void ASParNewGeneration::compute_new_size() { GenCollectedHeap* gch = GenCollectedHeap::heap(); assert(gch->kind() == CollectedHeap::GenCollectedHeap, "not a CMS generational heap"); CMSAdaptiveSizePolicy* size_policy = (CMSAdaptiveSizePolicy*)gch->gen_policy()->size_policy(); assert(size_policy->is_gc_cms_adaptive_size_policy(), "Wrong type of size policy"); size_t survived = from()->used(); if (!survivor_overflow()) { // Keep running averages on how much survived size_policy->avg_survived()->sample(survived); } else { size_t promoted = (size_t) next_gen()->gc_stats()->avg_promoted()->last_sample(); assert(promoted < gch->capacity(), "Conversion problem?"); size_t survived_guess = survived + promoted; size_policy->avg_survived()->sample(survived_guess); } size_t survivor_limit = max_survivor_size(); _tenuring_threshold = size_policy->compute_survivor_space_size_and_threshold( _survivor_overflow, _tenuring_threshold, survivor_limit); size_policy->avg_young_live()->sample(used()); size_policy->avg_eden_live()->sample(eden()->used()); size_policy->compute_young_generation_free_space(eden()->capacity(), max_gen_size()); resize(size_policy->calculated_eden_size_in_bytes(), size_policy->calculated_survivor_size_in_bytes()); if (UsePerfData) { CMSGCAdaptivePolicyCounters* counters = (CMSGCAdaptivePolicyCounters*) gch->collector_policy()->counters(); assert(counters->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind, "Wrong kind of counters"); counters->update_tenuring_threshold(_tenuring_threshold); counters->update_survivor_overflowed(_survivor_overflow); counters->update_young_capacity(capacity()); } }
void ASParNewGeneration::resize_spaces(size_t requested_eden_size, size_t requested_survivor_size) { assert(UseAdaptiveSizePolicy, "sanity check"); assert(requested_eden_size > 0 && requested_survivor_size > 0, "just checking"); CollectedHeap* heap = Universe::heap(); assert(heap->kind() == CollectedHeap::GenCollectedHeap, "Sanity"); // We require eden and to space to be empty if ((!eden()->is_empty()) || (!to()->is_empty())) { return; } size_t cur_eden_size = eden()->capacity(); if (PrintAdaptiveSizePolicy && Verbose) { gclog_or_tty->print_cr("ASParNew::resize_spaces(requested_eden_size: " SIZE_FORMAT ", requested_survivor_size: " SIZE_FORMAT ")", requested_eden_size, requested_survivor_size); gclog_or_tty->print_cr(" eden: [" PTR_FORMAT ".." PTR_FORMAT ") " SIZE_FORMAT, eden()->bottom(), eden()->end(), pointer_delta(eden()->end(), eden()->bottom(), sizeof(char))); gclog_or_tty->print_cr(" from: [" PTR_FORMAT ".." PTR_FORMAT ") " SIZE_FORMAT, from()->bottom(), from()->end(), pointer_delta(from()->end(), from()->bottom(), sizeof(char))); gclog_or_tty->print_cr(" to: [" PTR_FORMAT ".." PTR_FORMAT ") " SIZE_FORMAT, to()->bottom(), to()->end(), pointer_delta( to()->end(), to()->bottom(), sizeof(char))); } // There's nothing to do if the new sizes are the same as the current if (requested_survivor_size == to()->capacity() && requested_survivor_size == from()->capacity() && requested_eden_size == eden()->capacity()) { if (PrintAdaptiveSizePolicy && Verbose) { gclog_or_tty->print_cr(" capacities are the right sizes, returning"); } return; } char* eden_start = (char*)eden()->bottom(); char* eden_end = (char*)eden()->end(); char* from_start = (char*)from()->bottom(); char* from_end = (char*)from()->end(); char* to_start = (char*)to()->bottom(); char* to_end = (char*)to()->end(); const size_t alignment = os::vm_page_size(); const bool maintain_minimum = (requested_eden_size + 2 * requested_survivor_size) <= min_gen_size(); // Check whether from space is below to space if (from_start < to_start) { // Eden, from, to if (PrintAdaptiveSizePolicy && Verbose) { gclog_or_tty->print_cr(" Eden, from, to:"); } // Set eden // "requested_eden_size" is a goal for the size of eden // and may not be attainable. "eden_size" below is // calculated based on the location of from-space and // the goal for the size of eden. from-space is // fixed in place because it contains live data. // The calculation is done this way to avoid 32bit // overflow (i.e., eden_start + requested_eden_size // may too large for representation in 32bits). size_t eden_size; if (maintain_minimum) { // Only make eden larger than the requested size if // the minimum size of the generation has to be maintained. // This could be done in general but policy at a higher // level is determining a requested size for eden and that // should be honored unless there is a fundamental reason. eden_size = pointer_delta(from_start, eden_start, sizeof(char)); } else { eden_size = MIN2(requested_eden_size, pointer_delta(from_start, eden_start, sizeof(char))); } eden_size = align_size_down(eden_size, alignment); eden_end = eden_start + eden_size; assert(eden_end >= eden_start, "addition overflowed") // To may resize into from space as long as it is clear of live data. // From space must remain page aligned, though, so we need to do some // extra calculations. // First calculate an optimal to-space to_end = (char*)virtual_space()->high(); to_start = (char*)pointer_delta(to_end, (char*)requested_survivor_size, sizeof(char)); // Does the optimal to-space overlap from-space? if (to_start < (char*)from()->end()) { // Calculate the minimum offset possible for from_end size_t from_size = pointer_delta(from()->top(), from_start, sizeof(char)); // Should we be in this method if from_space is empty? Why not the set_space method? FIX ME! if (from_size == 0) { from_size = alignment; } else { from_size = align_size_up(from_size, alignment); } from_end = from_start + from_size; assert(from_end > from_start, "addition overflow or from_size problem"); guarantee(from_end <= (char*)from()->end(), "from_end moved to the right"); // Now update to_start with the new from_end to_start = MAX2(from_end, to_start); } else { // If shrinking, move to-space down to abut the end of from-space // so that shrinking will move to-space down. If not shrinking // to-space is moving up to allow for growth on the next expansion. if (requested_eden_size <= cur_eden_size) { to_start = from_end; if (to_start + requested_survivor_size > to_start) { to_end = to_start + requested_survivor_size; } } // else leave to_end pointing to the high end of the virtual space. } guarantee(to_start != to_end, "to space is zero sized"); if (PrintAdaptiveSizePolicy && Verbose) { gclog_or_tty->print_cr(" [eden_start .. eden_end): " "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT, eden_start, eden_end, pointer_delta(eden_end, eden_start, sizeof(char))); gclog_or_tty->print_cr(" [from_start .. from_end): " "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT, from_start, from_end, pointer_delta(from_end, from_start, sizeof(char))); gclog_or_tty->print_cr(" [ to_start .. to_end): " "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT, to_start, to_end, pointer_delta( to_end, to_start, sizeof(char))); } } else { // Eden, to, from if (PrintAdaptiveSizePolicy && Verbose) { gclog_or_tty->print_cr(" Eden, to, from:"); } // Calculate the to-space boundaries based on // the start of from-space. to_end = from_start; to_start = (char*)pointer_delta(from_start, (char*)requested_survivor_size, sizeof(char)); // Calculate the ideal eden boundaries. // eden_end is already at the bottom of the generation assert(eden_start == virtual_space()->low(), "Eden is not starting at the low end of the virtual space"); if (eden_start + requested_eden_size >= eden_start) { eden_end = eden_start + requested_eden_size; } else { eden_end = to_start; } // Does eden intrude into to-space? to-space // gets priority but eden is not allowed to shrink // to 0. if (eden_end > to_start) { eden_end = to_start; } // Don't let eden shrink down to 0 or less. eden_end = MAX2(eden_end, eden_start + alignment); assert(eden_start + alignment >= eden_start, "Overflow"); size_t eden_size; if (maintain_minimum) { // Use all the space available. eden_end = MAX2(eden_end, to_start); eden_size = pointer_delta(eden_end, eden_start, sizeof(char)); eden_size = MIN2(eden_size, cur_eden_size); } else { eden_size = pointer_delta(eden_end, eden_start, sizeof(char)); } eden_size = align_size_down(eden_size, alignment); assert(maintain_minimum || eden_size <= requested_eden_size, "Eden size is too large"); assert(eden_size >= alignment, "Eden size is too small"); eden_end = eden_start + eden_size; // Move to-space down to eden. if (requested_eden_size < cur_eden_size) { to_start = eden_end; if (to_start + requested_survivor_size > to_start) { to_end = MIN2(from_start, to_start + requested_survivor_size); } else { to_end = from_start; } } // eden_end may have moved so again make sure // the to-space and eden don't overlap. to_start = MAX2(eden_end, to_start); // from-space size_t from_used = from()->used(); if (requested_survivor_size > from_used) { if (from_start + requested_survivor_size >= from_start) { from_end = from_start + requested_survivor_size; } if (from_end > virtual_space()->high()) { from_end = virtual_space()->high(); } } assert(to_start >= eden_end, "to-space should be above eden"); if (PrintAdaptiveSizePolicy && Verbose) { gclog_or_tty->print_cr(" [eden_start .. eden_end): " "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT, eden_start, eden_end, pointer_delta(eden_end, eden_start, sizeof(char))); gclog_or_tty->print_cr(" [ to_start .. to_end): " "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT, to_start, to_end, pointer_delta( to_end, to_start, sizeof(char))); gclog_or_tty->print_cr(" [from_start .. from_end): " "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT, from_start, from_end, pointer_delta(from_end, from_start, sizeof(char))); } } guarantee((HeapWord*)from_start <= from()->bottom(), "from start moved to the right"); guarantee((HeapWord*)from_end >= from()->top(), "from end moved into live data"); assert(is_object_aligned((intptr_t)eden_start), "checking alignment"); assert(is_object_aligned((intptr_t)from_start), "checking alignment"); assert(is_object_aligned((intptr_t)to_start), "checking alignment"); MemRegion edenMR((HeapWord*)eden_start, (HeapWord*)eden_end); MemRegion toMR ((HeapWord*)to_start, (HeapWord*)to_end); MemRegion fromMR((HeapWord*)from_start, (HeapWord*)from_end); // Let's make sure the call to initialize doesn't reset "top"! HeapWord* old_from_top = from()->top(); // For PrintAdaptiveSizePolicy block below size_t old_from = from()->capacity(); size_t old_to = to()->capacity(); // If not clearing the spaces, do some checking to verify that // the spaces are already mangled. // Must check mangling before the spaces are reshaped. Otherwise, // the bottom or end of one space may have moved into another // a failure of the check may not correctly indicate which space // is not properly mangled. if (ZapUnusedHeapArea) { HeapWord* limit = (HeapWord*) virtual_space()->high(); eden()->check_mangled_unused_area(limit); from()->check_mangled_unused_area(limit); to()->check_mangled_unused_area(limit); } // The call to initialize NULL's the next compaction space eden()->initialize(edenMR, SpaceDecorator::Clear, SpaceDecorator::DontMangle); eden()->set_next_compaction_space(from()); to()->initialize(toMR , SpaceDecorator::Clear, SpaceDecorator::DontMangle); from()->initialize(fromMR, SpaceDecorator::DontClear, SpaceDecorator::DontMangle); assert(from()->top() == old_from_top, "from top changed!"); if (PrintAdaptiveSizePolicy) { GenCollectedHeap* gch = GenCollectedHeap::heap(); assert(gch->kind() == CollectedHeap::GenCollectedHeap, "Sanity"); gclog_or_tty->print("AdaptiveSizePolicy::survivor space sizes: " "collection: %d " "(" SIZE_FORMAT ", " SIZE_FORMAT ") -> " "(" SIZE_FORMAT ", " SIZE_FORMAT ") ", gch->total_collections(), old_from, old_to, from()->capacity(), to()->capacity()); gclog_or_tty->cr(); } }