A reference to the PetscOptions object that contains the settings that will be used in the solve
  Moose::PetscSupport::PetscOptions & po = fe_problem.getPetscOptions();

  // Update the PETSc single flags
  for (const auto & option : petsc_options)
  {
    /**
     * "-log_summary" cannot be used in the input file. This option needs to be set when PETSc is initialized
     * which happens before the parser is even created.  We'll throw an error if somebody attempts to add this option later.
     */
    if (option == "-log_summary")
      mooseError("The PETSc option \"-log_summary\" can only be used on the command line.  Please remove it from the input file");

    // Warn about superseded PETSc options (Note: -snes is not a REAL option, but people used it in their input files)
    else
    {
      std::string help_string;
      if (option == "-snes" || option == "-snes_mf" || option == "-snes_mf_operator")
        help_string = "Please set the solver type through \"solve_type\".";
      else if (option == "-ksp_monitor")
        help_string = "Please use \"Outputs/print_linear_residuals=true\"";

      if (help_string != "")
        mooseWarning("The PETSc option " << option << " should not be used directly in a MOOSE input file. " << help_string);
    }

    // Update the stored items, but do not create duplicates
    if (find(po.flags.begin(), po.flags.end(), option) == po.flags.end())
      po.flags.push_back(option);
  }

  // Check that the name value pairs are sized correctly
  if (petsc_options_inames.size() != petsc_options_values.size())
    mooseError("PETSc names and options are not the same length");

  // Setup the name value pairs
  bool boomeramg_found = false;
  bool strong_threshold_found = false;
  std::string pc_description = "";
  for (unsigned int i = 0; i < petsc_options_inames.size(); i++)
  {
    // Do not add duplicate settings
    if (find(po.inames.begin(), po.inames.end(), petsc_options_inames[i]) == po.inames.end())
    {
      po.inames.push_back(petsc_options_inames[i]);
      po.values.push_back(petsc_options_values[i]);

      // Look for a pc description
      if (petsc_options_inames[i] == "-pc_type" || petsc_options_inames[i] == "-pc_sub_type" || petsc_options_inames[i] == "-pc_hypre_type")
        pc_description += petsc_options_values[i] + ' ';

      // This special case is common enough that we'd like to handle it for the user.
      if (petsc_options_inames[i] == "-pc_hypre_type" && petsc_options_values[i] == "boomeramg")
        boomeramg_found = true;
      if (petsc_options_inames[i] == "-pc_hypre_boomeramg_strong_threshold")
        strong_threshold_found = true;
    }
    else
    {
      for (unsigned int j = 0; j < po.inames.size(); j++)
        if (po.inames[j] == petsc_options_inames[i])
          po.values[j] = petsc_options_values[i];
    }
  }


  // When running a 3D mesh with boomeramg, it is almost always best to supply a strong threshold value
  // We will provide that for the user here if they haven't supplied it themselves.
  if (boomeramg_found && !strong_threshold_found && fe_problem.mesh().dimension() == 3)
  {
    po.inames.push_back("-pc_hypre_boomeramg_strong_threshold");
    po.values.push_back("0.7");
    pc_description += "strong_threshold: 0.7 (auto)";
  }

  // Set Preconditioner description
  po.pc_description = pc_description;
}