Esempio n. 1
0
// Use the ratio between the minimum and maximum to determine whether the 
// population has converged.  This method will not work if the values cross
// zero!
// Note that this is significantly different than the definition (and the 
// bug-laden implementation) that was in version of GAlib prior to 2.4.5.
//
// For historical purposes, here is the old definition of this method:
//
// Use the ratio of the population mean divided by the population maximum to
// determine whether the population has converged.  If we are maximizing, then
// check to see if the ratio exceeds the convergence.  If we are minimizing, 
// then check to see if the ratio has dropped below the convergence.
GABoolean 
GAGeneticAlgorithm::TerminateUponPopConvergence(GAGeneticAlgorithm & ga){
  GABoolean val = gaFalse;

  if(ga.statistics().current(GAStatistics::Maximum) == 0) {
    return val;
  }

  float ratio = 
    ga.statistics().current(GAStatistics::Minimum) /
    ga.statistics().current(GAStatistics::Maximum);

  if(ga.minimaxi() == GAGeneticAlgorithm::MINIMIZE) {
    if(ratio <= ga.pConvergence())
      val = gaTrue;
    else
      val = gaFalse;
  }
  else {
    if(ratio >= ga.pConvergence())
      val = gaTrue;
    else
      val = gaFalse;
  }

  return val;
}
Esempio n. 2
0
GABoolean 
GAGeneticAlgorithm::TerminateUponPopConvergence(GAGeneticAlgorithm & ga){
  if(ga.statistics().current(GAStatistics::Mean) /
     ga.statistics().current(GAStatistics::Maximum) < ga.pConvergence())
    return gaTrue;
  else
    return gaFalse;
}
Esempio n. 3
0
// Send the specified number of individuals from the current population to
// the specified task.
int 
SendMigration(int toid, GAGeneticAlgorithm& ga, int count) {
  int status = 0;
  status = pvm_initsend(PvmDataDefault);
  status = pvm_pkint(&count, 1, 1);
  for(int i=0; i<count && status>=0; i++)
    status = PackIndividual(ga.population().best(i));
  status = pvm_send(toid, MSG_INCOMING_MIGRATION);
  return status;
}
Esempio n. 4
0
// Receive a bunch of individuals from a task.  To do this, we clone the GA's
// population, stuff the immigrants into the population, trash the worst 
// individuals to bring the population size back down to what it was, then
// stick the population back into the GA.
//   This implementation is really inefficient, but you get the idea of how
// to do this...
int 
RecvMigration(GAGeneticAlgorithm& ga) {
  int status = 0;

  GAPopulation pop(ga.population());
  GAGenome *tmpind = ga.population().individual(0).clone();

  int count = 0;
  status = pvm_upkint(&count, 1, 1);
  for(int i=0; i<count && status>=0; i++) {
    status = UnpackIndividual(*tmpind);
    pop.add(*tmpind);
  }
  for(int j=0; j<count; j++)
    pop.destroy();		// default behavior is to destroy worst

  ga.population(pop);
  delete tmpind;

  return status;
}
Esempio n. 5
0
// If we are maximizing, then terminate when the convergence has exceeded the
// specified convergence.  If we are minimizing, then terminate when the 
// convergence has dropped below the specified convergence.
GABoolean 
GAGeneticAlgorithm::TerminateUponConvergence(GAGeneticAlgorithm & ga){
  GABoolean val = gaFalse;
  if(ga.minimaxi() == GAGeneticAlgorithm::MINIMIZE) {
    if(ga.convergence() == 0 || ga.convergence() > ga.pConvergence())
      val = gaFalse;
    else 
      val = gaTrue;
  }
  else {
    if(ga.convergence() < ga.pConvergence())
      val = gaFalse;
    else 
      val = gaTrue;
  }
  return val;
}
Esempio n. 6
0
// Here are a few termination functions that you can use.  Terminators return
// gaTrue if the algorithm should finish, gaFalse otherwise.
GABoolean
GAGeneticAlgorithm::TerminateUponGeneration(GAGeneticAlgorithm & ga){
  return(ga.generation() < ga.nGenerations() ? gaFalse : gaTrue);
}
Esempio n. 7
0
void TwitterAnnounce::action(const GAGeneticAlgorithm & ga) {
    std::string generation = stringFrom(ga.generation());
    // todo get from config
    announcer_->announceGeneration("Generation " + generation + " created! #megapolis", "","http://nynex.hydrogenproject.com/rate.php");
}