Esempio n. 1
0
void run_sim()
{
    TString transport = "TGeant4";
    Bool_t userPList = kFALSE; // option for TGeant4

    TString outFile = "sim.root";
    TString parFile = "par.root";

    Bool_t magnet = kTRUE;
    Float_t fieldScale = -0.68;

    TString generator1 = "box";
    TString generator2 = "ascii";
    TString generator3 = "r3b";
    TString generator = generator1;
    TString inputFile = "";

    Int_t nEvents = 1;
    Bool_t storeTrajectories = kTRUE;
    Int_t randomSeed = 335566; // 0 for time-dependent random numbers

    // Target type
    TString target1 = "LeadTarget";
    TString target2 = "Para";
    TString target3 = "Para45";
    TString target4 = "LiH";
    TString targetType = target4;

    // ------------------------------------------------------------------------
    // Stable part ------------------------------------------------------------

    TString dir = getenv("VMCWORKDIR");

    // ----    Debug option   -------------------------------------------------
    gDebug = 0;

    // -----   Timer   --------------------------------------------------------
    TStopwatch timer;
    timer.Start();

    // -----   Create simulation run   ----------------------------------------
    FairRunSim* run = new FairRunSim();
    run->SetName(transport);            // Transport engine
    run->SetOutputFile(outFile.Data()); // Output file
    FairRuntimeDb* rtdb = run->GetRuntimeDb();

    //  R3B Special Physics List in G4 case
    if ((userPList == kTRUE) && (transport.CompareTo("TGeant4") == 0))
    {
        run->SetUserConfig("g4R3bConfig.C");
        run->SetUserCuts("SetCuts.C");
    }

    // -----   Create media   -------------------------------------------------
    run->SetMaterials("media_r3b.geo"); // Materials

    // -----   Create R3B geometry --------------------------------------------
    // R3B Cave definition
    FairModule* cave = new R3BCave("CAVE");
    cave->SetGeometryFileName("r3b_cave.geo");
    run->AddModule(cave);

    // To skip the detector comment out the line with: run->AddModule(...

    // Target
    run->AddModule(new R3BTarget(targetType, "target_" + targetType + ".geo.root"));

    // GLAD
    //run->AddModule(new R3BGladMagnet("glad_v17_flange.geo.root")); // GLAD should not be moved or rotated

    // PSP
    run->AddModule(new R3BPsp("psp_v13a.geo.root", {}, -221., -89., 94.1));

    // R3B SiTracker Cooling definition
    //run->AddModule(new R3BVacVesselCool(targetType, "vacvessel_v14a.geo.root"));

    // STaRTrack
    //run->AddModule(new R3BSTaRTra("startra_v16-300_2layers.geo.root", { 0., 0., 20. }));

    // CALIFA
    R3BCalifa* califa = new R3BCalifa("califa_10_v8.11.geo.root");
    califa->SelectGeometryVersion(10);
    // Selecting the Non-uniformity of the crystals (1 means +-1% max deviation)
    califa->SetNonUniformity(1.0);
    //run->AddModule(califa);

    // Tof
    //run->AddModule(new R3BTof("tof_v17a.geo.root", { -417.359574, 2.400000, 960.777114 }, { "", -90., +31., 90. }));

    // mTof
    run->AddModule(new R3BmTof("mtof_v17a.geo.root", { -155.824045, 0.523976, 761.870346 }, { "", -90., +16.7, 90. }));

    // MFI
    //run->AddModule(new R3BMfi("mfi_v17a.geo.root", { -63.82, 0., 520.25 }, { "", 90., +13.5, 90. })); // s412

    // NeuLAND
    // run->AddModule(new R3BNeuland("neuland_test.geo.root", { 0., 0., 1400. + 12 * 5. }));

    // -----   Create R3B  magnetic field ----------------------------------------
    // NB: <D.B>
    // If the Global Position of the Magnet is changed
    // the Field Map has to be transformed accordingly
    R3BGladFieldMap* magField = new R3BGladFieldMap("R3BGladMap");
    magField->SetScale(fieldScale);

    if (magnet == kTRUE)
    {
        run->SetField(magField);
    }
    else
    {
        run->SetField(NULL);
    }

    // -----   Create PrimaryGenerator   --------------------------------------
    // 1 - Create the Main API class for the Generator
    FairPrimaryGenerator* primGen = new FairPrimaryGenerator();

    if (generator.CompareTo("box") == 0)
    {
        FairIonGenerator* boxGen = new FairIonGenerator(50, 128, 50, 1, 0., 0., 1.3, 0., 0., 0.);
        primGen->AddGenerator(boxGen);
    }

    if (generator.CompareTo("ascii") == 0)
    {
        R3BAsciiGenerator* gen = new R3BAsciiGenerator((dir + "/input/" + inputFile).Data());
        primGen->AddGenerator(gen);
    }

    run->SetGenerator(primGen);

    run->SetStoreTraj(storeTrajectories);

    FairLogger::GetLogger()->SetLogVerbosityLevel("LOW");
    FairLogger::GetLogger()->SetLogScreenLevel("INFO");

    // -----   Initialize simulation run   ------------------------------------
    run->Init();
    TVirtualMC::GetMC()->SetRandom(new TRandom3(randomSeed));

    // ------  Increase nb of step for CALO
    Int_t nSteps = -15000;
    TVirtualMC::GetMC()->SetMaxNStep(nSteps);

    // -----   Runtime database   ---------------------------------------------
    R3BFieldPar* fieldPar = (R3BFieldPar*)rtdb->getContainer("R3BFieldPar");
    if (NULL != magField)
    {
        fieldPar->SetParameters(magField);
        fieldPar->setChanged();
    }
    Bool_t kParameterMerged = kTRUE;
    FairParRootFileIo* parOut = new FairParRootFileIo(kParameterMerged);
    parOut->open(parFile.Data());
    rtdb->setOutput(parOut);
    rtdb->saveOutput();
    rtdb->print();

    // -----   Start run   ----------------------------------------------------
    if (nEvents > 0)
    {
        run->Run(nEvents);
    }

    // -----   Finish   -------------------------------------------------------
    timer.Stop();
    Double_t rtime = timer.RealTime();
    Double_t ctime = timer.CpuTime();
    cout << endl << endl;
    cout << "Macro finished succesfully." << endl;
    cout << "Output file is " << outFile << endl;
    cout << "Parameter file is " << parFile << endl;
    cout << "Real time " << rtime << " s, CPU time " << ctime << "s" << endl << endl;

    cout << " Test passed" << endl;
    cout << " All ok " << endl;

    // Snap a picture of the geometry
    // If this crashes, set "OpenGL.SavePicturesViaFBO: no" in your .rootrc
    /*gStyle->SetCanvasPreferGL(kTRUE);
    gGeoManager->GetTopVolume()->Draw("ogl");
    TGLViewer* v = (TGLViewer*)gPad->GetViewer3D();
    v->SetStyle(TGLRnrCtx::kOutline);
    v->RequestDraw();
    v->SavePicture("run_sim-side.png");
    v->SetPerspectiveCamera(TGLViewer::kCameraPerspXOZ, 25., 0, 0, -90. * TMath::DegToRad(), 0. * TMath::DegToRad());
    v->SavePicture("run_sim-top.png");*/
}
Esempio n. 2
0
void r3ball_batch(Int_t nEvents = 1,
	    TObjArray& fDetList,
	    TString Target = "LeadTarget",
		Bool_t fVis=kFALSE,
		TString fMC="TGeant3",
	    TString fGenerator="box",
	    Bool_t fUserPList= kFALSE,
		Bool_t fR3BMagnet= kTRUE,
		Double_t fEnergyP=1.0,
		Int_t fMult=1, 
		Int_t fGeoVer=5, 
		Double_t fNonUni=1.0	
			)
{


  TString dir = getenv("VMCWORKDIR");
  TString r3bdir = dir + "/macros";

  TString r3b_geomdir = dir + "/geometry";
  gSystem->Setenv("GEOMPATH",r3b_geomdir.Data());

  TString r3b_confdir = dir + "gconfig";
  gSystem->Setenv("CONFIG_DIR",r3b_confdir.Data());

// Output files
  TString OutFile = "r3bsim.root";
  TString ParFile = "r3bpar.root";


  // In general, the following parts need not be touched
  // ========================================================================

  // ----    Debug option   -------------------------------------------------
  gDebug = 0;
  // ------------------------------------------------------------------------

  // -----   Timer   --------------------------------------------------------
  TStopwatch timer;
  timer.Start();
  // ------------------------------------------------------------------------

 
  // -----   Create simulation run   ----------------------------------------
  FairRunSim* run = new FairRunSim();
  run->SetName(fMC.Data());                  // Transport engine
  run->SetOutputFile(OutFile.Data());        // Output file
  FairRuntimeDb* rtdb = run->GetRuntimeDb();

  //  R3B Special Physics List in G4 case
  if ( (fUserPList  == kTRUE ) &&
       (fMC.CompareTo("TGeant4")   == 0)
      ){
       run->SetUserConfig("g4R3bConfig.C");
       run->SetUserCuts("SetR3BCuts.C");
   }


  // -----   Create media   -------------------------------------------------
  run->SetMaterials("media_r3b.geo");       // Materials
  

  // Magnetic field map type
   Int_t fFieldMap = 0;


  // Global Transformations
  //- Two ways for a Volume Rotation are supported
  //-- 1) Global Rotation (Euler Angles definition)
  //-- This represent the composition of : first a rotation about Z axis with
  //-- angle phi, then a rotation with theta about the rotated X axis, and
  //-- finally a rotation with psi about the new Z axis.
  Double_t phi,theta,psi;

  //-- 2) Rotation in Ref. Frame of the Volume
  //-- Rotation is Using Local Ref. Frame axis angles
  Double_t thetaX,thetaY,thetaZ;


  //- Global Translation  Lab. frame.
  Double_t tx,ty,tz;

  // - Polar angular limits
  Double_t minTheta=35., maxTheta=55.;


  // -----   Create R3B geometry --------------------------------------------
  //R3B Cave definition
  FairModule* cave= new R3BCave("CAVE");
  cave->SetGeometryFileName("r3b_cave.geo");
  run->AddModule(cave);


  //R3B Target definition
  if (fDetList.FindObject("TARGET") ) {
      R3BModule* target= new R3BTarget(Target.Data());
      // Global Lab. Rotation
      phi    =  0.0; // (deg)
      theta  =  0.0; // (deg)
      psi    =  0.0; // (deg)
      // Rotation in Ref. Frame.
      thetaX =  0.0; // (deg)
      thetaY =  0.0; // (deg)
      thetaZ =  0.0; // (deg)
      // Global translation in Lab
      tx    =  0.0; // (cm)
      ty    =  0.0; // (cm)
      tz    =  0.0; // (cm)
     //target->SetRotAnglesEuler(phi,theta,psi);
     target->SetRotAnglesXYZ(thetaX,thetaY,thetaZ);
     target->SetTranslation(tx,ty,tz);
      run->AddModule(target);
  }

  //R3B Magnet definition
  if (fDetList.FindObject("ALADIN") ) {
    fFieldMap = 0;
    R3BModule* mag = new R3BMagnet("AladinMagnet");
    mag->SetGeometryFileName("aladin_v13a.geo.root");
    run->AddModule(mag);
  }

    //R3B Magnet definition
  if (fDetList.FindObject("GLAD") ) {
      fFieldMap = 1;
      R3BModule* mag = new R3BGladMagnet("GladMagnet");
      // Global position of the Module
      phi   =  0.0; // (deg)
      theta =  0.0; // (deg)
      psi   =  0.0; // (deg)
      // Rotation in Ref. Frame.
      thetaX =  0.0; // (deg)
      thetaY =  0.0; // (deg)
      thetaZ =  0.0; // (deg)
      // Global translation in Lab
      tx    =  0.0; // (cm)
      ty    =  0.0; // (cm)
      tz    =  0.0; // (cm)
      //mag->SetRotAnglesEuler(phi,theta,psi);
      mag->SetRotAnglesXYZ(thetaX,thetaY,thetaZ);
      mag->SetTranslation(tx,ty,tz);
      run->AddModule(mag);
  }

  if (fDetList.FindObject("CRYSTALBALL") ) {
      //R3B Crystal Calorimeter
      R3BDetector* xball = new R3BXBall("XBall", kTRUE);
      xball->SetGeometryFileName("cal_v13a.geo.root");
      run->AddModule(xball);
  }

  if (fDetList.FindObject("CALIFA") ) {
    // CALIFA Calorimeter
    R3BDetector* calo = new R3BCalo("Califa", kTRUE);
    ((R3BCalo *)calo)->SelectGeometryVersion(10);
    //Selecting the Non-uniformity of the crystals (1 means +-1% max deviation)
    ((R3BCalo *)calo)->SetNonUniformity(1.0);
    calo->SetGeometryFileName("califa_v13_811.geo.root");
    run->AddModule(calo);
  }

  // Tracker
  if (fDetList.FindObject("TRACKER")  ) {
      R3BDetector* tra = new R3BTra("Tracker", kTRUE);
      // Global position of the Module
      phi   =  0.0; // (deg)
      theta =  0.0; // (deg)
      psi   =  0.0; // (deg)
      // Rotation in Ref. Frame.
      thetaX =  0.0; // (deg)
      thetaY =  0.0; // (deg)
      thetaZ =  0.0; // (deg)
      // Global translation in Lab
      tx    =  0.0; // (cm)
      ty    =  0.0; // (cm)
      tz    =  0.0; // (cm)
      //tra->SetRotAnglesEuler(phi,theta,psi);
      tra->SetRotAnglesXYZ(thetaX,thetaY,thetaZ);
      tra->SetTranslation(tx,ty,tz);
      // User defined Energy CutOff
      Double_t fCutOffSi = 1.0e-06;  // Cut-Off -> 10KeV only in Si
      ((R3BTra*) tra)->SetEnergyCutOff(fCutOffSi);
      run->AddModule(tra);
  }
  
  // DCH drift chambers
  if (fDetList.FindObject("DCH") ) {
      R3BDetector* dch = new R3BDch("Dch", kTRUE);
      ((R3BDch*) dch )->SetHeliumBag(kTRUE);
      // Global position of the Module
      phi   =  0.0; // (deg)
      theta =  0.0; // (deg)
      psi   =  0.0; // (deg)
      // Rotation in Ref. Frame.
      thetaX =  0.0; // (deg)
      thetaY =  0.0; // (deg)
      thetaZ =  0.0; // (deg)
      // Global translation in Lab
      tx    =  0.0; // (cm)
      ty    =  0.0; // (cm)
      tz    =  0.0; // (cm)
     //dch->SetRotAnglesEuler(phi,theta,psi);
      dch->SetRotAnglesXYZ(thetaX,thetaY,thetaZ);
      dch->SetTranslation(tx,ty,tz);
      run->AddModule(dch);
  }

  // Tof
  if (fDetList.FindObject("TOF") ) {
      R3BDetector* tof = new R3BTof("Tof", kTRUE);
      // Global position of the Module
      thetaX   =  0.0; // (deg)
      thetaY   =  0.0; // (deg)
      thetaZ   =  0.0; // (deg)
      // Rotation in Ref. Frame.
      thetaX =  0.0; // (deg)
      thetaY =  0.0; // (deg)
      thetaZ =  0.0; // (deg)
      // Global translation in Lab
      tx       =  0.0; // (cm)
      ty       =  0.0; // (cm)
      tz       =  0.0; // (cm)
      tof->SetRotAnglesXYZ(thetaX,thetaY,thetaZ);
      tof->SetTranslation(tx,ty,tz);
      // User defined Energy CutOff
      Double_t fCutOffSci = 1.0e-05;  // Cut-Off -> 10.KeV only in Sci.
      ((R3BTof*) tof)->SetEnergyCutOff(fCutOffSci);
      run->AddModule(tof);
  }

  // mTof
  if (fDetList.FindObject("MTOF") ) {
      R3BDetector* mTof = new R3BmTof("mTof", kTRUE);
      // Global position of the Module
      phi   =  0.0; // (deg)
      theta =  0.0; // (deg)
      psi   =  0.0; // (deg)
      // Rotation in Ref. Frame.
      thetaX =  0.0; // (deg)
      thetaY =  0.0; // (deg)
      thetaZ =  0.0; // (deg)
      // Global translation in Lab
      tx    =  0.0; // (cm)
      ty    =  0.0; // (cm)
      tz    =  0.0; // (cm)
      //mTof->SetRotAnglesEuler(phi,theta,psi);
      mTof->SetRotAnglesXYZ(thetaX,thetaY,thetaZ);
      mTof->SetTranslation(tx,ty,tz);
      // User defined Energy CutOff
      Double_t fCutOffSci = 1.0e-05;  // Cut-Off -> 10.KeV only in Sci.
      ((R3BmTof*) mTof)->SetEnergyCutOff(fCutOffSci);
      run->AddModule(mTof);
  }

  // GFI detector
  if (fDetList.FindObject("GFI") ) {
      R3BDetector* gfi = new R3BGfi("Gfi", kTRUE);
      // Global position of the Module
      phi   =  0.0; // (deg)
      theta =  0.0; // (deg)
      psi   =  0.0; // (deg)
      // Rotation in Ref. Frame.
      thetaX =  0.0; // (deg)
      thetaY =  0.0; // (deg)
      thetaZ =  0.0; // (deg)
      // Global translation in Lab
      tx    =  0.0; // (cm)
      ty    =  0.0; // (cm)
      tz    =  0.0; // (cm)
      gfi->SetRotAnglesXYZ(thetaX,thetaY,thetaZ);
      gfi->SetTranslation(tx,ty,tz);
      // User defined Energy CutOff
      Double_t fCutOffSci = 1.0e-05;  // Cut-Off -> 10.KeV only in Sci.
      ((R3BGfi*) gfi)->SetEnergyCutOff(fCutOffSci);
      run->AddModule(gfi);
  }

  // Land Detector
  if (fDetList.FindObject("LAND") ) {
      R3BDetector* land = new R3BLand("Land", kTRUE);
      land->SetGeometryFileName("land_v12a_10m.geo.root");
      run->AddModule(land);
  }

  // Chimera
  if (fDetList.FindObject("CHIMERA") ) {
      R3BDetector* chim = new R3BChimera("Chimera", kTRUE);
      chim->SetGeometryFileName("chimera.root");
      // Global position of the Module
      thetaX   =  0.0; // (deg)
      thetaY   =  0.0; // (deg)
      thetaZ   =  0.0; // (deg)
      // Rotation in Ref. Frame.
      thetaX =  0.0; // (deg)
      thetaY =  0.0; // (deg)
      thetaZ =  0.0; // (deg)
      // Global translation in Lab
      tx       =  0.0; // (cm)
      ty       =  0.0; // (cm)
      tz       =  0.0; // (cm)
      chim->SetRotAnglesXYZ(thetaX,thetaY,thetaZ);
      chim->SetTranslation(tx,ty,tz);
      // User defined Energy CutOff
      //Double_t fCutOffSci = 1.0e-05;  // Cut-Off -> 10.KeV only in Sci.
      //((R3BChimera*) chim)->SetEnergyCutOff(fCutOffSci);
      run->AddModule(chim);
  }

  // Luminosity detector
  if (fDetList.FindObject("LUMON") ) {
      R3BDetector* lumon = new ELILuMon("LuMon", kTRUE);
      //lumon->SetGeometryFileName("lumon.root");
      // Global position of the Module
      thetaX   =  0.0; // (deg)
      thetaY   =  0.0; // (deg)
      thetaZ   =  0.0; // (deg)
      // Rotation in Ref. Frame.
      thetaX =  0.0; // (deg)
      thetaY =  0.0; // (deg)
      thetaZ =  0.0; // (deg)
      // Global translation in Lab
      tx       =  0.0; // (cm)
      ty       =  0.0; // (cm)
      tz       =  200.0; // (cm)
      lumon->SetRotAnglesXYZ(thetaX,thetaY,thetaZ);
      lumon->SetTranslation(tx,ty,tz);
      // User defined Energy CutOff
      //Double_t fCutOffSci = 1.0e-05;  // Cut-Off -> 10.KeV only in Sci.
      //((ELILuMon*) lumon)->SetEnergyCutOff(fCutOffSci);
      run->AddModule(lumon);
  }


  
  // -----   Create R3B  magnetic field ----------------------------------------
  Int_t typeOfMagneticField = 0;
  Int_t fieldScale = 1;
  Bool_t fVerbose = kFALSE;

  //NB: <D.B>
  // If the Global Position of the Magnet is changed
  // the Field Map has to be transformed accordingly

  if (fFieldMap == 0) {
    R3BFieldMap* magField = new R3BFieldMap(typeOfMagneticField,fVerbose);
    magField->SetPosition(0., 0., 0.);
    magField->SetScale(fieldScale);

    if ( fR3BMagnet == kTRUE ) {
	run->SetField(magField);
    } else {
	run->SetField(NULL);
    }
  } else if(fFieldMap == 1){
    R3BGladFieldMap* magField = new R3BGladFieldMap("R3BGladMap");
    magField->SetPosition(0., 0., +350-119.94);
    magField->SetScale(fieldScale);

    if ( fR3BMagnet == kTRUE ) {
	run->SetField(magField);
    } else {
	run->SetField(NULL);
    }
  }  //! end of field map section



  // -----   Create PrimaryGenerator   --------------------------------------

  // 1 - Create the Main API class for the Generator
  FairPrimaryGenerator* primGen = new FairPrimaryGenerator();


  if (fGenerator.CompareTo("box") == 0  ) {
  // 2- Define the BOX generator
  Double_t pdgId=211; // pion beam
  Double_t theta1= 0.;  // polar angle distribution
  Double_t theta2= 7.;
  Double_t momentum=.8; // 10 GeV/c
  FairBoxGenerator* boxGen = new FairBoxGenerator(pdgId, 50);
  boxGen->SetThetaRange (   theta1,   theta2);
  boxGen->SetPRange     (momentum,momentum*2.);
  boxGen->SetPhiRange   (0.,360.);
  boxGen->SetXYZ(0.0,0.0,-1.5);
  // add the box generator
  primGen->AddGenerator(boxGen);
  } 
	
  if (fGenerator.CompareTo("gammas") == 0  ) {
	// 2- Define the CALIFA Test gamma generator
	Double_t pdgId=22; // 22 for gamma emission, 2212 for proton emission 
	Double_t theta1=minTheta;  // polar angle distribution: lower edge
	Double_t theta2=maxTheta;  // polar angle distribution: upper edge	
	Double_t momentum=fEnergyP; // GeV/c 
	//Double_t momentum=0.808065; // 0.808065 GeV/c (300MeV Kin Energy for protons) 
	//Double_t momentum=0.31016124; // 0.31016124 GeV/c (50MeV Kin Energy for protons)
	//Double_t momentum=0.4442972; // 0.4442972 GeV/c (100MeV Kin Energy for protons)
	//Double_t momentum=0.5509999; // 0.5509999 GeV/c (150MeV Kin Energy for protons)
	//Double_t momentum=0.64405; // 0.64405 GeV/c (200MeV Kin Energy for protons) 
	Int_t multiplicity = fMult;
	R3BCALIFATestGenerator* gammasGen = new R3BCALIFATestGenerator(pdgId, multiplicity);
	gammasGen->SetThetaRange(theta1,theta2);
	gammasGen->SetCosTheta();
	gammasGen->SetPRange(momentum,momentum);
        gammasGen->SetPhiRange(0.,360.);

	gammasGen->SetBoxXYZ(-0.1,0.1,-0.1,0.1,-0.1,0.1);
	gammasGen->SetLorentzBoost(0.8197505718204776); //beta=0.81975 for 700 A MeV
	// add the gamma generator
	primGen->AddGenerator(gammasGen);
  } 
	

 if (fGenerator.CompareTo("r3b") == 0  ) {
  R3BSpecificGenerator *pR3bGen = new R3BSpecificGenerator();

  // R3bGen properties
  pR3bGen->SetBeamInteractionFlag("off");
  pR3bGen->SetBeamInteractionFlag("off");
  pR3bGen->SetRndmFlag("off");
  pR3bGen->SetRndmEneFlag("off");
  pR3bGen->SetBoostFlag("off");
  pR3bGen->SetReactionFlag("on");
  pR3bGen->SetGammasFlag("off");
  pR3bGen->SetDecaySchemeFlag("off");
  pR3bGen->SetDissociationFlag("off");
  pR3bGen->SetBackTrackingFlag("off");
  pR3bGen->SetSimEmittanceFlag("off");

  // R3bGen Parameters
  pR3bGen->SetBeamEnergy(1.); // Beam Energy in GeV
  pR3bGen->SetSigmaBeamEnergy(1.e-03); // Sigma(Ebeam) GeV
  pR3bGen->SetParticleDefinition(2212); // Use Particle Pdg Code
  pR3bGen->SetEnergyPrim(0.3); // Particle Energy in MeV
  Int_t fMultiplicity = 50;
  pR3bGen->SetNumberOfParticles(fMultiplicity); // Mult.

  // Reaction type
  //        1: "Elas"
  //        2: "iso"
  //        3: "Trans"
  pR3bGen->SetReactionType("Elas");

  // Target  type
  //        1: "LeadTarget"
  //        2: "Parafin0Deg"
  //        3: "Parafin45Deg"
  //        4: "LiH"

  pR3bGen->SetTargetType(Target.Data());
  Double_t thickness = (0.11/2.)/10.;  // cm
  pR3bGen->SetTargetHalfThicknessPara(thickness); // cm
  pR3bGen->SetTargetThicknessLiH(3.5); // cm
  pR3bGen->SetTargetRadius(1.); // cm

  pR3bGen->SetSigmaXInEmittance(1.); //cm
  pR3bGen->SetSigmaXPrimeInEmittance(0.0001); //cm

  // Dump the User settings
  pR3bGen->PrintParameters();  
  primGen->AddGenerator(pR3bGen);
  }


  run->SetGenerator(primGen);


  //-------Set visualisation flag to true------------------------------------
  if (fVis==kTRUE){
     run->SetStoreTraj(kTRUE);
  }else{
     run->SetStoreTraj(kFALSE);
  }   

  // -----   Initialize simulation run   ------------------------------------
  run->Init();

  // ------  Increase nb of step for CALO
  Int_t nSteps = -15000;
  gMC->SetMaxNStep(nSteps);

  // -----   Runtime database   ---------------------------------------------
  Bool_t kParameterMerged = kTRUE;
  FairParRootFileIo* parOut = new FairParRootFileIo(kParameterMerged);
  parOut->open(ParFile.Data());
  rtdb->setOutput(parOut);
  rtdb->saveOutput();
  rtdb->print();
   
  // -----   Start run   ----------------------------------------------------
  if (nEvents>0) run->Run(nEvents);
  
  // -----   Finish   -------------------------------------------------------
  timer.Stop();
  Double_t rtime = timer.RealTime();
  Double_t ctime = timer.CpuTime();
  cout << endl << endl;
  cout << "Macro finished succesfully." << endl;
  cout << "Output file is "    << OutFile << endl;
  cout << "Parameter file is " << ParFile << endl;
  cout << "Real time " << rtime << " s, CPU time " << ctime 
       << "s" << endl << endl;
  // ------------------------------------------------------------------------

  cout << " Test passed" << endl;
  cout << " All ok " << endl;

}
Esempio n. 3
0
void simall(Int_t nEvents = 1,
	    TObjArray& fDetList,
            Bool_t fVis=kFALSE,
            TString fMC="TGeant3",
	    TString fGenerator="mygenerator",
	    Bool_t fUserPList= kFALSE
	   )
{


  TString dir = getenv("VMCWORKDIR");
  TString simdir = dir + "/macros";

  TString sim_geomdir = dir + "/geometry";
  gSystem->Setenv("GEOMPATH",sim_geomdir.Data());

  TString sim_confdir = dir + "gconfig";
  gSystem->Setenv("CONFIG_DIR",sim_confdir.Data());

// Output files
  TString OutFile = "simout.root";
  TString ParFile = "simpar.root";


  // In general, the following parts need not be touched
  // ========================================================================

  // ----    Debug option   -------------------------------------------------
  gDebug = 0;
  // ------------------------------------------------------------------------

  // -----   Timer   --------------------------------------------------------
  TStopwatch timer;
  timer.Start();
  // ------------------------------------------------------------------------

  // ----  Load libraries   -------------------------------------------------
  gROOT->LoadMacro("$VMCWORKDIR/gconfig/basiclibs.C");
  basiclibs();

  gSystem->Load("libGenVector");

  gSystem->Load("libGeoBase");
  gSystem->Load("libFairDB");
  gSystem->Load("libParBase");
  gSystem->Load("libBase");
  gSystem->Load("libMCStack");
  gSystem->Load("libField");
  gSystem->Load("libGen");

  //----  Load specific libraries ---------------------------------------
  gSystem->Load("libEnsarbase");
  gSystem->Load("libEnsarGen");
  gSystem->Load("libEnsarData");
  gSystem->Load("libEnsarMyDet");
 
  // -----   Create simulation run   ----------------------------------------
  FairRunSim* run = new FairRunSim();
  run->SetName(fMC.Data());              // Transport engine
  run->SetOutputFile(OutFile.Data());          // Output file
  FairRuntimeDb* rtdb = run->GetRuntimeDb();

  //  R3B Special Physics List in G4 case
  if ( (fUserPList  == kTRUE ) &&
       (fMC.CompareTo("TGeant4")   == 0)
      ){
       run->SetUserConfig("g4Config.C");
       run->SetUserCuts("SetCuts.C");
   }


  // -----   Create media   -------------------------------------------------
  //run->SetMaterials("media_r3b.geo");       // Materials
  

  // Magnetic field map type
  // Int_t fFieldMap = 0;


  // Global Transformations
  //- Two ways for a Volume Rotation are supported
  //-- 1) Global Rotation (Euler Angles definition)
  //-- This represent the composition of : first a rotation about Z axis with
  //-- angle phi, then a rotation with theta about the rotated X axis, and
  //-- finally a rotation with psi about the new Z axis.
  Double_t phi,theta,psi;

  //-- 2) Rotation in Ref. Frame of the Volume
  //-- Rotation is Using Local Ref. Frame axis angles
  Double_t thetaX,thetaY,thetaZ;


  //- Global Translation  Lab. frame.
  Double_t tx,ty,tz;


  // -----   Create geometry --------------------------------------------

  if (fDetList.FindObject("MYDET") ) {
      //My Detector definition
      EnsarDetector* mydet = new EnsarMyDet("MyDet", kTRUE);
      // Global position of the Module
      phi   =  0.0; // (deg)
      theta =  0.0; // (deg)
      psi   =  0.0; // (deg)
      // Rotation in Ref. Frame.
      thetaX =  0.0; // (deg)
      thetaY =  0.0; // (deg)
      thetaZ =  0.0; // (deg)
      // Global translation in Lab
      tx    =  0.0; // (cm)
      ty    =  0.0; // (cm)
      tz    =  0.0; // (cm)
      mydet->SetRotAnglesXYZ(thetaX,thetaY,thetaZ);
      mydet->SetTranslation(tx,ty,tz);
      run->AddModule(mydet);
  }


  // -----   Create PrimaryGenerator   --------------------------------------

  // 1 - Create the Main API class for the Generator
  FairPrimaryGenerator* primGen = new FairPrimaryGenerator();


  if (fGenerator.CompareTo("mygenerator") == 0  ) {
  // 2- Define the generator
  Double_t pdgId=211;   // pion beam
  Double_t theta1= 0.;  // polar angle distribution
  Double_t theta2= 7.;
  Double_t momentum=.8; // 10 GeV/c
  Int_t     multiplicity = 50; // multiplicity (nb particles per event)
  FairBoxGenerator* boxGen = new FairBoxGenerator(pdgId,multiplicity);
  boxGen->SetThetaRange (   theta1,   theta2);
  boxGen->SetPRange     (momentum,momentum*2.);
  boxGen->SetPhiRange   (0.,360.);
  boxGen->SetXYZ(0.0,0.0,-1.5);
  // add the box generator
  primGen->AddGenerator(boxGen);
  } 
  
  run->SetGenerator(primGen);


  //-------Set visualisation flag to true------------------------------------
  if (fVis==kTRUE){
     run->SetStoreTraj(kTRUE);
  }else{
     run->SetStoreTraj(kFALSE);
  }   

  // -----   Initialize simulation run   ------------------------------------
  run->Init();

  // ------  Increase nb of step
  Int_t nSteps = -15000;
  gMC->SetMaxNStep(nSteps);

  // -----   Runtime database   ---------------------------------------------
  Bool_t kParameterMerged = kTRUE;
  FairParRootFileIo* parOut = new FairParRootFileIo(kParameterMerged);
  parOut->open(ParFile.Data());
  rtdb->setOutput(parOut);
  rtdb->saveOutput();
  rtdb->print();
   
  // -----   Start run   ----------------------------------------------------
  if (nEvents>0) run->Run(nEvents);
  
  // -----   Finish   -------------------------------------------------------
  timer.Stop();
  Double_t rtime = timer.RealTime();
  Double_t ctime = timer.CpuTime();
  cout << endl << endl;
  cout << "Macro finished succesfully." << endl;
  cout << "Output file is "    << OutFile << endl;
  cout << "Parameter file is " << ParFile << endl;
  cout << "Real time " << rtime << " s, CPU time " << ctime 
       << "s" << endl << endl;
  // ------------------------------------------------------------------------

  cout << " Test passed" << endl;
  cout << " All ok " << endl;

}
Esempio n. 4
0
void r3ball(Int_t nEvents = 1,
            TMap* fDetList = NULL,
            TString Target = "LeadTarget",
            Bool_t fVis = kFALSE,
            TString fMC = "TGeant3",
            TString fGenerator = "box",
            Bool_t fUserPList = kFALSE,
            Bool_t fR3BMagnet = kTRUE,
            Double_t fMeasCurrent = 2000.,
            TString OutFile = "r3bsim.root",
            TString ParFile = "r3bpar.root",
            TString InFile = "evt_gen.dat")
{
  TString dir = getenv("VMCWORKDIR");
  TString r3bdir = dir + "/macros";
  
  TString r3b_geomdir = dir + "/geometry";
  gSystem->Setenv("GEOMPATH",r3b_geomdir.Data());
  
  TString r3b_confdir = dir + "gconfig";
  gSystem->Setenv("CONFIG_DIR",r3b_confdir.Data());
  
  // In general, the following parts need not be touched
  // ========================================================================
  
  // ----    Debug option   -------------------------------------------------
  gDebug = 0;
  // ------------------------------------------------------------------------
  
  // -----   Timer   --------------------------------------------------------
  TStopwatch timer;
  timer.Start();
  // ------------------------------------------------------------------------
  
  
  // -----   Create simulation run   ----------------------------------------
  FairRunSim* run = new FairRunSim();
  run->SetName(fMC.Data());              // Transport engine
  run->SetOutputFile(OutFile.Data());          // Output file
  FairRuntimeDb* rtdb = run->GetRuntimeDb();
  
  //  R3B Special Physics List in G4 case
  if ( (fUserPList  == kTRUE ) &&
      (fMC.CompareTo("TGeant4")   == 0)) {
    run->SetUserConfig("g4R3bConfig.C");
    run->SetUserCuts("SetR3BCuts.C");
  }
  
  
  // -----   Create media   -------------------------------------------------
  run->SetMaterials("media_r3b.geo");       // Materials
  
  
  // Magnetic field map type
  Int_t fFieldMap = 0;
  
  
  // Global Transformations
  //- Two ways for a Volume Rotation are supported
  //-- 1) Global Rotation (Euler Angles definition)
  //-- This represent the composition of : first a rotation about Z axis with
  //-- angle phi, then a rotation with theta about the rotated X axis, and
  //-- finally a rotation with psi about the new Z axis.
  Double_t phi,theta,psi;
  
  //-- 2) Rotation in Ref. Frame of the Volume
  //-- Rotation is Using Local Ref. Frame axis angles
  Double_t thetaX,thetaY,thetaZ;
  
  //- Global Translation  Lab. frame.
  Double_t tx,ty,tz;
  
  
  // -----   Create R3B geometry --------------------------------------------
  //R3B Cave definition
  FairModule* cave= new R3BCave("CAVE");
  cave->SetGeometryFileName("r3b_cave.geo");
  run->AddModule(cave);
  
  //R3B Target definition
  if (fDetList->FindObject("TARGET") ) {
    R3BModule* target= new R3BTarget(Target.Data());
    target->SetGeometryFileName(((TObjString*)fDetList->GetValue("TARGET"))->GetString().Data());
    run->AddModule(target);
  }
  
  //R3B SiTracker Cooling definition
  if (fDetList->FindObject("VACVESSELCOOL") ) {
    R3BModule* vesselcool= new R3BVacVesselCool(Target.Data());
    vesselcool->SetGeometryFileName(((TObjString*)fDetList->GetValue("VACVESSELCOOL"))->GetString().Data());
    run->AddModule(vesselcool);
  }
  
  //R3B Magnet definition
  if (fDetList->FindObject("ALADIN") ) {
    fFieldMap = 0;
    R3BModule* mag = new R3BMagnet("AladinMagnet");
    mag->SetGeometryFileName(((TObjString*)fDetList->GetValue("ALADIN"))->GetString().Data());
    run->AddModule(mag);
  }
  
  //R3B Magnet definition
  if (fDetList->FindObject("GLAD") ) {
    fFieldMap = 1;
    R3BModule* mag = new R3BGladMagnet("GladMagnet");
    mag->SetGeometryFileName(((TObjString*)fDetList->GetValue("GLAD"))->GetString().Data());
    run->AddModule(mag);
  }
  
  if (fDetList->FindObject("CRYSTALBALL") ) {
    //R3B Crystal Calorimeter
    R3BDetector* xball = new R3BXBall("XBall", kTRUE);
    xball->SetGeometryFileName(((TObjString*)fDetList->GetValue("CRYSTALBALL"))->GetString().Data());
    run->AddModule(xball);
  }
  
  if (fDetList->FindObject("CALIFA") ) {
    // CALIFA Calorimeter
    R3BDetector* calo = new R3BCalo("Califa", kTRUE);
    ((R3BCalo *)calo)->SelectGeometryVersion(10);
    //Selecting the Non-uniformity of the crystals (1 means +-1% max deviation)
    ((R3BCalo *)calo)->SetNonUniformity(1.0);
    calo->SetGeometryFileName(((TObjString*)fDetList->GetValue("CALIFA"))->GetString().Data());
    run->AddModule(calo);
  }

  // Tracker
  if (fDetList->FindObject("TRACKER")  ) {
    R3BDetector* tra = new R3BTra("Tracker", kTRUE);
    tra->SetGeometryFileName(((TObjString*)fDetList->GetValue("TRACKER"))->GetString().Data());
    tra->SetEnergyCut(1e-4);
    run->AddModule(tra);
  }
  
  // STaRTrack
  if (fDetList->FindObject("STaRTrack")  ) {
    R3BDetector* tra = new R3BSTaRTra("STaRTrack", kTRUE);
    tra->SetGeometryFileName(((TObjString*)fDetList->GetValue("STaRTrack"))->GetString().Data());
    run->AddModule(tra);
  }
  
  // DCH drift chambers
  if (fDetList->FindObject("DCH") ) {
    R3BDetector* dch = new R3BDch("Dch", kTRUE);
    dch->SetGeometryFileName(((TObjString*)fDetList->GetValue("DCH"))->GetString().Data());
    run->AddModule(dch);
  }
  
  // Tof
  if (fDetList->FindObject("TOF") ) {
    R3BDetector* tof = new R3BTof("Tof", kTRUE);
    tof->SetGeometryFileName(((TObjString*)fDetList->GetValue("TOF"))->GetString().Data());
    run->AddModule(tof);
  }
  
  // mTof
  if (fDetList->FindObject("MTOF") ) {
    R3BDetector* mTof = new R3BmTof("mTof", kTRUE);
    mTof->SetGeometryFileName(((TObjString*)fDetList->GetValue("MTOF"))->GetString().Data());
    run->AddModule(mTof);
  }

  // dTof
  if (fDetList->FindObject("DTOF") ) {
    R3BDetector* dTof = new R3BdTof("dTof", kTRUE);
    dTof->SetGeometryFileName(((TObjString*)fDetList->GetValue("DTOF"))->GetString().Data());
    run->AddModule(dTof);
  }
  
  // GFI detector
  if (fDetList->FindObject("GFI") ) {
    R3BDetector* gfi = new R3BGfi("Gfi", kTRUE);
    gfi->SetGeometryFileName(((TObjString*)fDetList->GetValue("GFI"))->GetString().Data());
    run->AddModule(gfi);
  }
  
  // Land Detector
  if (fDetList->FindObject("LAND") ) {
    R3BDetector* land = new R3BLand("Land", kTRUE);
    land->SetVerboseLevel(1);
    land->SetGeometryFileName(((TObjString*)fDetList->GetValue("LAND"))->GetString().Data());
    run->AddModule(land);
  }
  
  // NeuLand Scintillator Detector
  if(fDetList->FindObject("SCINTNEULAND")) {
    R3BDetector* land = new R3BLand("Land", kTRUE);
    land->SetVerboseLevel(1);
    land->SetGeometryFileName(((TObjString*)fDetList->GetValue("SCINTNEULAND"))->GetString().Data());
    run->AddModule(land);
  }
  
  // MFI Detector
  if(fDetList->FindObject("MFI")) {
    R3BDetector* mfi = new R3BMfi("Mfi", kTRUE);
    mfi->SetGeometryFileName(((TObjString*)fDetList->GetValue("MFI"))->GetString().Data());
    run->AddModule(mfi);
  }

  // PSP Detector
  if(fDetList->FindObject("PSP")) {
    R3BDetector* psp = new R3BPsp("Psp", kTRUE);
    psp->SetGeometryFileName(((TObjString*)fDetList->GetValue("PSP"))->GetString().Data());
    run->AddModule(psp);
  }
  
  // Luminosity detector
  if (fDetList->FindObject("LUMON") ) {
    R3BDetector* lumon = new ELILuMon("LuMon", kTRUE);
    lumon->SetGeometryFileName(((TObjString*)fDetList->GetValue("LUMON"))->GetString().Data());
    run->AddModule(lumon);
  }
  
  
  // -----   Create R3B  magnetic field ----------------------------------------
  Int_t typeOfMagneticField = 0;
  Int_t fieldScale = 1;
  Bool_t fVerbose = kFALSE;
  
  //NB: <D.B>
  // If the Global Position of the Magnet is changed
  // the Field Map has to be transformed accordingly
  FairField *magField = NULL;
  if (fFieldMap == 0) {
    magField = new R3BAladinFieldMap("AladinMaps");
    ((R3BAladinFieldMap*)magField)->SetCurrent(fMeasCurrent);
    ((R3BAladinFieldMap*)magField)->SetScale(fieldScale);
    
    if ( fR3BMagnet == kTRUE ) {
      run->SetField(magField);
    } else {
      run->SetField(NULL);
    }
  } else if(fFieldMap == 1){
    magField = new R3BGladFieldMap("R3BGladMap");
    ((R3BGladFieldMap*)magField)->SetPosition(0., 0., +350-119.94);
    ((R3BGladFieldMap*)magField)->SetScale(fieldScale);
    
    if ( fR3BMagnet == kTRUE ) {
      run->SetField(magField);
    } else {
      run->SetField(NULL);
    }
  }  //! end of field map section
  
  
  // -----   Create PrimaryGenerator   --------------------------------------
  // 1 - Create the Main API class for the Generator
  FairPrimaryGenerator* primGen = new FairPrimaryGenerator();
  
  if (fGenerator.CompareTo("box") == 0  ) {
    // 2- Define the BOX generator
    Int_t pdgId = 211; // pion beam
    Double32_t theta1 = 0.;  // polar angle distribution
    Double32_t theta2 = 7.;
    Double32_t momentum = 0.8;
    FairBoxGenerator* boxGen = new FairBoxGenerator(pdgId, 50);
    boxGen->SetThetaRange(theta1, theta2);
    boxGen->SetPRange(momentum, momentum*2.);
    boxGen->SetPhiRange(0, 360);
    boxGen->SetXYZ(0.0, 0.0, -1.5);
//    boxGen->SetXYZ(0.0, 0.0, -300.);
    // add the box generator
    primGen->AddGenerator(boxGen);
  }
  
  if (fGenerator.CompareTo("ascii") == 0  ) {
    R3BAsciiGenerator* gen = new R3BAsciiGenerator((dir+"/input/"+InFile).Data());
    primGen->AddGenerator(gen);
  }
  
  if (fGenerator.CompareTo("r3b") == 0  ) {
    R3BSpecificGenerator *pR3bGen = new R3BSpecificGenerator();
    
    // R3bGen properties
    pR3bGen->SetBeamInteractionFlag("off");
    pR3bGen->SetBeamInteractionFlag("off");
    pR3bGen->SetRndmFlag("off");
    pR3bGen->SetRndmEneFlag("off");
    pR3bGen->SetBoostFlag("off");
    pR3bGen->SetReactionFlag("on");
    pR3bGen->SetGammasFlag("off");
    pR3bGen->SetDecaySchemeFlag("off");
    pR3bGen->SetDissociationFlag("off");
    pR3bGen->SetBackTrackingFlag("off");
    pR3bGen->SetSimEmittanceFlag("off");
    
    // R3bGen Parameters
    pR3bGen->SetBeamEnergy(1.); // Beam Energy in GeV
    pR3bGen->SetSigmaBeamEnergy(1.e-03); // Sigma(Ebeam) GeV
    pR3bGen->SetParticleDefinition(2212); // Use Particle Pdg Code
    pR3bGen->SetEnergyPrim(0.3); // Particle Energy in MeV
    Int_t fMultiplicity = 50;
    pR3bGen->SetNumberOfParticles(fMultiplicity); // Mult.
    
    // Reaction type
    //        1: "Elas"
    //        2: "iso"
    //        3: "Trans"
    pR3bGen->SetReactionType("Elas");
    
    // Target  type
    //        1: "LeadTarget"
    //        2: "Parafin0Deg"
    //        3: "Parafin45Deg"
    //        4: "LiH"
    
    pR3bGen->SetTargetType(Target.Data());
    Double_t thickness = (0.11/2.)/10.;  // cm
    pR3bGen->SetTargetHalfThicknessPara(thickness); // cm
    pR3bGen->SetTargetThicknessLiH(3.5); // cm
    pR3bGen->SetTargetRadius(1.); // cm
    
    pR3bGen->SetSigmaXInEmittance(1.); //cm
    pR3bGen->SetSigmaXPrimeInEmittance(0.0001); //cm
    
    // Dump the User settings
    pR3bGen->PrintParameters();
    primGen->AddGenerator(pR3bGen);
  }
  
  run->SetGenerator(primGen);
  
  
  //-------Set visualisation flag to true------------------------------------
  run->SetStoreTraj(fVis);
  

  FairLogger::GetLogger()->SetLogVerbosityLevel("LOW");

  
  // -----   Initialize simulation run   ------------------------------------
  run->Init();

  
  // ------  Increase nb of step for CALO
  Int_t nSteps = -15000;
  gMC->SetMaxNStep(nSteps);
  
  
  // -----   Runtime database   ---------------------------------------------
  R3BFieldPar* fieldPar = (R3BFieldPar*) rtdb->getContainer("R3BFieldPar");
  if(NULL != magField)
  {
      fieldPar->SetParameters(magField);
      fieldPar->setChanged();
  }
  Bool_t kParameterMerged = kTRUE;
  FairParRootFileIo* parOut = new FairParRootFileIo(kParameterMerged);
  parOut->open(ParFile.Data());
  rtdb->setOutput(parOut);
  rtdb->saveOutput();
  rtdb->print();
  
  
  // -----   Start run   ----------------------------------------------------
  if(nEvents > 0) {
    run->Run(nEvents);
  }
  
  
  // -----   Finish   -------------------------------------------------------
  timer.Stop();
  Double_t rtime = timer.RealTime();
  Double_t ctime = timer.CpuTime();
  cout << endl << endl;
  cout << "Macro finished succesfully." << endl;
  cout << "Output file is "    << OutFile << endl;
  cout << "Parameter file is " << ParFile << endl;
  cout << "Real time " << rtime << " s, CPU time " << ctime
  << "s" << endl << endl;
  // ------------------------------------------------------------------------

  
  cout << " Test passed" << endl;
  cout << " All ok " << endl;
}
Esempio n. 5
0
void r3ball(Int_t nEvents = 1,
	    TMap& fDetList,
            TString Target = "LeadTarget",
            Bool_t fVis = kFALSE,
            TString fMC = "TGeant3",
            TString fGenerator = "box",
            Bool_t fUserPList = kFALSE,
            Bool_t fR3BMagnet = kTRUE,
            Bool_t fCalifaHitFinder = kFALSE,
            Bool_t fStarTrackHitFinder = kFALSE,
            Double_t fMeasCurrent = 2000.,
            TString OutFile = "r3bsim.root",
            TString ParFile = "r3bpar.root",
            TString InFile = "evt_gen.dat",
            double energy1, double energy2)
{


  TString dir = getenv("VMCWORKDIR");
  TString r3bdir = dir + "/macros";
  
  TString r3b_geomdir = dir + "/geometry";
  gSystem->Setenv("GEOMPATH",r3b_geomdir.Data());
  
  TString r3b_confdir = dir + "gconfig";
  gSystem->Setenv("CONFIG_DIR",r3b_confdir.Data());
  
  // In general, the following parts need not be touched
  // ========================================================================
  
  // ----    Debug option   -------------------------------------------------
  gDebug = 0;
  // ------------------------------------------------------------------------
  
  // -----   Timer   --------------------------------------------------------
  TStopwatch timer;
  timer.Start();
  // ------------------------------------------------------------------------
  
  
  // -----   Create simulation run   ----------------------------------------
  FairRunSim* run = new FairRunSim();
  run->SetName(fMC.Data());              // Transport engine
  run->SetOutputFile(OutFile.Data());          // Output file
  FairRuntimeDb* rtdb = run->GetRuntimeDb();
  
  FairLogger::GetLogger()->SetLogScreenLevel("DEBUG");
  
  //  R3B Special Physics List in G4 case
  if ( (fUserPList  == kTRUE ) &&
       (fMC.CompareTo("TGeant4")   == 0)
      ){
    run->SetUserConfig("g4R3bConfig.C");
    run->SetUserCuts("SetCuts.C");
  }
  
  
  // -----   Create media   -------------------------------------------------
  run->SetMaterials("media_r3b.geo");       // Materials
  
  
  // Magnetic field map type
  Int_t fFieldMap = 0;
  
  
  // Global Transformations
  //- Two ways for a Volume Rotation are supported
  //-- 1) Global Rotation (Euler Angles definition)
  //-- This represent the composition of : first a rotation about Z axis with
  //-- angle phi, then a rotation with theta about the rotated X axis, and
  //-- finally a rotation with psi about the new Z axis.
  Double_t phi,theta,psi;
  
  //-- 2) Rotation in Ref. Frame of the Volume
  //-- Rotation is Using Local Ref. Frame axis angles
  Double_t thetaX,thetaY,thetaZ;
  

  //- Global Translation  Lab. frame.
  Double_t tx,ty,tz;
  
  
  // -----   Create R3B geometry --------------------------------------------
  //R3B Cave definition
  FairModule* cave= new R3BCave("CAVE");
  cave->SetGeometryFileName("r3b_cave.geo");
  run->AddModule(cave);
  

  //R3B Target definition
  if (fDetList.FindObject("TARGET") ) {
    R3BModule* target= new R3BTarget(Target.Data());
    target->SetGeometryFileName(((TObjString*)fDetList.GetValue("TARGET"))->GetString().Data());
    run->AddModule(target);
  }
  
  //R3B SiTracker Cooling definition
  if (fDetList.FindObject("VACVESSELCOOL") ) {
    R3BModule* vesselcool= new R3BVacVesselCool(Target.Data());
    vesselcool->SetGeometryFileName(((TObjString*)fDetList.GetValue("VACVESSELCOOL"))->GetString().Data());
    run->AddModule(vesselcool);
  }
  //R3B Magnet definition
  if (fDetList.FindObject("ALADIN") ) {
    fFieldMap = 0;
    R3BModule* mag = new R3BMagnet("AladinMagnet");
    mag->SetGeometryFileName(((TObjString*)fDetList.GetValue("ALADIN"))->GetString().Data());
    run->AddModule(mag);
  }
  
  //R3B Magnet definition
  if (fDetList.FindObject("GLAD") ) {
    fFieldMap = 1;
    R3BModule* mag = new R3BGladMagnet("GladMagnet", ((TObjString*)fDetList->GetValue("GLAD"))->GetString(), "GLAD Magnet");
    run->AddModule(mag);
  }
  
  if (fDetList.FindObject("CRYSTALBALL") ) {
    //R3B Crystal Calorimeter
    R3BDetector* xball = new R3BXBall("XBall", kTRUE);
    xball->SetGeometryFileName(((TObjString*)fDetList.GetValue("CRYSTALBALL"))->GetString().Data());
    run->AddModule(xball);
  }
  
  if (fDetList.FindObject("CALIFA") ) {
    // CALIFA Calorimeter
    R3BDetector* califa = new R3BCalifa("Califa", kTRUE);
//    ((R3BCalifa *)califa)->SelectGeometryVersion(0x438b);
    ((R3BCalifa *)califa)->SelectGeometryVersion(17);
    //Selecting the Non-uniformity of the crystals (1 means +-1% max deviation)
    ((R3BCalifa *)califa)->SetNonUniformity(.0);
    califa->SetGeometryFileName(((TObjString*)fDetList.GetValue("CALIFA"))->GetString().Data());
    run->AddModule(califa);
  }

  // Tracker
  if (fDetList.FindObject("TRACKER")  ) {
    R3BDetector* tra = new R3BTra("Tracker", kTRUE);
    tra->SetGeometryFileName(((TObjString*)fDetList.GetValue("TRACKER"))->GetString().Data());
    run->AddModule(tra);
  }
  
  // STaRTrack
  if (fDetList.FindObject("STaRTrack")  ) {
    R3BDetector* tra = new R3BSTaRTra("STaRTrack", kTRUE);
    tra->SetGeometryFileName(((TObjString*)fDetList.GetValue("STaRTrack"))->GetString().Data());
    run->AddModule(tra);
  }
  
  // DCH drift chambers
  if (fDetList.FindObject("DCH") ) {
    R3BDetector* dch = new R3BDch("Dch", kTRUE);
    dch->SetGeometryFileName(((TObjString*)fDetList.GetValue("DCH"))->GetString().Data());
    run->AddModule(dch);
  }
  
  // Tof
  if (fDetList.FindObject("TOF") ) {
    R3BDetector* tof = new R3BTof("Tof", kTRUE);
    tof->SetGeometryFileName(((TObjString*)fDetList.GetValue("TOF"))->GetString().Data());
    run->AddModule(tof);
  }
  
  // mTof
  if (fDetList.FindObject("MTOF") ) {
    R3BDetector* mTof = new R3BmTof("mTof", kTRUE);
    mTof->SetGeometryFileName(((TObjString*)fDetList.GetValue("MTOF"))->GetString().Data());
    run->AddModule(mTof);
  }

  // GFI detector
  if (fDetList.FindObject("GFI") ) {
    R3BDetector* gfi = new R3BGfi("Gfi", kTRUE);
    gfi->SetGeometryFileName(((TObjString*)fDetList.GetValue("GFI"))->GetString().Data());
    run->AddModule(gfi);
  }
  
  // Land Detector
  if (fDetList.FindObject("LAND") ) {
    R3BDetector* land = new R3BLand("Land", kTRUE);
    land->SetVerboseLevel(1);
    land->SetGeometryFileName(((TObjString*)fDetList.GetValue("LAND"))->GetString().Data());
    run->AddModule(land);
  }
  
  // NeuLand Scintillator Detector
  if(fDetList.FindObject("SCINTNEULAND")) {
    R3BDetector* land = new R3BLand("Land", kTRUE);
    land->SetVerboseLevel(1);
    land->SetGeometryFileName(((TObjString*)fDetList.GetValue("SCINTNEULAND"))->GetString().Data());
    run->AddModule(land);
  }
  
  // MFI Detector
  if(fDetList.FindObject("MFI")) {
    R3BDetector* mfi = new R3BMfi("Mfi", kTRUE);
    mfi->SetGeometryFileName(((TObjString*)fDetList.GetValue("MFI"))->GetString().Data());
    run->AddModule(mfi);
  }

  // PSP Detector
  if(fDetList.FindObject("PSP")) {
    R3BDetector* psp = new R3BPsp("Psp", kTRUE);
    psp->SetGeometryFileName(((TObjString*)fDetList.GetValue("PSP"))->GetString().Data());
    run->AddModule(psp);
  }
  
  // Luminosity detector
  if (fDetList.FindObject("LUMON") ) {
    R3BDetector* lumon = new ELILuMon("LuMon", kTRUE);
    lumon->SetGeometryFileName(((TObjString*)fDetList.GetValue("LUMON"))->GetString().Data());
    run->AddModule(lumon);
  }
  
  // -----   Create R3B  magnetic field ----------------------------------------
  Int_t typeOfMagneticField = 0;
  Int_t fieldScale = 1;
  Bool_t fVerbose = kFALSE;
  
  //NB: <D.B>
  // If the Global Position of the Magnet is changed
  // the Field Map has to be transformed accordingly
  if (fFieldMap == 0) {
    R3BAladinFieldMap* magField = new R3BAladinFieldMap("AladinMaps");
    magField->SetCurrent(fMeasCurrent);
    magField->SetScale(fieldScale);
    
    if ( fR3BMagnet == kTRUE ) {
      run->SetField(magField);
    } else {
      run->SetField(NULL);
    }
  } else if(fFieldMap == 1){
    R3BGladFieldMap* magField = new R3BGladFieldMap("R3BGladMap");
    magField->SetScale(fieldScale);
    
    if ( fR3BMagnet == kTRUE ) {
      run->SetField(magField);
    } else {
      run->SetField(NULL);
    }
  }  //! end of field map section
  
  // -----   Create PrimaryGenerator   --------------------------------------

  // 1 - Create the Main API class for the Generator
  FairPrimaryGenerator* primGen = new FairPrimaryGenerator();
  
  if (fGenerator.CompareTo("ion") == 0  ) {
          // R3B Ion Generator
          Int_t z = 30;  // Atomic number
          Int_t a = 65; // Mass number
          Int_t q = 0;   // Charge State 
          Int_t m = 1;   // Multiplicity
          Double_t px = 40./a;  // X-Momentum / per nucleon!!!!!!
          Double_t py = 600./a;  // Y-Momentum / per nucleon!!!!!!
          Double_t pz = 0.01/a;  // Z-Momentum / per nucleon!!!!!!
          R3BIonGenerator* ionGen = new R3BIonGenerator(z,a,q,m,px,py,pz);
          ionGen->SetSpotRadius(1,1,0);
          // add the ion generator
          primGen->AddGenerator(ionGen);
  }

  if (fGenerator.CompareTo("ascii") == 0  ) {
    R3BAsciiGenerator* gen = new R3BAsciiGenerator((dir+"/input/"+InFile).Data());
    primGen->AddGenerator(gen);
  }
  

  if (fGenerator.CompareTo("box") == 0  ) {
	  // 2- Define the BOX generator
	  Double_t pdgId=2212; // proton beam
	  Double_t theta1= 25.;  // polar angle distribution
	  //Double_t theta2= 7.;
	  Double_t theta2= 66.;
//	  Double_t momentum=1.09008; // 500 MeV/c
//	  Double_t momentum=0.4445834; // 100 MeV/c
          Double_t momentum1=TMath::Sqrt(energy1*energy1 + 2*energy1*0.938272046);
          Double_t momentum2=TMath::Sqrt(energy2*energy2 + 2*energy2*0.938272046);
	  FairBoxGenerator* boxGen = new FairBoxGenerator(pdgId, 1);
	  boxGen->SetThetaRange (   theta1,   theta2);
	  boxGen->SetPRange     (momentum1,momentum2);
	  boxGen->SetPhiRange   (0,360.);
	  //boxGen->SetXYZ(0.0,0.0,-1.5);
	  boxGen->SetXYZ(0.0,0.0,0.0);
          boxGen->SetDebug(kFALSE);
	  // add the box generator
	  primGen->AddGenerator(boxGen);

          //primGen->SetTarget(0.25, 0.5);
          //primGen->SmearVertexZ(kTRUE);
  } 
	
  if (fGenerator.CompareTo("gammas") == 0  ) {
        // 2- Define the CALIFA Test gamma generator
        //Double_t pdgId=22; // gamma emission
        Double_t pdgId=2212; // proton emission
        Double_t theta1= 10.;  // polar angle distribution
        Double_t theta2= 40.;
        //Double_t theta2= 90.; 
        //Double_t momentum=0.002; // 0.010 GeV/c = 10 MeV/c 
        Double_t momentumI=0.002; // 0.010 GeV/c = 10 MeV/c 
        Double_t momentumF=0.002; // 0.010 GeV/c = 10 MeV/c 
        //Double_t momentumF=0.808065; // 0.808065 GeV/c (300MeV Kin Energy for protons) 
        //Double_t momentumI=0.31016124; // 0.31016124 GeV/c (50MeV Kin Energy for protons)
        //Double_t momentum=0.4442972; // 0.4442972 GeV/c (100MeV Kin Energy for protons)
        //Double_t momentum=0.5509999; // 0.5509999 GeV/c (150MeV Kin Energy for protons)
        //Double_t momentumI=0.64405; // 0.64405 GeV/c (200MeV Kin Energy for protons) 
        Int_t multiplicity = 1;
        R3BCALIFATestGenerator* gammasGen = new R3BCALIFATestGenerator(pdgId, multiplicity);
        gammasGen->SetThetaRange (theta1,   theta2);
        gammasGen->SetCosTheta();
        gammasGen->SetPRange(momentumI,momentumF);
        gammasGen->SetPhiRange(-180.,180.);
        //gammasGen->SetXYZ(0.0,0.0,-1.5);
        //gammasGen->SetXYZ(0.0,0.0,0);
        gammasGen->SetBoxXYZ(-0.1,0.1,-0.1,0.1,-0.1,0.1);
        //gammasGen->SetLorentzBoost(0.8197505718204776); //beta=0.81975 for 700 A MeV
        // add the gamma generator
        primGen->AddGenerator(gammasGen);
  }


  if (fGenerator.CompareTo("r3b") == 0  ) {
    R3BSpecificGenerator *pR3bGen = new R3BSpecificGenerator();
    
    // R3bGen properties
    pR3bGen->SetBeamInteractionFlag("off");
    pR3bGen->SetRndmFlag("off");
    pR3bGen->SetRndmEneFlag("off");
    pR3bGen->SetBoostFlag("off");
    pR3bGen->SetReactionFlag("on");
    pR3bGen->SetGammasFlag("off");
    pR3bGen->SetDecaySchemeFlag("off");
    pR3bGen->SetDissociationFlag("off");
    pR3bGen->SetBackTrackingFlag("off");
    pR3bGen->SetSimEmittanceFlag("off");
    
    // R3bGen Parameters
    pR3bGen->SetBeamEnergy(1.); // Beam Energy in GeV
    pR3bGen->SetSigmaBeamEnergy(1.e-03); // Sigma(Ebeam) GeV
    pR3bGen->SetParticleDefinition(2212); // Use Particle Pdg Code
    pR3bGen->SetEnergyPrim(0.3); // Particle Energy in MeV
    Int_t fMultiplicity = 50;
    pR3bGen->SetNumberOfParticles(fMultiplicity); // Mult.
    
    // Reaction type
    //        1: "Elas"
    //        2: "iso"
    //        3: "Trans"
    pR3bGen->SetReactionType("Elas");
    
    // Target  type
    //        1: "LeadTarget"
    //        2: "Parafin0Deg"
    //        3: "Parafin45Deg"
    //        4: "LiH"
    
    pR3bGen->SetTargetType(Target.Data());
    Double_t thickness = (0.11/2.)/10.;  // cm
    pR3bGen->SetTargetHalfThicknessPara(thickness); // cm
    pR3bGen->SetTargetThicknessLiH(3.5); // cm
    pR3bGen->SetTargetRadius(1.); // cm
    
    pR3bGen->SetSigmaXInEmittance(1.); //cm
    pR3bGen->SetSigmaXPrimeInEmittance(0.0001); //cm
    
    // Dump the User settings
    pR3bGen->PrintParameters();
    primGen->AddGenerator(pR3bGen);
  }
  
  if (fGenerator.CompareTo("p2p") == 0  ) {
    R3Bp2pGenerator* gen = new R3Bp2pGenerator(("/lustre/nyx/fairgsi/mwinkel/r3broot/input/p2p/build/" + InFile).Data());
    primGen->AddGenerator(gen);

#if 0
    // Coincident gammas
    R3BGammaGenerator *gammaGen = new R3BGammaGenerator();
    
    gammaGen->SetEnergyLevel(0, 0.);
    gammaGen->SetEnergyLevel(1, 3E-3);
    gammaGen->SetEnergyLevel(2, 4E-3);

    gammaGen->SetBranchingRatio(2, 1, 0.5);
    gammaGen->SetBranchingRatio(2, 0, 0.5);
    gammaGen->SetBranchingRatio(1, 0, 1.);

    gammaGen->SetInitialLevel(2);

    gammaGen->SetLorentzBoost(TVector3(0, 0, 0.777792));

    primGen->AddGenerator(gammaGen);
#endif
  }

  run->SetGenerator(primGen);
  
  
  //-------Set visualisation flag to true------------------------------------
  run->SetStoreTraj(fVis);
  

  FairLogger::GetLogger()->SetLogVerbosityLevel("LOW");

 
  // ----- Initialize CalifaHitFinder task (CrystalCal to Hit) ------------------------------------
  if(fCalifaHitFinder) {
    R3BCalifaCrystalCal2Hit* califaHF = new R3BCalifaCrystalCal2Hit();
    califaHF->SetClusteringAlgorithm(1,0);
    califaHF->SetDetectionThreshold(0.000050);//50 KeV
    califaHF->SetExperimentalResolution(6.);  //percent @ 1 MeV
    //califaHF->SetComponentResolution(.25);    //sigma = 0.5 MeV
    califaHF->SetPhoswichResolution(3.,5.);   //percent @ 1 MeV for LaBr and LaCl 
    califaHF->SelectGeometryVersion(17);
    califaHF->SetAngularWindow(0.25,0.25);      //[0.25 around 14.3 degrees, 3.2 for the complete calorimeter]
    run->AddTask(califaHF);
  }

  // ----- Initialize StarTrackHitfinder task ------------------------------------
  if(fStarTrackHitFinder) {
    R3BSTaRTraHitFinder* trackHF = new R3BSTaRTraHitFinder();
    //trackHF->SetClusteringAlgorithm(1,0);
    trackHF->SetDetectionThreshold(0.000050); //50 KeV
    trackHF->SetExperimentalResolution(0.);
    //trackHF->SetAngularWindow(0.15,0.15);      //[0.25 around 14.3 degrees, 3.2 for the complete calorimeter]
    run->AddTask(trackHF);
  }
  
	
  // -----   Initialize simulation run   ------------------------------------
  run->Init();

  // ------  Increase nb of step for CALO
  Int_t nSteps = 150000;
  TVirtualMC::GetMC()->SetMaxNStep(nSteps);
  
  
  // -----   Runtime database   ---------------------------------------------
  R3BFieldPar* fieldPar = (R3BFieldPar*) rtdb->getContainer("R3BFieldPar");
      fieldPar->SetParameters(magField);
      fieldPar->setChanged();
  Bool_t kParameterMerged = kTRUE;
  FairParRootFileIo* parOut = new FairParRootFileIo(kParameterMerged);
  parOut->open(ParFile.Data());
  rtdb->setOutput(parOut);
  rtdb->saveOutput();
  rtdb->print();
  
  
  // -----   Start run   ----------------------------------------------------
  if(nEvents > 0) {
    run->Run(nEvents);
  }
  
  
  // -----   Finish   -------------------------------------------------------
  timer.Stop();
  Double_t rtime = timer.RealTime();
  Double_t ctime = timer.CpuTime();
  cout << endl << endl;
  cout << "Macro finished succesfully." << endl;
  cout << "Output file is "    << OutFile << endl;
  cout << "Parameter file is " << ParFile << endl;
  cout << "Real time " << rtime << " s, CPU time " << ctime
  << "s" << endl << endl;
  // ------------------------------------------------------------------------

  cout << " Test passed" << endl;
  cout << " All ok " << endl;

}