Esempio n. 1
0
void BoundaryNormalLFIntegrator::AssembleRHSElementVect(
    const FiniteElement &el, ElementTransformation &Tr, Vector &elvect)
{
    int dim = el.GetDim()+1;
    int dof = el.GetDof();
    Vector nor(dim), Qvec;

    shape.SetSize(dof);
    elvect.SetSize(dof);
    elvect = 0.0;

    const IntegrationRule *ir = IntRule;
    if (ir == NULL)
    {
        int intorder = oa * el.GetOrder() + ob;  // <----------
        ir = &IntRules.Get(el.GetGeomType(), intorder);
    }

    for (int i = 0; i < ir->GetNPoints(); i++)
    {
        const IntegrationPoint &ip = ir->IntPoint(i);

        Tr.SetIntPoint(&ip);
        CalcOrtho(Tr.Jacobian(), nor);
        Q.Eval(Qvec, Tr, ip);

        el.CalcShape(ip, shape);

        elvect.Add(ip.weight*(Qvec*nor), shape);
    }
}
Esempio n. 2
0
void VectorBoundaryFluxLFIntegrator::AssembleRHSElementVect(
    const FiniteElement &el, ElementTransformation &Tr, Vector &elvect)
{
    int dim = el.GetDim()+1;
    int dof = el.GetDof();

    shape.SetSize (dof);
    nor.SetSize (dim);
    elvect.SetSize (dim*dof);

    const IntegrationRule *ir = IntRule;
    if (ir == NULL)
        ir = &IntRules.Get(el.GetGeomType(), el.GetOrder() + 1);

    elvect = 0.0;
    for (int i = 0; i < ir->GetNPoints(); i++)
    {
        const IntegrationPoint &ip = ir->IntPoint(i);
        Tr.SetIntPoint (&ip);
        CalcOrtho(Tr.Jacobian(), nor);
        el.CalcShape (ip, shape);
        nor *= Sign * ip.weight * F -> Eval (Tr, ip);
        for (int j = 0; j < dof; j++)
            for (int k = 0; k < dim; k++)
                elvect(dof*k+j) += nor(k) * shape(j);
    }
}
Esempio n. 3
0
void VectorFEDomainLFIntegrator::AssembleRHSElementVect(
    const FiniteElement &el, ElementTransformation &Tr, Vector &elvect)
{
    int dof = el.GetDof();
    int dim = el.GetDim();

    vshape.SetSize(dof,dim);
    vec.SetSize(dim);

    elvect.SetSize(dof);
    elvect = 0.0;

    const IntegrationRule *ir = IntRule;
    if (ir == NULL)
    {
        // int intorder = 2*el.GetOrder() - 1; // ok for O(h^{k+1}) conv. in L2
        int intorder = 2*el.GetOrder();
        ir = &IntRules.Get(el.GetGeomType(), intorder);
    }

    for (int i = 0; i < ir->GetNPoints(); i++)
    {
        const IntegrationPoint &ip = ir->IntPoint(i);

        Tr.SetIntPoint (&ip);
        el.CalcVShape(Tr, vshape);

        QF.Eval (vec, Tr, ip);
        vec *= ip.weight * Tr.Weight();

        vshape.AddMult (vec, elvect);
    }
}
Esempio n. 4
0
void BoundaryFlowIntegrator::AssembleRHSElementVect(
    const FiniteElement &el, FaceElementTransformations &Tr, Vector &elvect)
{
    int dim, ndof, order;
    double un, w, vu_data[3], nor_data[3];

    dim  = el.GetDim();
    ndof = el.GetDof();
    Vector vu(vu_data, dim), nor(nor_data, dim);

    const IntegrationRule *ir = IntRule;
    if (ir == NULL)
    {
        // Assuming order(u)==order(mesh)
        order = Tr.Elem1->OrderW() + 2*el.GetOrder();
        if (el.Space() == FunctionSpace::Pk)
            order++;
        ir = &IntRules.Get(Tr.FaceGeom, order);
    }

    shape.SetSize(ndof);
    elvect.SetSize(ndof);
    elvect = 0.0;

    for (int p = 0; p < ir->GetNPoints(); p++)
    {
        const IntegrationPoint &ip = ir->IntPoint(p);
        IntegrationPoint eip;
        Tr.Loc1.Transform(ip, eip);
        el.CalcShape(eip, shape);

        Tr.Face->SetIntPoint(&ip);

        u->Eval(vu, *Tr.Elem1, eip);

        if (dim == 1)
            nor(0) = 2*eip.x - 1.0;
        else
            CalcOrtho(Tr.Face->Jacobian(), nor);

        un = vu * nor;
        w = 0.5*alpha*un - beta*fabs(un);
        w *= ip.weight*f->Eval(*Tr.Elem1, eip);
        elvect.Add(w, shape);
    }
}
Esempio n. 5
0
void BoundaryTangentialLFIntegrator::AssembleRHSElementVect(
    const FiniteElement &el, ElementTransformation &Tr, Vector &elvect)
{
    int dim = el.GetDim()+1;
    int dof = el.GetDof();
    Vector tangent(dim), Qvec;

    shape.SetSize(dof);
    elvect.SetSize(dof);
    elvect = 0.0;

    if (dim != 2)
        mfem_error("These methods make sense only in 2D problems.");

    const IntegrationRule *ir = IntRule;
    if (ir == NULL)
    {
        int intorder = oa * el.GetOrder() + ob;  // <----------
        ir = &IntRules.Get(el.GetGeomType(), intorder);
    }

    for (int i = 0; i < ir->GetNPoints(); i++)
    {
        const IntegrationPoint &ip = ir->IntPoint(i);

        Tr.SetIntPoint(&ip);
        const DenseMatrix &Jac = Tr.Jacobian();
        tangent(0) =  Jac(0,0);
        tangent(1) = Jac(1,0);

        Q.Eval(Qvec, Tr, ip);

        el.CalcShape(ip, shape);

        add(elvect, ip.weight*(Qvec*tangent), shape, elvect);
    }
}
Esempio n. 6
0
void DGDirichletLFIntegrator::AssembleRHSElementVect(
    const FiniteElement &el, FaceElementTransformations &Tr, Vector &elvect)
{
    int dim, ndof;
    bool kappa_is_nonzero = (kappa != 0.);
    double w;

    dim = el.GetDim();
    ndof = el.GetDof();

    nor.SetSize(dim);
    nh.SetSize(dim);
    ni.SetSize(dim);
    adjJ.SetSize(dim);
    if (MQ)
        mq.SetSize(dim);

    shape.SetSize(ndof);
    dshape.SetSize(ndof, dim);
    dshape_dn.SetSize(ndof);

    elvect.SetSize(ndof);
    elvect = 0.0;

    const IntegrationRule *ir = IntRule;
    if (ir == NULL)
    {
        // a simple choice for the integration order; is this OK?
        int order = 2*el.GetOrder();
        ir = &IntRules.Get(Tr.FaceGeom, order);
    }

    for (int p = 0; p < ir->GetNPoints(); p++)
    {
        const IntegrationPoint &ip = ir->IntPoint(p);
        IntegrationPoint eip;

        Tr.Loc1.Transform(ip, eip);
        Tr.Face->SetIntPoint(&ip);
        if (dim == 1)
            nor(0) = 2*eip.x - 1.0;
        else
            CalcOrtho(Tr.Face->Jacobian(), nor);

        el.CalcShape(eip, shape);
        el.CalcDShape(eip, dshape);
        Tr.Elem1->SetIntPoint(&eip);
        // compute uD through the face transformation
        w = ip.weight * uD->Eval(*Tr.Face, ip) / Tr.Elem1->Weight();
        if (!MQ)
        {
            if (Q)
                w *= Q->Eval(*Tr.Elem1, eip);
            ni.Set(w, nor);
        }
        else
        {
            nh.Set(w, nor);
            MQ->Eval(mq, *Tr.Elem1, eip);
            mq.MultTranspose(nh, ni);
        }
        CalcAdjugate(Tr.Elem1->Jacobian(), adjJ);
        adjJ.Mult(ni, nh);

        dshape.Mult(nh, dshape_dn);
        elvect.Add(sigma, dshape_dn);

        if (kappa_is_nonzero)
            elvect.Add(kappa*(ni*nor), shape);
    }
}