Esempio n. 1
0
void GW_Mesh::GetBoundingBox( GW_Vector3D& min, GW_Vector3D& max )
{
	min.SetValue( GW_INFINITE );
	max.SetValue( -GW_INFINITE );
	for( GW_U32 i=0; i<this->GetNbrVertex(); ++i )
	{
		if( this->GetVertex(i)!=NULL )
		{
			GW_Vector3D& pos = this->GetVertex(i)->GetPosition();
			min[0] = GW_MIN( min[0], pos[0] );
			min[1] = GW_MIN( min[1], pos[1] );
			min[2] = GW_MIN( min[2], pos[2] );
			max[0] = GW_MAX( max[0], pos[0] );
			max[1] = GW_MAX( max[1], pos[1] );
			max[2] = GW_MAX( max[2], pos[2] );
		}
	}
}
Esempio n. 2
0
/*------------------------------------------------------------------------------*/
void GW_Vertex::BuildRawNormal()
{
	GW_Vector3D FaceNormal;

	Normal_.SetZero();
	GW_U32 nIter = 0;
	for( GW_FaceIterator it = this->BeginFaceIterator(); it!=this->EndFaceIterator(); ++it )
	{
		GW_Face* pFace = *it;
		GW_ASSERT( pFace!=NULL );
		FaceNormal =	(pFace->GetVertex(0)->GetPosition()-pFace->GetVertex(1)->GetPosition()) ^
			(pFace->GetVertex(0)->GetPosition()-pFace->GetVertex(2)->GetPosition());
		FaceNormal.Normalize();
		Normal_ += FaceNormal;
		nIter++;
		if( nIter>20 )
			break;
	}
	Normal_.Normalize();
}
/*------------------------------------------------------------------------------*/
void GW_TriangularInterpolation_Cubic::ComputeLocalGradient(  GW_GeodesicVertex& Vert )
{
    /* compute the total angle */
    GW_Vector3D PrevEdge;
    GW_Float rTotalAngle = 0;
    for( GW_VertexIterator it=Vert.BeginVertexIterator(); it!=Vert.EndVertexIterator(); ++it )
    {
        GW_Vertex* pVert = *it;
        GW_ASSERT( pVert!=NULL );
        if( it==Vert.BeginVertexIterator() )
        {
            PrevEdge = pVert->GetPosition() - Vert.GetPosition();
            PrevEdge.Normalize();
        }
        else
        {
            GW_Vector3D NextEdge = pVert->GetPosition() - Vert.GetPosition();
            NextEdge.Normalize();
            rTotalAngle += acos( NextEdge*PrevEdge );
            PrevEdge = NextEdge;
        }
    }

    /* matrix and RHS for least square minimusation */
    GW_Float M[2][2] = {{0,0},{0,0}};
    GW_Float b[2] = {0,0};

    GW_Float rCurAngle = 0;
    PrevEdge.SetZero();
    for( GW_VertexIterator it=Vert.BeginVertexIterator(); it!=Vert.EndVertexIterator(); ++it )
    {
        GW_GeodesicVertex* pVert = (GW_GeodesicVertex*) *it;
        GW_ASSERT( pVert!=NULL );

        GW_Vector3D Edge = pVert->GetPosition() - Vert.GetPosition();
        GW_Float a = Edge.Norm();
        Edge /= a;

        if( it!=Vert.BeginVertexIterator() )
        {
            /* update the angle */
            rCurAngle += acos( Edge*PrevEdge );
        }

        /* directional gradient estimation */
        GW_Float delta = (pVert->GetDistance() - Vert.GetDistance())/a;
        /* coordonate of the edge on (u,v) [flatened coords] */
        GW_Float eu = a*cos( rCurAngle/rTotalAngle );
        GW_Float ev = a*sin( rCurAngle/rTotalAngle );
        /* update the matrix */
        M[0][0] += eu*eu;
        M[0][1] += eu*ev;
        M[1][0] += eu*ev;
        M[1][1] += ev*ev;
        b[0] += delta*eu;
        b[1] += delta*ev;

        PrevEdge = Edge;
    }

    /* invert the system */
    GW_Float det = M[0][0]*M[1][1] - M[0][1]*M[1][0];
    GW_ASSERT( det!=0 );
    GW_Float gu = 1/det * ( M[1][1]*b[0] - M[0][1]*b[1] );
    GW_Float gv = 1/det * (-M[1][0]*b[0] + M[0][0]*b[1] );

    /* set the gradient in local coords for each surrounding face */
    rCurAngle = 0;
    for( GW_FaceIterator it = Vert.BeginFaceIterator(); it!=Vert.EndFaceIterator(); ++it )
    {
        GW_GeodesicFace* pFace = (GW_GeodesicFace*) *it;
        GW_ASSERT( pFace!=NULL );
        GW_Vertex* pVert1 = it.GetLeftVertex();        GW_ASSERT( pVert1!=NULL );
        GW_Vertex* pVert2 = it.GetRightVertex();    GW_ASSERT( pVert1!=NULL );
        GW_Vector3D e1 = pVert1->GetPosition() - Vert.GetPosition();
        GW_Vector3D e2 = pVert2->GetPosition() - Vert.GetPosition();
        GW_Float a1 = e1.Norm();
        GW_Float a2 = e2.Norm();
        e1 /= a1;
        e2 /= a2;
        GW_Float rInnerAngle = acos( e1*e2 );
        /* flattened position of the two vertex */
        GW_Float p1[2], p2[2];
        p1[0] = cos( rCurAngle );
        p1[1] = sin( rCurAngle );
        p2[0] = cos( rCurAngle+rInnerAngle );
        p2[1] = sin( rCurAngle+rInnerAngle );

        /* we have                    grad = gu*u + gv*v
           we are searching for        grad = g1*p1 + g2*p2, so:
                gu = g1*<p1,u> + g2*<p2,u>
                gv = g1*<p1,v> + g2*<p2,v>
            i.e.
                |p1[0] p2[0]| |g1|   |gu|
                |p1[1] p2[1]|*|g2| = |gv|
        */
        det = p1[0]*p2[1]-p1[1]*p2[0];
        GW_ASSERT( det!=0 );
        GW_Float g1 = 1/det * ( p2[1]*gu - p2[0]*gv );
        GW_Float g2 = 1/det * (-p1[1]*gu + p1[0]*gv );

        /* now compute the gradient in world coords */
        GW_Vector3D LocGrad = e1*g1 + e2*g2;

        GW_TriangularInterpolation_ABC* pInterp = pFace->GetTriangularInterpolation();
        if( pInterp==NULL )
        {
            pInterp = new GW_TriangularInterpolation_Cubic;
            pFace->SetTriangularInterpolation( *pInterp );
        }
        GW_ASSERT( pInterp->GetType()==kCubicTriangulationInterpolation );

        ((GW_TriangularInterpolation_Cubic*) pInterp)->SetLocalGradient( LocGrad, *pFace, Vert );

        rCurAngle += rInnerAngle;
    }

}
Esempio n. 4
0
/*------------------------------------------------------------------------------*/
void GW_Vertex::ComputeCurvatureDirections( GW_Float rArea )
{
	GW_Vector3D CurEdge;
	GW_Vector3D CurEdgeNormalized;
	GW_Float rCurEdgeLength;
	GW_Float rCotan;
	GW_Vector3D TempEdge1, TempEdge2;
	GW_Vertex* pTempVert = NULL;
	GW_Float rDotP;

	/***********************************************************************************/
	/* compute the two curvature directions */
	/* (v1,v2) form a basis of the tangent plante */
	GW_Vector3D v1 = Normal_ ^ GW_Vector3D(0,0,1);
	GW_Float rNorm = v1.Norm();
	if( rNorm<GW_EPSILON )
	{
		/* orthogonalize using another direction */
		v1 = Normal_ ^ GW_Vector3D(0,1,0);
		rNorm = v1.Norm();
		GW_ASSERT( rNorm>GW_EPSILON );
	}
	v1 /= rNorm;
	GW_Vector3D v2 = Normal_ ^ v1;

	/* now we must find the curvature matrix entry by minimising a mean square problem 
	the 3 entry of the symetric curvature matrix in (v1,v2) basis are (a,b,c), stored in vector x.
	IMPORTANT : we must ensure a<c, so that eigenvalues are in correct order. */
	GW_Float a = 0, b = 0, c = 0;			// the vector (a,b,c) we are searching. We use a+c=2*MeanCurv so we don't take care of c.
	GW_Float D[2] = {0,0};					// the right side of the equation.
	GW_Float M00 = 0, M11 = 0, M01 = 0;		// the positive-definite matrix entries of the mean-square problem.
	GW_Float d1, d2;	// decomposition of current edge on (v1,v2) basis
	GW_Float w, k;		// current weight and current approximated directional curvature.

	/* now build the matrix by iterating around the vertex */
	for( GW_VertexIterator it = this->BeginVertexIterator(); it!=this->EndVertexIterator(); ++it )
	{
		GW_Vertex* pVert = *it;
		GW_ASSERT( pVert!=NULL );
		CurEdge = pVert->GetPosition() - this->GetPosition();
		rCurEdgeLength = CurEdge.Norm();
		CurEdgeNormalized = CurEdge/rCurEdgeLength;

		/* here we store the value of the sum of the cotan */
		rCotan = 0;

		/* compute projection onto v1,v2 basis */
		d1 = v1*CurEdge;
		d2 = v2*CurEdge;
		rNorm = sqrt(d1*d1 + d2*d2);
		if( rNorm>0 )
		{
			d1 /= rNorm;
			d2 /= rNorm;
		}

		/* compute left angle */
		pTempVert = it.GetLeftVertex();
		if( pTempVert!=NULL )
		{
			TempEdge1 = this->GetPosition() -  pTempVert->GetPosition();
			TempEdge2 = pVert->GetPosition() - pTempVert->GetPosition();
			TempEdge1.Normalize();
			TempEdge2.Normalize();
			/* we use tan(acos(x))=sqrt(1-x^2)/x */
			rDotP = TempEdge1*TempEdge2;
			if( rDotP!=1 && rDotP!=-1 )
				rCotan += rDotP/sqrt(1-rDotP*rDotP);
		}

		/* compute right angle AND Gaussian contribution */
		pTempVert = it.GetRightVertex();
		if( pTempVert!=NULL )
		{
			TempEdge1 = this->GetPosition() -  pTempVert->GetPosition();
			TempEdge2 = pVert->GetPosition() - pTempVert->GetPosition();
			TempEdge1.Normalize();
			TempEdge2.Normalize();
			/* we use tan(acos(x))=sqrt(1-x^2)/x */
			rDotP = TempEdge1*TempEdge2;
			if( rDotP!=1 && rDotP!=-1 )
				rCotan += (GW_Float) rDotP/sqrt(1-rDotP*rDotP);

		}
		GW_CHECK_MATHSBIT();

		/*compute weight */
		w = 0.125/rArea*rCotan*rCurEdgeLength*rCurEdgeLength;
		/* compute directional curvature */
		k = -2*(CurEdge*Normal_)/(rCurEdgeLength*rCurEdgeLength);
		k = k-(rMinCurv_+rMaxCurv_);	// modified by the fact that we use a+c=2*MeanCurv
		/* add contribution to M matrix and D vector*/ 
		M00		+=   w*(d1*d1-d2*d2)*(d1*d1-d2*d2);
		M11		+= 4*w*d1*d1*d2*d2;
		M01		+= 2*w*(d1*d1-d2*d2)*d1*d2;
		D[0]    +=   w*k*( d1*d1-d2*d2);
		D[1]    += 2*w*k*d1*d2;
	}
	GW_CHECK_MATHSBIT();

	/* solve the system */
	GW_Float rDet = M00*M11 - M01*M01;
	if( rDet!=0 )
	{
		/*	The inverse matrix is :      | M11 -M01|
								1/rDet * |-M01  M00| */
		a = 1/rDet * ( M11*D[0] - M01*D[1] );
		b = 1/rDet * (-M01*D[0] + M00*D[1] );
	}

	c = (rMinCurv_+rMaxCurv_) - a;
	// GW_ORDER(a,c);

	/* compute the direction via Givens rotations */
	GW_Float rTheta;
	if( GW_ABS(c-a) < GW_EPSILON )
	{
		if( b==0 )
			rTheta = 0;
		else
			rTheta = GW_HALFPI;
	}
	else
	{
		rTheta = (GW_Float) 2.0f*b/(c-a);
		rTheta = (GW_Float) 0.5f*atan(rTheta);
	}

	GW_CHECK_MATHSBIT();

	CurvDirMin_ = v1*cos(rTheta) - v2*sin(rTheta);
	CurvDirMax_ = v1*sin(rTheta) + v2*cos(rTheta);

	GW_Float vp1 = 0, vp2 = 0;
	if( rTheta!=0 )
	{
		GW_Float r1 = a*cos(rTheta) - b*sin(rTheta);
		GW_Float r2 = b*cos(rTheta) - c*sin(rTheta);
		r1 =(GW_Float)  r1/cos(rTheta);
		r2 = (GW_Float) -r2/sin(rTheta);
		vp1 = r1;
//		GW_ASSERT( GW_ABS(r1-r2)<0.001*GW_ABS(r1) );

		r1 = (GW_Float) a*sin(rTheta) + b*cos(rTheta);
		r2 = (GW_Float) b*sin(rTheta) + c*cos(rTheta);
		r1 = (GW_Float) r1/sin(rTheta);
		r2 = (GW_Float) r2/cos(rTheta);
		vp2 = r2;
//		GW_ASSERT( GW_ABS(r1-r2)<0.001*GW_ABS(r1) );
	}

	if( vp1>vp2 )
	{
		GW_Vector3D vtemp = CurvDirMin_;
		CurvDirMin_ = CurvDirMax_;
		CurvDirMax_ = vtemp;
	}
}
Esempio n. 5
0
/*------------------------------------------------------------------------------*/
void GW_Vertex::ComputeNormalAndCurvature( GW_Float& rArea )
{
	GW_Vector3D CurEdge;
	GW_Vector3D CurEdgeNormalized;
	GW_Float rCurEdgeLength;
	GW_Float rCotan;
	GW_Vector3D TempEdge1, TempEdge2;
	GW_Float rTempEdge1Length, rTempEdge2Length;
	GW_Float rAngle, rInnerAngle;
	GW_Vertex* pTempVert = NULL;
	GW_Float rDotP;

	Normal_.SetZero();
	rArea = 0;
	GW_Float rGaussianCurv = 0;

	for( GW_VertexIterator it = this->BeginVertexIterator(); it!=this->EndVertexIterator(); ++it )
	{
		GW_Vertex* pVert = *it;
		GW_ASSERT( pVert!=NULL );
		CurEdge = pVert->GetPosition() - this->GetPosition();
		rCurEdgeLength = CurEdge.Norm();
		CurEdgeNormalized = CurEdge/rCurEdgeLength;

		/* here we store the value of the sum of the cotan */
		rCotan = 0;

		/* compute left angle */
		pTempVert = it.GetLeftVertex();
		if( pTempVert!=NULL )
		{
			TempEdge1 = this->GetPosition() -  pTempVert->GetPosition();
			TempEdge2 = pVert->GetPosition() - pTempVert->GetPosition();

			TempEdge1.Normalize();
			TempEdge2.Normalize();
			/* we use tan(acos(x))=sqrt(1-x^2)/x */
			rDotP = TempEdge1*TempEdge2;
			if( rDotP!=1 && rDotP!=-1 )
				rCotan += (GW_Float) rDotP/((GW_Float) sqrt(1-rDotP*rDotP));
		}

		/* compute right angle AND Gaussian contribution */
		pTempVert = it.GetRightVertex();
		if( pTempVert!=NULL )
		{
			TempEdge1 = this->GetPosition() -  pTempVert->GetPosition();
			TempEdge2 = pVert->GetPosition() - pTempVert->GetPosition();
			rTempEdge1Length = TempEdge1.Norm();
			rTempEdge2Length = TempEdge2.Norm();
			TempEdge1 /= rTempEdge1Length;
			TempEdge2 /= rTempEdge2Length;
			rAngle      = (GW_Float) acos( -(TempEdge1 * CurEdgeNormalized) );
			/* we use tan(acos(x))=sqrt(1-x^2)/x */
			rDotP = TempEdge1*TempEdge2;
			rInnerAngle = (GW_Float) acos( rDotP  );
			if( rDotP!=1 && rDotP!=-1 )
				rCotan += rDotP/((GW_Float) sqrt(1-rDotP*rDotP));

			rGaussianCurv += rAngle;

			/* compute the contribution to area, testing for special obtuse angle */
			if(	   rAngle<GW_HALFPI							// condition on 1st angle
				&& rInnerAngle<GW_HALFPI					// condition on 2nd angle
				&& (GW_PI-rAngle-rInnerAngle)<GW_HALFPI )	// condition on 3rd angle
			{
				/* non-obtuse : 1/8*( |PR|²cot(Q)+|PQ|²cot(R) ) where P=this, Q=pVert, R=pTempVert   */
				rArea += ( rCurEdgeLength*rCurEdgeLength*rDotP/sqrt(1-rDotP*rDotP)
					+ rTempEdge1Length*rTempEdge1Length/tan(GW_PI-rAngle-rInnerAngle) )*0.125;
			}
			else if( rAngle>=GW_HALFPI )
			{
				/* obtuse at the central vertex : 0.5*area(T) */
				rArea += 0.25*rCurEdgeLength*rTempEdge1Length* ~(CurEdgeNormalized^TempEdge1);
			}
			else
			{
				/* obtuse at one of side vertex */
				rArea += 0.125*rCurEdgeLength*rTempEdge1Length* ~(CurEdgeNormalized^TempEdge1);
			}
		}
		GW_CHECK_MATHSBIT();

		/* add the contribution to Normal */
		Normal_ -= CurEdge*rCotan;
	}
	GW_CHECK_MATHSBIT();

	GW_ASSERT( rArea!=0 );	// remove this !

	/* the Gaussian curv */
	rGaussianCurv = (GW_TWOPI - rGaussianCurv)/rArea;
	/* compute Normal and mean curv */
	Normal_ /= 4.0*rArea;
	GW_Float rMeanCurv = Normal_.Norm();
	if( GW_ABS(rMeanCurv)>GW_EPSILON )
	{
		GW_Vector3D Normal = Normal_/rMeanCurv;
		/* see if we need to flip the normal */
		this->BuildRawNormal();
		if( Normal*Normal_<0 )
			Normal_ = -Normal;
		else
			Normal_ = Normal;
	}
	else
	{
		/* we must use another method to compute normal */
		this->BuildRawNormal();
	}

	GW_Vertex::rTotalArea_ += rArea;

	/* compute the two curv values */
	GW_Float rDelta = rMeanCurv*rMeanCurv - rGaussianCurv;
	if( rDelta<0 )
		rDelta = 0;
	rDelta = sqrt(rDelta);
	rMinCurv_ = rMeanCurv - rDelta;
	rMaxCurv_ = rMeanCurv + rDelta;
}