Esempio n. 1
0
void GRecommenderLib::precisionRecall(GArgReader& args)
{
	// Parse options
	unsigned int seed = getpid() * (unsigned int)time(NULL);
	bool ideal = false;
	while(args.next_is_flag())
	{
		if(args.if_pop("-seed"))
			seed = args.pop_uint();
		else if(args.if_pop("-ideal"))
			ideal = true;
		else
			throw Ex("Invalid option: ", args.peek());
	}

	// Load the data
	if(args.size() < 1)
		throw Ex("No dataset specified.");
	GMatrix data;
	loadData(data, args.pop_string());

	// Instantiate the recommender
	GCollaborativeFilter* pModel = InstantiateAlgorithm(args);
	std::unique_ptr<GCollaborativeFilter> hModel(pModel);
	if(args.size() > 0)
		throw Ex("Superfluous argument: ", args.peek());
	pModel->rand().setSeed(seed);

	// Generate precision-recall data
	GMatrix* pResults = pModel->precisionRecall(data, ideal);
	std::unique_ptr<GMatrix> hResults(pResults);
	pResults->deleteColumns(2, 1); // we don't need the false-positive rate column
	pResults->print(cout);
}
Esempio n. 2
0
void GRecommenderLib::transacc(GArgReader& args)
{
	// Parse options
	unsigned int seed = getpid() * (unsigned int)time(NULL);
	while(args.next_is_flag())
	{
		if(args.if_pop("-seed"))
			seed = args.pop_uint();
		else
			throw Ex("Invalid crossvalidate option: ", args.peek());
	}

	// Load the data
	if(args.size() < 1)
		throw Ex("No training set specified.");
	GMatrix train;
	loadData(train, args.pop_string());
	if(args.size() < 1)
		throw Ex("No test set specified.");
	GMatrix test;
	loadData(test, args.pop_string());

	// Instantiate the recommender
	GCollaborativeFilter* pModel = InstantiateAlgorithm(args);
	std::unique_ptr<GCollaborativeFilter> hModel(pModel);
	if(args.size() > 0)
		throw Ex("Superfluous argument: ", args.peek());
	pModel->rand().setSeed(seed);

	// Do cross-validation
	double mae;
	double mse = pModel->trainAndTest(train, test, &mae);
	cout << "MSE=" << mse << ", MAE=" << mae << "\n";
}
Esempio n. 3
0
void GRecommenderLib::crossValidate(GArgReader& args)
{
	// Parse options
	unsigned int seed = getpid() * (unsigned int)time(NULL);
	size_t folds = 2;
	while(args.next_is_flag())
	{
		if(args.if_pop("-seed"))
			seed = args.pop_uint();
		else if(args.if_pop("-folds"))
			folds = args.pop_uint();
		else
			throw Ex("Invalid crossvalidate option: ", args.peek());
	}
	if(folds < 2)
		throw Ex("There must be at least 2 folds.");

	// Load the data
	if(args.size() < 1)
		throw Ex("No dataset specified.");
	GMatrix data;
	loadData(data, args.pop_string());

	// Instantiate the recommender
	GCollaborativeFilter* pModel = InstantiateAlgorithm(args);
	std::unique_ptr<GCollaborativeFilter> hModel(pModel);
	if(args.size() > 0)
		throw Ex("Superfluous argument: ", args.peek());
	pModel->rand().setSeed(seed);

	// Do cross-validation
	double mae;
	double mse;
	mse = pModel->crossValidate(data, folds, &mae);
	cout << "RMSE=" << sqrt(mse) << ", MSE=" << mse << ", MAE=" << mae << "\n";
}
Esempio n. 4
0
void GRecommenderLib::fillMissingValues(GArgReader& args)
{
	unsigned int seed = getpid() * (unsigned int)time(NULL);
	bool normalize = true;
	while(args.next_is_flag())
	{
		if(args.if_pop("-seed"))
			seed = args.pop_uint();
		else if(args.if_pop("-nonormalize"))
			normalize = false;
		else
			throw Ex("Invalid option: ", args.peek());
	}

	// Load the data and the filter
	GMatrix dataOrig;
	dataOrig.loadArff(args.pop_string());

	// Parse params
	vector<size_t> ignore;
	while(args.next_is_flag())
	{
		if(args.if_pop("-ignore"))
			parseAttributeList(ignore, args, dataOrig.cols());
		else
			throw Ex("Invalid option: ", args.peek());
	}

	// Throw out the ignored attributes
	std::sort(ignore.begin(), ignore.end());
	for(size_t i = ignore.size() - 1; i < ignore.size(); i--)
		dataOrig.deleteColumns(ignore[i], 1);

	GRelation* pOrigRel = dataOrig.relation().clone();
	std::unique_ptr<GRelation> hOrigRel(pOrigRel);
	GCollaborativeFilter* pModel = InstantiateAlgorithm(args);
	std::unique_ptr<GCollaborativeFilter> hModel(pModel);
	if(args.size() > 0)
		throw Ex("Superfluous argument: ", args.peek());
	pModel->rand().setSeed(seed);

	// Convert to all normalized real values
	GNominalToCat* pNtc = new GNominalToCat();
	GIncrementalTransform* pFilter = pNtc;
	std::unique_ptr<GIncrementalTransformChainer> hChainer;
	if(normalize)
	{
		GIncrementalTransformChainer* pChainer = new GIncrementalTransformChainer(new GNormalize(), pNtc);
		hChainer.reset(pChainer);
		pFilter = pChainer;
	}
	pNtc->preserveUnknowns();
	pFilter->train(dataOrig);
	GMatrix* pData = pFilter->transformBatch(dataOrig);
	std::unique_ptr<GMatrix> hData(pData);

	// Convert to 3-column form
	GMatrix* pMatrix = new GMatrix(0, 3);
	std::unique_ptr<GMatrix> hMatrix(pMatrix);
	size_t dims = pData->cols();
	for(size_t i = 0; i < pData->rows(); i++)
	{
		GVec& row = pData->row(i);
		for(size_t j = 0; j < dims; j++)
		{
			if(row[j] != UNKNOWN_REAL_VALUE)
			{
				GVec& vec = pMatrix->newRow();
				vec[0] = (double)i;
				vec[1] = (double)j;
				vec[2] = row[j];
			}
		}
	}

	// Train the collaborative filter
	pModel->train(*pMatrix);
	hMatrix.release();
	pMatrix = NULL;

	// Predict values for missing elements
	for(size_t i = 0; i < pData->rows(); i++)
	{
		GVec& row = pData->row(i);
		for(size_t j = 0; j < dims; j++)
		{
			if(row[j] == UNKNOWN_REAL_VALUE)
				row[j] = pModel->predict(i, j);
			GAssert(row[j] != UNKNOWN_REAL_VALUE);
		}
	}

	// Convert the data back to its original form
	GMatrix* pOut = pFilter->untransformBatch(*pData);
	pOut->setRelation(hOrigRel.release());
	pOut->print(cout);
}