// public bool operator==(const IPAddress& addr1, const IPAddress& addr2) { if (addr1.family() == addr2.family()) { if (addr1.isV6()) { return (addr1.asV6() == addr2.asV6()); } else if (addr1.isV4()) { return (addr1.asV4() == addr2.asV4()); } else { CHECK_EQ(addr1.family(), AF_UNSPEC); // Two default initialized AF_UNSPEC addresses should be considered equal. // AF_UNSPEC is the only other value for which an IPAddress can be // created, in the default constructor case. return true; } } // addr1 is v4 mapped v6 address, addr2 is v4 if (addr1.isIPv4Mapped() && addr2.isV4()) { if (IPAddress::createIPv4(addr1) == addr2.asV4()) { return true; } } // addr2 is v4 mapped v6 address, addr1 is v4 if (addr2.isIPv4Mapped() && addr1.isV4()) { if (IPAddress::createIPv4(addr2) == addr1.asV4()) { return true; } } // we only compare IPv4 and IPv6 addresses return false; }
// public bool IPAddress::inSubnetWithMask(const IPAddress& subnet, ByteRange mask) const { auto mkByteArray4 = [&]() -> ByteArray4 { ByteArray4 ba{{0}}; std::memcpy(ba.data(), mask.begin(), std::min<size_t>(mask.size(), 4)); return ba; }; if (bitCount() == subnet.bitCount()) { if (isV4()) { return asV4().inSubnetWithMask(subnet.asV4(), mkByteArray4()); } else { ByteArray16 ba{{0}}; std::memcpy(ba.data(), mask.begin(), std::min<size_t>(mask.size(), 16)); return asV6().inSubnetWithMask(subnet.asV6(), ba); } } // an IPv4 address can never belong in a IPv6 subnet unless the IPv6 is a 6to4 // address and vice-versa if (isV6()) { const IPAddressV6& v6addr = asV6(); const IPAddressV4& v4subnet = subnet.asV4(); if (v6addr.is6To4()) { return v6addr.getIPv4For6To4().inSubnetWithMask(v4subnet, mkByteArray4()); } } else if (subnet.isV6()) { const IPAddressV6& v6subnet = subnet.asV6(); const IPAddressV4& v4addr = asV4(); if (v6subnet.is6To4()) { return v4addr.inSubnetWithMask(v6subnet.getIPv4For6To4(), mkByteArray4()); } } return false; }
// public bool IPAddress::inSubnet(const IPAddress& subnet, uint8_t cidr) const { if (bitCount() == subnet.bitCount()) { if (isV4()) { return asV4().inSubnet(subnet.asV4(), cidr); } else { return asV6().inSubnet(subnet.asV6(), cidr); } } // an IPv4 address can never belong in a IPv6 subnet unless the IPv6 is a 6to4 // address and vice-versa if (isV6()) { const IPAddressV6& v6addr = asV6(); const IPAddressV4& v4subnet = subnet.asV4(); if (v6addr.is6To4()) { return v6addr.getIPv4For6To4().inSubnet(v4subnet, cidr); } } else if (subnet.isV6()) { const IPAddressV6& v6subnet = subnet.asV6(); const IPAddressV4& v4addr = asV4(); if (v6subnet.is6To4()) { return v4addr.inSubnet(v6subnet.getIPv4For6To4(), cidr); } } return false; }
TEST(IPAddress, fromBinaryV4) { for (auto& tc : provideToLong) { SCOPED_TRACE(tc.first); union { uint8_t u8[4]; uint32_t u32; } data; data.u32 = Endian::big(tc.second); ByteRange bytes(data.u8, 4); auto fromBin = IPAddressV4::fromBinary(bytes); IPAddressV4 fromStr(tc.first); EXPECT_EQ(fromStr, fromBin); IPAddressV4 addr2("0.0.0.0"); addr2 = IPAddressV4::fromBinary(bytes); EXPECT_EQ(fromStr, addr2); IPAddress genericAddr = IPAddress::fromBinary(bytes); ASSERT_TRUE(genericAddr.isV4()); EXPECT_EQ(fromStr, genericAddr.asV4()); EXPECT_EQ(ByteRange(genericAddr.bytes(), genericAddr.byteCount()), bytes); } uint8_t data[20]; EXPECT_THROW(IPAddressV4::fromBinary(ByteRange(data, 3)), IPAddressFormatException); EXPECT_THROW(IPAddressV4::fromBinary(ByteRange(data, 16)), IPAddressFormatException); EXPECT_THROW(IPAddressV4::fromBinary(ByteRange(data, 20)), IPAddressFormatException); }
// public static IPAddressV6 IPAddress::createIPv6(const IPAddress& addr) { if (addr.isV6()) { return addr.asV6(); } else { return addr.asV4().createIPv6(); } }
// expects the cachesMutex_ to be held bool NeighborUpdater::flushEntryImpl(VlanID vlan, IPAddress ip) { if (ip.isV4()) { auto cache = getArpCacheInternal(vlan); return cache->flushEntryBlocking(ip.asV4()); } auto cache = getNdpCacheInternal(vlan); return cache->flushEntryBlocking(ip.asV6()); }
bool operator<(const IPAddress& addr1, const IPAddress& addr2) { if (addr1.family() == addr2.family()) { if (addr1.isV6()) { return (addr1.asV6() < addr2.asV6()); } else if (addr1.isV4()) { return (addr1.asV4() < addr2.asV4()); } else { CHECK_EQ(addr1.family(), AF_UNSPEC); // Two default initialized AF_UNSPEC addresses can not be less than each // other. AF_UNSPEC is the only other value for which an IPAddress can be // created, in the default constructor case. return false; } } if (addr1.isV6()) { // means addr2 is v4, convert it to a mapped v6 address and compare return addr1.asV6() < addr2.asV4().createIPv6(); } if (addr2.isV6()) { // means addr2 is v6, convert addr1 to v4 mapped and compare return addr1.asV4().createIPv6() < addr2.asV6(); } return false; }
TEST(IPAddress, InvalidAddressFamilyExceptions) { // asV4 { IPAddress addr; EXPECT_THROW(addr.asV4(), InvalidAddressFamilyException); } // asV6 { IPAddress addr; EXPECT_THROW(addr.asV6(), InvalidAddressFamilyException); } // sockaddr ctor { // setup sockaddr_in addr; addr.sin_family = AF_UNSPEC; EXPECT_THROW(IPAddress((sockaddr *)&addr), InvalidAddressFamilyException); } }