int Potential::setCondWeight(INTDBLMAP& wt) { for(INTDBLMAP_ITER aIter=wt.begin();aIter!=wt.end();aIter++) { double aval=aIter->second; mbcondMean_Vect[aIter->first]=aval; } return 0; }
int PotentialManager::estimateAllMeanCov(bool random, INTDBLMAP& gMean, map<int,INTDBLMAP*>& gCovar,INTINTMAP& trainEvidSet) { int evidCnt=trainEvidSet.size(); //First get the mean and then the variance int dId=0; for(INTINTMAP_ITER eIter=trainEvidSet.begin();eIter!=trainEvidSet.end();eIter++) { EMAP* evidMap=NULL; if(random) { evidMap=evMgr->getRandomEvidenceAt(eIter->first); } else { evidMap=evMgr->getEvidenceAt(eIter->first); } for(EMAP_ITER vIter=evidMap->begin();vIter!=evidMap->end(); vIter++) { int vId=vIter->first; Evidence* evid=vIter->second; double val=evid->getEvidVal(); if(gMean.find(vId)==gMean.end()) { gMean[vId]=val; } else { gMean[vId]=gMean[vId]+val; } } dId++; } //Now estimate the mean for(INTDBLMAP_ITER idIter=gMean.begin();idIter!=gMean.end();idIter++) { idIter->second=idIter->second/(double) evidCnt; INTDBLMAP* vcov=new INTDBLMAP; gCovar[idIter->first]=vcov; } return 0; }
//Get the joint prob value for a particular configuration double Potential::getJointPotValueFor(INTDBLMAP& varConf) { string aKey; double pVal=0; Matrix* valMat=new Matrix(varSet.size(),1); for(INTDBLMAP_ITER idIter=varConf.begin();idIter!=varConf.end();idIter++) { int i=vIDMatIndMap[idIter->first]; valMat->setValue(idIter->second,i,0); } Matrix* meanDiff=valMat->subtractMatrix(mean); Matrix* diffT=meanDiff->transMatrix(); Matrix* p1=diffT->multiplyMatrix(inverse); Matrix* p2=p1->multiplyMatrix(meanDiff); double prod=p2->getValue(0,0); pVal=exp(-0.5*prod); pVal=pVal/normFactor; delete meanDiff; delete diffT; delete p1; delete p2; return pVal; }
int PotentialManager::estimateAllMeanCov(bool random, INTDBLMAP& gMean, map<int,INTDBLMAP*>& gCovar,INTINTMAP& trainEvidSet, const char* mFName, const char* sdFName,int leaveOutData) { ofstream mFile; ofstream sdFile; if(!random) { if((mFName!=NULL) && (sdFName!=NULL)) { mFile.open(mFName); sdFile.open(sdFName); } } int evidCnt=trainEvidSet.size(); if(leaveOutData!=-1) { evidCnt=evidCnt-1; } //First get the mean and then the variance int dId=0; for(INTINTMAP_ITER eIter=trainEvidSet.begin();eIter!=trainEvidSet.end();eIter++) { if(dId==leaveOutData) { dId++; continue; } EMAP* evidMap=NULL; if(random) { evidMap=evMgr->getRandomEvidenceAt(eIter->first); } else { evidMap=evMgr->getEvidenceAt(eIter->first); } for(EMAP_ITER vIter=evidMap->begin();vIter!=evidMap->end(); vIter++) { int vId=vIter->first; Evidence* evid=vIter->second; double val=evid->getEvidVal(); if(gMean.find(vId)==gMean.end()) { gMean[vId]=val; } else { gMean[vId]=gMean[vId]+val; } } dId++; } //Now estimate the mean for(INTDBLMAP_ITER idIter=gMean.begin();idIter!=gMean.end();idIter++) { if(idIter->first==176) { //cout <<"Stop here: Variable " << idIter->first << " mean " << idIter->second << endl; } idIter->second=idIter->second/(double) evidCnt; if(!random) { if(mFile.good()) { mFile<<idIter->first<<"\t" << idIter->second<< endl; } } } int covPair=0; //Now the variance for(INTINTMAP_ITER eIter=trainEvidSet.begin();eIter!=trainEvidSet.end();eIter++) { EMAP* evidMap=NULL; if(random) { evidMap=evMgr->getRandomEvidenceAt(eIter->first); } else { evidMap=evMgr->getEvidenceAt(eIter->first); } for(EMAP_ITER vIter=evidMap->begin();vIter!=evidMap->end(); vIter++) { int vId=vIter->first; Evidence* evid=vIter->second; double vval=evid->getEvidVal(); double vmean=gMean[vId]; INTDBLMAP* vcov=NULL; if(gCovar.find(vId)==gCovar.end()) { vcov=new INTDBLMAP; gCovar[vId]=vcov; } else { vcov=gCovar[vId]; } for(EMAP_ITER uIter=vIter;uIter!=evidMap->end();uIter++) { int uId=uIter->first; //Don't compute covariance of vId uId pairs that both are not in the restrictedNeighborSet, when //the restrictedNeighborSet is empty /* if((!random) && (vId!=uId) && (restrictedNeighborSet.size()>0)) { if((restrictedNeighborSet.find(vId)==restrictedNeighborSet.end()) && (restrictedNeighborSet.find(uId)==restrictedNeighborSet.end())) { continue; } }*/ Evidence* evid1=uIter->second; double uval=evid1->getEvidVal(); double umean=gMean[uId]; double diffprod=(vval-vmean)*(uval-umean); INTDBLMAP* ucov=NULL; if(gCovar.find(uId)==gCovar.end()) { ucov=new INTDBLMAP; gCovar[uId]=ucov; } else { ucov=gCovar[uId]; } if(vcov->find(uId)==vcov->end()) { covPair++; (*vcov)[uId]=diffprod; } else { (*vcov)[uId]=(*vcov)[uId]+diffprod; } if(uId!=vId) { if(ucov->find(vId)==ucov->end()) { (*ucov)[vId]=diffprod; } else { (*ucov)[vId]=(*ucov)[vId]+diffprod; } } } } } cout <<"Total covariance pairs estimated " << covPair << endl; //Now estimate the variance for(map<int,INTDBLMAP*>::iterator idIter=gCovar.begin();idIter!=gCovar.end();idIter++) { INTDBLMAP* var=idIter->second; for(INTDBLMAP_ITER vIter=var->begin();vIter!=var->end();vIter++) { if(vIter->first==idIter->first) { //vIter->second=2*vIter->second/((double)(gCovar.size()-1)); //vIter->second=2*vIter->second/((double)(evidCnt-1)); //vIter->second=(0.001+vIter->second)/((double)(evidCnt-1)); vIter->second=(vIter->second)/((double)(evidCnt-1)); double variance=vIter->second; if(idIter->first==176) { // cout <<"Stop here: Variable " << idIter->first << " variance " << idIter->second << endl; } } else { vIter->second=vIter->second/((double)(evidCnt-1)); //vIter->second=vIter->second/((double)(gCovar.size()-1)); //vIter->second=0; } if(!random) { if(sdFile.good()) { sdFile<<idIter->first<<"\t" << vIter->first <<"\t" << vIter->second << endl; } } } } if(!random) { if(mFile.good()) { mFile.close(); } if(sdFile.good()) { sdFile.close(); } } return 0; }