Esempio n. 1
0
void renewAttrs( Polyhedron & poly )
{
    // assign IDs to vertices
    for ( Vertex_iterator vi = poly.vertices_begin(); vi != poly.vertices_end(); ++vi ) {
	vi->nCuts()	= 0;
    }

    // assign IDs to faces: the dual vertex and the dual coordinates-the center coordinates
    for ( Facet_iterator fi = poly.facets_begin(); fi != poly.facets_end(); ++fi ) {
	fi->piece()	= NO_INDEX;
	Vector3 sum( 0.0, 0.0, 0.0 );
	Halfedge_facet_circulator hfc = fi->facet_begin();
	do {
	    sum = sum + ( hfc->vertex()->point() - CGAL::ORIGIN );
	} while ( ++hfc != fi->facet_begin() );
	sum = sum / ( double )CGAL::circulator_size( hfc );
	fi->center() = CGAL::ORIGIN + sum;
    }

    // assign the same IDs to the identical/ opposite halfedges
    for ( Halfedge_iterator hi = poly.halfedges_begin(); hi != poly.halfedges_end(); ++hi ) {
	hi->label()		= DEFAULT_LABEL;
	hi->match()		= DEFAULT_LABEL;
	hi->cycle()		= NO_INDEX;
	hi->connect()		= true;
	hi->visit()		= false;
	hi->path()		= NO_INDEX;
	hi->orient()		= true;
	// We individually handle hi->fixed
    }
}
Esempio n. 2
0
int main()
{
    std::vector<Point_3> points;

    points.push_back(Point_3(2.0f, 3.535533905932738f, 3.535533905932737f));
    points.push_back(Point_3(4.0f, 2.0f, 0.0f));
    points.push_back(Point_3(0.0f, 2.0f, 0.0f));
    points.push_back(Point_3(1.0f, 0.0f, 0.0f));
    points.push_back(Point_3(4.0f, 1.414213562373095f, 1.414213562373095f));
    points.push_back(Point_3(0.0f, 1.414213562373095f, 1.414213562373095f));
    points.push_back(Point_3(3.0f, 0.0f, 0.0f));
    points.push_back(Point_3(2.0f, 5.0f, 0.0f));

    Polyhedron P;

    CGAL::convex_hull_3(points.begin(), points.end(), P);

    std::cout << "- Number of vertices  = " << P.size_of_vertices()    << std::endl;
    std::cout << "- Number of edges     = " << P.size_of_halfedges()/2 << std::endl;
    std::cout << "- Number of faces     = " << P.size_of_facets()      << std::endl;

    for ( Facet_iterator i = P.facets_begin(); i != P.facets_end(); ++i)
    {
        Halfedge_facet_circulator j = i->facet_begin();
        CGAL_assertion( CGAL::circulator_size(j) >= 3);
        std::cout << CGAL::circulator_size(j) << ' ';
        do{
            //std::cout << ' ' << std::distance(P.vertices_begin(), j->vertex());
            std::cout << " (" << j->vertex()->point().x() << ' ' << j->vertex()->point().y() << ' ' << j->vertex()->point().z() << ')' << ", ";
        } while ( ++j != i->facet_begin());

        std::cout << std::endl;
    }
    return 0;
}
Esempio n. 3
0
//------------------------------------------------------------------------------
//	Initialize the dual center 
//------------------------------------------------------------------------------
void initAttrs( Polyhedron & poly )
{
    // assign IDs to vertices
    int vID = 0;
    for ( Vertex_iterator vi = poly.vertices_begin(); vi != poly.vertices_end(); ++vi ) {
	vi->id()	= vID++;
	vi->label()	= DEFAULT_LABEL;
	vi->nCuts()	= 0;
    }
    cerr << "Total number of vertices = " << vID << endl;

    // assign IDs to faces: the dual vertex and the dual coordinates-the center coordinates
    int fID = 0;
    for ( Facet_iterator fi = poly.facets_begin(); fi != poly.facets_end(); ++fi ) {
	fi->id()	= fID++;
	// fi->label()	= DEFAULT_LABEL;
	fi->piece()	= NO_INDEX;
	Vector3 sum( 0.0, 0.0, 0.0 );
	Halfedge_facet_circulator hfc = fi->facet_begin();
	do {
	    sum = sum + ( hfc->vertex()->point() - CGAL::ORIGIN );
	} while ( ++hfc != fi->facet_begin() );
	sum = sum / ( double )CGAL::circulator_size( hfc );
	fi->center() = CGAL::ORIGIN + sum;
	// cerr << " Barycenter No. " << fid-1 << " : " << bary[ fid-1 ] << endl;
    }
    cerr << "Total number of facets = " << fID << endl;

    // initialize the halfedge IDs
    for ( Halfedge_iterator hi = poly.halfedges_begin(); hi != poly.halfedges_end(); ++hi ) {
	hi->id() = NO_INDEX;
    }

    // assign the same IDs to the identical/ opposite halfedges
    int eID = 0;
    for ( Halfedge_iterator hi = poly.halfedges_begin(); hi != poly.halfedges_end(); ++hi ) {
	if ( hi->id() == NO_INDEX ) {
	    assert( hi->opposite()->id() == NO_INDEX );
	    hi->id() = eID;
	    hi->opposite()->id() = eID;
	    eID++;
	    hi->label()		= hi->opposite()->label()	= DEFAULT_LABEL;
	    hi->match()		= hi->opposite()->match()	= DEFAULT_LABEL;
	    hi->cycle()		= hi->opposite()->cycle()	= NO_INDEX;
	    hi->weight()	= hi->opposite()->weight()	= 0.0;
	    hi->connect()	= hi->opposite()->connect()	= true;
	    hi->visit()		= hi->opposite()->visit()	= false;
	    // We individually handle hi->fixed
	}
    }
    cerr << "Total number of edges = " << eID << endl;
}
Polyhedra generate_polyhedra_from_points(const std::vector<std::array<double,3> >& vertices)
{

    std::vector<Point_3> points(vertices.size());
    for(int i=0;i<(int)vertices.size();i++)
        points[i] = Point_3(vertices[i][0],vertices[i][1],vertices[i][2]);

    Polyhedron_3 poly;
    CGAL::convex_hull_3(points.begin(), points.end(), poly);
    std::transform(poly.facets_begin(), poly.facets_end(), poly.planes_begin(), Plane_from_facet());

    for(Halfedge_iterator half=poly.halfedges_begin();half!=poly.halfedges_end();++half)
    {
        Point_3 v1 = half->vertex()->point();
        Point_3 v2 = half->next()->vertex()->point();
        Point_3 v3 = half->next()->next()->vertex()->point();
        Point_3 v4 = half->opposite()->vertex()->point();
        Point_3 v5 = half->opposite()->next()->vertex()->point();
        Point_3 v6 = half->opposite()->next()->next()->vertex()->point();

        if(coplanar_handmade(v1,v2,v3,v4)&&coplanar_handmade(v1,v2,v3,v5)&&coplanar_handmade(v1,v2,v3,v6)&&
                    coplanar_handmade(v1,v2,v4,v5)&&coplanar_handmade(v1,v2,v4,v6)&&coplanar_handmade(v1,v2,v5,v6)&&
                    coplanar_handmade(v1,v3,v4,v5)&&coplanar_handmade(v1,v3,v4,v6)&&coplanar_handmade(v1,v4,v5,v6)&&
                    coplanar_handmade(v2,v3,v4,v5)&&coplanar_handmade(v2,v3,v4,v6)&&coplanar_handmade(v2,v3,v5,v6)&&
                    coplanar_handmade(v2,v4,v5,v6)&&coplanar_handmade(v1,v3,v5,v6)&&coplanar_handmade(v3,v4,v5,v6))
        {
            poly.join_facet(half);
            half=poly.halfedges_begin();
        }
    }

    int cur = 0;
    for(auto it=poly.points_begin(); it!=poly.points_end(); it++, cur++)
            points[cur] = *it;

    cur = 0;
    std::vector<std::vector<int> > faces;
    for(Facet_iterator i=poly.facets_begin(); i!=poly.facets_end(); i++)
    {
        faces.push_back(std::vector<int>());
        Halfedge_facet_circulator j = i->facet_begin();
        do
        {faces[cur].push_back(std::distance(poly.vertices_begin(), j->vertex()));} while (++j != i->facet_begin());
        cur++;
    }

    return Polyhedra{points,faces};
}
Esempio n. 5
0
 int main(int argc, const char **argv )
 {
   std::vector<Point> points;
   CGAL::Random_points_on_sphere_3<Point> g;

   size_t N = 0;
   if (argc > 1)
     N = atof(argv[1]);
   N = std::max(size_t(100), N);

   for (size_t i = 0; i < N; ++i)
     points.push_back(rescale(*g++));

   for (size_t n = 0; n < 100; ++n)
     {
       std::cerr << "step " << n << ":\n\t";
       lloyd_step(points);
     }

   Polyhedron P;
   CGAL::convex_hull_3(points.begin(), points.end(), P);

   CGAL::set_ascii_mode( std::cout);
   std::cout << "OFF" << std::endl << P.size_of_vertices() << ' '
	     << P.size_of_facets() << " 0" << std::endl;
   std::copy( P.points_begin(), P.points_end(),
	      std::ostream_iterator<Point>( std::cout, "\n"));
   for (  Facet_iterator i = P.facets_begin(); i != P.facets_end(); ++i) {
     Halfedge_facet_circulator j = i->facet_begin();
     // Facets in polyhedral surfaces are at least triangles.
     CGAL_assertion( CGAL::circulator_size(j) >= 3);
     std::cout << CGAL::circulator_size(j) << ' ';
     do {
       std::cout << ' ' << std::distance(P.vertices_begin(), j->vertex());
     } while ( ++j != i->facet_begin());
     std::cout << std::endl;
   }

   std::ofstream os ("test.cloud");
   std::copy(points.begin(), points.end(),
	     std::ostream_iterator<Point>(os, "\n"));
}
Esempio n. 6
0
File: CGsp.cpp Progetto: ASDen/CGsp
int main() {

	
	//std::cout<<CGBench::BendBench::Run(CGBench::VMag::M1)<<std::endl;
	//CGBench::BenchLanuch(CGBench::VMag::M3,CGBench::VMag::M3);

	/*std::ofstream of("C:\\123.off");

	std::vector <Point_3> arr;
	arr.push_back(Point_3 (2,0,2));
	arr.push_back(Point_3 (6,0,3));
	arr.push_back(Point_3 (8,0,4));
	arr.push_back(Point_3 (3,0,5));
	arr.push_back(Point_3 (5,0,6));
	arr.push_back(Point_3 (8,0,7));

	arr.push_back(Point_3 (0,1.75,8));
	arr.push_back(Point_3 (0,1.50,8));
	arr.push_back(Point_3 (0,1.25,8));

	arr.push_back(Point_3 (0,1,8));
	arr.push_back(Point_3 (0,1,7));
	arr.push_back(Point_3 (0,1,6));
	arr.push_back(Point_3 (0,1,5));
	arr.push_back(Point_3 (0,1,4));
	arr.push_back(Point_3 (0,1,3));

	arr.push_back(Point_3 (0,1.25,3));
	arr.push_back(Point_3 (0,1.50,3));
	arr.push_back(Point_3 (0,1.75,3));

	
	Point_3* Center = new Point_3(0,0,0);*/

	//Arc_2 s(30,270,30,true);
	//Circle_2 s(4,20);
	//Ellipse_2 s(6,4,30);
	//Plane_3 s(30,30,10,10);
	//Rectangle_2 s(20,10);

	//Box_3 s(20,20,20,15,15,15);
	//Capsule_3 s(30,200,10,10);
	//ChamferCyl_3 s(60,100,30,10,5,5,15);
	//Cone_3 s(2,5,10,3,3,3);
	//Cylinder_3 s(3,20,20,9,30);
	//Lathe_3 s(arr,Center,Z_ax,20,360);
	//Pyramid_3 s(100,200,200,4,4,4);
	//Sphere_3 s(20,50);
	//Spindle_3 s(10,30,20,10,5,15);
	//Spring_3 s(20,2.5,200,10,10,40);
	//Torus_3 s(20,5,0,0,30,40);
	//Tube_3 s(14,13,15,20,20,10);

	//Polyhedron P;
	//P = s.Draw();
	//Traingulate trg;
	//P=s.Draw();
	//std::transform(P.facets_begin(), P.facets_end(), P.planes_begin(), Normal_vector());
	/*Eigen::Transform3d T;
	Eigen::Vector3d Original(0,0,10);
	T.setIdentity();
	T.pretranslate (-Original);
	trg.ApplyTransformToPolyhedron(P,T);*/


	//Traingulate tr;
	//tr.Do(P);

	//Bevel Be(400,-4,1.25);
	//Be.Do(P);

	//Bridge Br(18,20);
	//Br.Do(P);

	//Extrude Ex(45,15);
	//Ex.Do(P);
	
	//Outline Ou(45,1.5);
	//Ou.Do(P);


	//Bend Ben(90,s.Center,Y_ax,false,20,-20);
	//Ben.Do(P);

	//Bulge Bu(40,s.Center,Z_ax,BRadial,false,45,-45);
	//Bu.Do(P);

	//Cylindrical_Wave CylWa(2,8,12,s.Center,Z_ax);
	//CylWa.Do(P);

	//Linear_Wave LiWaX(1,10,0,s.Center,Z_ax,X_ax);
	//LiWaX.Do(P);
	//Linear_Wave LiWaY(2,10,0,s.Center,Z_ax,Y_ax);
	//LiWaY.Do(P);

	/*ChamferCyl_3 n(1,50,5,10,10,10,40);
	Spindle_3 p(5,30,5,10,20,40);
	Polyhedron P;
	Polyhedron E;
	E = p.Draw();
	P = n.Draw();
	Morph Mor(E,50);
	Mor.Do(P);*/

	//Noise No(5,0.3,0,s.Center,Z_ax);
	//No.Do(P);

	//Skew Sk(30,s.Center,Z_ax,false,20,-20);
	//Sk.Do(P);

	//Smooth Sm(1);
	//Sm.Do(P);

	//Spherify Sph(50);
	//Sph.Do(P);

	//Squeeze Sq(-30,s.Center,Z_ax,false,10,0);
	//Sq.Do(P);

	//Stretch St(-20,s.Center,Z_ax,true,50,-50);
	//St.Do(P);
	
	//Taper Ta(3,s.Center,X_ax,false,20,-20);
	//Ta.Do(P);

	//Twist Tw(270,s.Center,Z_ax,true,-5,15);
	//Tw.Do(P);

	/*Box_3 B(20, 30, 60, 20, 30, 30); 
	Polyhedron P = B.Draw();
	Twist Tw1(270, B.Center, Z_ax, true, 30, 10);
	Twist Tw2(-270, B.Center, Z_ax, true, -10, -30);
	Stretch St(30, B.Center, Z_ax, true, 20,-20);
	Squeeze Sq(15, B.Center, Z_ax);
	Tw1.Do(P);
	Tw2.Do(P);
	Sq.Do(P);
	St.Do(P);*/

	std::ofstream of("C:\\123.off");

	Box_3 B(20, 30, 60, 20, 30, 30); 
Polyhedron P = B.Draw();
Twist Tw1(270, B.Center, Z_ax, true, 30, 10);
Twist Tw2(-270, B.Center, Z_ax, true, -10, -30);
Stretch St(30, B.Center, Z_ax, true, 20,-20);
Squeeze Sq(15, B.Center, Z_ax);
Tw1.Do(P);
Tw2.Do(P);
Sq.Do(P);
St.Do(P);



	//// Write polyhedron in Object File Format (OFF).
	CGAL::set_ascii_mode( of );
	of << "OFF" << std::endl << P.size_of_vertices() << ' ' << P.size_of_facets() << " 0" << std::endl;
	std::copy( P.points_begin(), P.points_end(), std::ostream_iterator<Point_3>( of, "\n"));

	for (  Facet_iterator i = P.facets_begin(); i != P.facets_end(); ++i) 
	{
		Halfedge_facet_circulator j = i->facet_begin();
		// Facets in polyhedral surfaces are at least triangles.
		CGAL_assertion( CGAL::circulator_size(j) >= 3);
		of << CGAL::circulator_size(j) << ' ';
		
		do 
		{
			of << ' ' << std::distance(P.vertices_begin(), j->vertex());
		} while ( ++j != i->facet_begin());
		
		of << std::endl;
	}

	/* Write polyhedron in (OBJ).
	CGAL::set_ascii_mode( oof );
	oof << "# " << P.size_of_vertices() << ' ' << std::endl <<"# "<< P.size_of_facets() << std::endl;
	oof<<"v ";
	std::copy( P.points_begin(), P.points_end(), std::ostream_iterator<Point_3>( oof, "\nv "));
	oof<<"_ _ _\n";
	for (  Facet_iterator i = P.facets_begin(); i != P.facets_end(); ++i)
	{
		Halfedge_facet_circulator j = i->facet_begin();
		// Facets in polyhedral surfaces are at least triangles.
		//CGAL_assertion( CGAL::circulator_size(j) >= 3);
       
		oof << 'f' << ' ';
       
		do
		{
			oof << ' ' << std::distance(P.vertices_begin(), j->vertex())+1;
		} while ( ++j != i->facet_begin());
       
		oof << std::endl;
	}
	*/

	return 0;
}
void simplifyMesh(TriangleMesh &src, TriangleMesh &dst){
	namespace SMS = CGAL::Surface_mesh_simplification; 

	Surface surface;
  PolyhedronBuilder<HalfedgeDS> builder(src.points, src.facets);
	surface.delegate(builder);


	// --- before mesh simplification, to maintain mesh quality high poisson surface reconstruction is applied ---


	// This is a stop predicate (defines when the algorithm terminates).
	// In this example, the simplification stops when the number of undirected edges
	// left in the surface drops below the specified number (1000) 
	// SMS::Count_stop_predicate<Surface> stop(3000);
   //SMS::Count_ratio_stop_predicate<Surface> stop(0.1);
	SMS::Count_stop_predicate<Surface> stop(100);	
  // This the actual call to the simplification algorithm.
  // The surface and stop conditions are mandatory arguments. 
  // The index maps are needed because the vertices and edges 
  // of this surface lack an "id()" field.
  int r = SMS::edge_collapse
             (surface
             ,stop
             ,CGAL::vertex_index_map(boost::get(CGAL::vertex_external_index, surface))
             .edge_index_map(boost::get(CGAL::edge_external_index, surface))
             .get_cost(CGAL::Surface_mesh_simplification::Edge_length_cost<Polyhedron>())
             .get_placement(CGAL::Surface_mesh_simplification::Midpoint_placement<Polyhedron>())
             //.get_cost(CGAL::Surface_mesh_simplification::LindstromTurk_cost<Polyhedron>())            
             //.get_placement(CGAL::Surface_mesh_simplification::LindstromTurk_placement<Polyhedron>())
             );
  std::cout << "\nFinished...\n" << r << " edges removed.\n"
           << (surface.size_of_halfedges()/2) << " final edges.\n" ;

	std::vector<Eigen::Vector3d> points;
	std::vector<std::vector<int> > faces;
	points.resize(surface.size_of_vertices());
	faces.resize(surface.size_of_facets());

	Polyhedron::Point_iterator pit;
	int index = 0;
	for(pit=surface.points_begin(); pit!=surface.points_end(); ++pit){
		points[index][0] = pit->x();
		points[index][1] = pit->y();
		points[index][2] = pit->z();				
		index ++;
	}
	index = 0;
	Polyhedron::Face_iterator fit;
	for(fit=surface.facets_begin(); fit!=surface.facets_end(); ++fit){
		std::vector<int > face(3);
		Halfedge_facet_circulator j = fit->facet_begin();
		int f_index = 0;
		do {
			face[f_index] = std::distance(surface.vertices_begin(), j->vertex());
			f_index++;
    } while ( ++j != fit->facet_begin());    

    faces[index] = face;
		index++;
	}

	dst.createFromFaceVertex(points, faces);
}
void PoissonSurfaceReconstruction::reconstruct(std::vector<Eigen::Vector3d> &points, std::vector<Eigen::Vector3d> &normals, TriangleMesh &mesh){

	assert(points.size() == normals.size());

  std::cout << "creating points with normal..." << std::endl;
  std::vector<Point_with_normal> points_with_normal;
  points_with_normal.resize((int)points.size());
  for(int i=0; i<(int)points.size(); i++){
    Vector vec(normals[i][0], normals[i][1], normals[i][2]);
    //Point_with_normal pwn(points[i][0], points[i][1], points[i][2], vec);
    //points_with_normal[i]  = pwn;
    points_with_normal[i] = Point_with_normal(points[i][0], points[i][1], points[i][2], vec);
  }

  std::cout << "constructing poisson reconstruction function..." << std::endl;
  Poisson_reconstruction_function function(points_with_normal.begin(), points_with_normal.end(),
                                           CGAL::make_normal_of_point_with_normal_pmap(PointList::value_type()));

  std::cout << "computing implicit function..." << std::endl;
  if( ! function.compute_implicit_function() ) {
  	std::cout << "compute implicit function is failure" << std::endl;
  	return;
  }
  	//return EXIT_FAILURE;

  // Computes average spacing
  std::cout << "compute average spacing..." << std::endl;
  FT average_spacing = CGAL::compute_average_spacing(points_with_normal.begin(), points_with_normal.end(),
                                                       6 /* knn = 1 ring */);
  // Gets one point inside the implicit surface
  // and computes implicit function bounding sphere radius.
  Point inner_point = function.get_inner_point();
  Sphere bsphere = function.bounding_sphere();
  FT radius = std::sqrt(bsphere.squared_radius());

  // Defines the implicit surface: requires defining a
  // conservative bounding sphere centered at inner point.
  FT sm_sphere_radius = 5.0 * radius;
  FT sm_dichotomy_error = distance_criteria*average_spacing/1000.0; // Dichotomy error must be << sm_distance
  //FT sm_dichotomy_error = distance_criteria*average_spacing/10.0; // Dichotomy error must be << sm_distance
  std::cout << "reconstructed surface" << std::endl;
  Surface_3 reconstructed_surface(function,
                    Sphere(inner_point,sm_sphere_radius*sm_sphere_radius),
                    sm_dichotomy_error/sm_sphere_radius);

  // Defines surface mesh generation criteria    
  CGAL::Surface_mesh_default_criteria_3<STr> criteria(angle_criteria,  // Min triangle angle (degrees)
                                                        radius_criteria*average_spacing,  // Max triangle size
                                                        distance_criteria*average_spacing); // Approximation error
  
  std::cout << "generating surface mesh..." << std::endl;
  // Generates surface mesh with manifold option
  STr tr; // 3D Delaunay triangulation for surface mesh generation
  C2t3 c2t3(tr); // 2D complex in 3D Delaunay triangulation
  CGAL::make_surface_mesh(c2t3,                                 // reconstructed mesh
                            reconstructed_surface,                              // implicit surface
                            criteria,                             // meshing criteria
                            CGAL::Manifold_tag());  // require manifold mesh

  if(tr.number_of_vertices() == 0){
  	std::cout << "surface mesh generation is failed" << std::endl;
  	return;
  }

  Polyhedron surface;
  CGAL::output_surface_facets_to_polyhedron(c2t3, surface);

  // convert CGAL::surface to TriangleMesh //
  std::cout << "converting CGA::surface to TriangleMesh..." << std::endl;
	std::vector<Eigen::Vector3d> pts;
	std::vector<std::vector<int> > faces;
	pts.resize(surface.size_of_vertices());
	faces.resize(surface.size_of_facets());

	Polyhedron::Point_iterator pit;
	int index = 0;
	for(pit=surface.points_begin(); pit!=surface.points_end(); ++pit){
		pts[index][0] = pit->x();
		pts[index][1] = pit->y();
		pts[index][2] = pit->z();				
		index ++;
	}
	index = 0;
	Polyhedron::Face_iterator fit;
	for(fit=surface.facets_begin(); fit!=surface.facets_end(); ++fit){
		std::vector<int > face(3);
		Halfedge_facet_circulator j = fit->facet_begin();
		int f_index = 0;
		do {
			face[f_index] = std::distance(surface.vertices_begin(), j->vertex());
			f_index++;
    } while ( ++j != fit->facet_begin());    

    faces[index] = face;
		index++;
	}

	mesh.createFromFaceVertex(pts, faces);  
}