bool PFOperatorMaterialStatic::Proceed(IObject* pCont, 
									 PreciseTimeValue timeStart, 
									 PreciseTimeValue& timeEnd,
									 Object* pSystem,
									 INode* pNode,
									 INode* actionNode,
									 IPFIntegrator* integrator)
{
	if (pblock() == NULL) return false;
	int assignID = pblock()->GetInt(kMaterialStatic_assignID, timeEnd);
	if (assignID == 0) return true; // nothing to assign

	int showInViewport = pblock()->GetInt(kMaterialStatic_showInViewport, timeEnd);
	if (!showInViewport) { // check if the system is in render; if not then return
		IPFSystem* iSystem = GetPFSystemInterface(pSystem);
		if (iSystem == NULL) return false;
		if (!iSystem->IsRenderState()) return true; // nothing to show in viewport
	}

	int type = pblock()->GetInt(kMaterialStatic_type, timeEnd);

	// acquire absolutely necessary particle channels
	IParticleChannelAmountR* chAmount = GetParticleChannelAmountRInterface(pCont);
	if (chAmount == NULL) return false; // can't find number of particles in the container
	int i, count = chAmount->Count();
	if (count == 0) return true; // no particles to modify
	IParticleChannelPTVR* chTime = GetParticleChannelTimeRInterface(pCont);
	if (chTime == NULL) return false; // can't read timing for a particle
	IParticleChannelNewR* chNew = GetParticleChannelNewRInterface(pCont);
	if (chNew == NULL) return false; // can't find newly entered particles for duration calculation
	
	IChannelContainer* chCont = GetChannelContainerInterface(pCont);
	if (chCont == NULL) return false;

	// ensure materialStatic index channel
	IParticleChannelIntW* chMtlIDW = (IParticleChannelIntW*)chCont->EnsureInterface(PARTICLECHANNELMTLINDEXW_INTERFACE,
																ParticleChannelInt_Class_ID,
																true, PARTICLECHANNELMTLINDEXR_INTERFACE,
																PARTICLECHANNELMTLINDEXW_INTERFACE, true);
	if (chMtlIDW == NULL) return false; // can't modify MaterialStatic Index channel in the container
	IParticleChannelIntR* chMtlIDR = GetParticleChannelMtlIndexRInterface(pCont);

	RandGenerator* randGen = randLinker().GetRandGenerator(pCont);

	int rateType = pblock()->GetInt(kMaterialStatic_rateType, timeEnd);
	int numSubMtls = pblock()->GetInt(kMaterialStatic_numSubMtls, timeEnd);
	if (numSubMtls < 1) numSubMtls = 1;
	int cycleLoop = pblock()->GetInt(kMaterialStatic_loop, timeEnd);
	float rateSec = pblock()->GetFloat(kMaterialStatic_ratePerSecond, timeEnd);
	float ratePart = pblock()->GetFloat(kMaterialStatic_ratePerParticle, timeEnd);
	int mtlID;

	bool useRatePerSec = ((type != kMaterialStatic_type_id) && (rateType == kMaterialStatic_rateType_second));
	bool useRatePerPart = ((type != kMaterialStatic_type_id) && (rateType == kMaterialStatic_rateType_particle));

	bool initRands = false;
	// recalc offset if necessary
	if (_offsetTime(pCont) == TIME_NegInfinity) {
		_offsetTime(pCont) = timeStart.TimeValue();
		// find the earliest time of the coming particles
		PreciseTimeValue minTime = chTime->GetValue(0);
		for(i=1; i<count; i++)
			if (minTime > chTime->GetValue(i)) 
				minTime = chTime->GetValue(i);
		if (useRatePerSec)
			if (type == kMaterialStatic_type_cycle)
				_cycleOffset(pCont) = float(PreciseTimeValue(_offsetTime(pCont)) - minTime)*rateSec/TIME_TICKSPERSEC;
		initRands = true;
	} else if (_offsetTime(pCont) != timeStart.TimeValue()) {
		if (useRatePerSec) {
			if (type == kMaterialStatic_type_cycle) {
				float timeDelta = float(timeStart.TimeValue() - _offsetTime(pCont));
				float addOffset = timeDelta*rateSec/TIME_TICKSPERSEC;
				_cycleOffset(pCont) += addOffset;
				if (_cycleOffset(pCont) >= numSubMtls) {
					if (cycleLoop) _cycleOffset(pCont) -= numSubMtls*int(_cycleOffset(pCont)/numSubMtls);
					else _cycleOffset(pCont) = numSubMtls - 1.0f;
				}
			}
		}
		_offsetTime(pCont) = timeStart.TimeValue();
		initRands = true;
	}
	if (initRands && useRatePerSec && (type == kMaterialStatic_type_random)) {
		int intervalDelta = int(timeEnd.TimeValue() - timeStart.TimeValue()) + 1;
		_randMtlIndex(pCont).SetCount(intervalDelta);
		float curOffset = _cycleOffset(pCont);
		int curMtlID = int(curOffset);
		_randMtlIndex(pCont)[0] = curMtlID;
		for(int i=1; i<intervalDelta; i++) {
			float addOffset = rateSec/TIME_TICKSPERSEC;
			curOffset += addOffset;
			if (int(curOffset) != curMtlID) {
				curOffset = randGen->Rand0X(numSubMtls-1) + (curOffset - floor(curOffset));
				curMtlID = int(curOffset);
			}
			_randMtlIndex(pCont)[i] = curMtlID;
			_cycleOffset(pCont) = curOffset;
		}
	}

	float curCycleOffset = _cycleOffset(pCont);
	float ratePerPart = pblock()->GetFloat(kMaterialStatic_ratePerParticle, timeEnd);

	for(i=0; i<count; i++) {
		if (!chNew->IsNew(i)) continue; // the ID is already set
		switch(type) {
		case kMaterialStatic_type_id:
			mtlID = GetPFInt(pblock(), kMaterialStatic_materialID, chTime->GetValue(i).TimeValue());
			mtlID--;
			break;
		case kMaterialStatic_type_cycle:
			if (rateType == kMaterialStatic_rateType_second) {
				float timeDelta = float(chTime->GetValue(i) - timeStart);
				float addOffset = timeDelta*rateSec/TIME_TICKSPERSEC;
				mtlID = int(curCycleOffset + addOffset);
				if (mtlID >= numSubMtls) {
					if (cycleLoop) mtlID = mtlID%numSubMtls;
					else mtlID = numSubMtls - 1;
				}
			} else { // per particle rate type
				mtlID = int(curCycleOffset);
				if (mtlID >= numSubMtls) {
					if (cycleLoop) mtlID = mtlID%numSubMtls;
					else mtlID = numSubMtls - 1;
				}
				if (ratePart > 0.0f) {
					curCycleOffset += 1.0f/ratePart;
					if (curCycleOffset >= numSubMtls) {
						if (cycleLoop) curCycleOffset -= numSubMtls*int(curCycleOffset/numSubMtls);
						else curCycleOffset = numSubMtls - 1.0f;
					}
				}
			}
			break;
		case kMaterialStatic_type_random:
			if (rateType == kMaterialStatic_rateType_second) {
				int timeDelta = int( chTime->GetValue(i) - timeStart.TimeValue() );
				mtlID = _randMtlIndex(pCont)[timeDelta];
			} else { // per particle rate type
				mtlID = int(curCycleOffset);
				int oldMtlID = mtlID;
				if (mtlID >= numSubMtls) {
					if (cycleLoop) mtlID = mtlID%numSubMtls;
					else mtlID = numSubMtls - 1;
				}
				if (ratePart > 0.0f) {
					curCycleOffset += 1.0f/ratePart;
					if (int(curCycleOffset) != oldMtlID)
						curCycleOffset = randGen->Rand0X(numSubMtls-1) + (curCycleOffset - floor(curCycleOffset));
				}
			}
			break;
		default: DbgAssert(0);
		}
		if (mtlID < 0) mtlID = 0;
		chMtlIDW->SetValue(i, mtlID);
	}

	if (useRatePerPart)
		_cycleOffset(pCont) = curCycleOffset;
	
	return true;
}
bool PFOperatorMaterialFrequency::Proceed(IObject* pCont, 
									 PreciseTimeValue timeStart, 
									 PreciseTimeValue& timeEnd,
									 Object* pSystem,
									 INode* pNode,
									 INode* actionNode,
									 IPFIntegrator* integrator)
{
	if (pblock() == NULL) return false;
	int assignID = pblock()->GetInt(kMaterialFrequency_assignID, timeEnd);
	if (assignID == 0) return true; // nothing to assign

	int showInViewport = pblock()->GetInt(kMaterialFrequency_showInViewport, timeEnd);
	if (!showInViewport) { // check if the system is in render; if not then return
		IPFSystem* iSystem = GetPFSystemInterface(pSystem);
		if (iSystem == NULL) return false;
		if (!iSystem->IsRenderState()) return true; // nothing to show in viewport
	}

	// acquire absolutely necessary particle channels
	IParticleChannelAmountR* chAmount = GetParticleChannelAmountRInterface(pCont);
	if (chAmount == NULL) return false; // can't find number of particles in the container
	IParticleChannelPTVR* chTime = GetParticleChannelTimeRInterface(pCont);
	if (chTime == NULL) return false; // can't read timing for a particle
	IParticleChannelNewR* chNew = GetParticleChannelNewRInterface(pCont);
	if (chNew == NULL) return false; // can't find newly entered particles for duration calculation
	
	IChannelContainer* chCont = GetChannelContainerInterface(pCont);
	if (chCont == NULL) return false;

	// ensure material index channel
	IParticleChannelIntW* chMtlIDW = (IParticleChannelIntW*)chCont->EnsureInterface(PARTICLECHANNELMTLINDEXW_INTERFACE,
																ParticleChannelInt_Class_ID,
																true, PARTICLECHANNELMTLINDEXR_INTERFACE,
																PARTICLECHANNELMTLINDEXW_INTERFACE, true);
	if (chMtlIDW == NULL) return false; // can't modify Material Index channel in the container
	IParticleChannelIntR* chMtlIDR = GetParticleChannelMtlIndexRInterface(pCont);

	RandGenerator* randGen = randLinker().GetRandGenerator(pCont);

	int i, j, count = chAmount->Count();
	int mtlID;
	float idShare[10], slideShare[10];
	int pblockIDShare[] = { kMaterialFrequency_id1, kMaterialFrequency_id2, kMaterialFrequency_id3, kMaterialFrequency_id4, kMaterialFrequency_id5, kMaterialFrequency_id6, kMaterialFrequency_id7, kMaterialFrequency_id8, kMaterialFrequency_id9, kMaterialFrequency_id10 };

	for(i=0; i<count; i++) {
		if (!chNew->IsNew(i)) continue; // the ID is already set
		TimeValue curTime = chTime->GetValue(i).TimeValue();
		float totalShare = 0.0f;
		for(j=0; j<10; j++) {
			totalShare += (idShare[j] = GetPFFloat(pblock(), pblockIDShare[j], curTime));
			slideShare[j] = totalShare;
		}
		float randomShare = totalShare*randGen->Rand01();
		for(j=0; j<10; j++) {
			mtlID = j;
			if (randomShare < slideShare[j]) break;
		}
		chMtlIDW->SetValue(i, mtlID);
	}
	
	return true;
}
Esempio n. 3
0
bool AlembicPoints::Save(double time, bool bLastFrame)
{
   ESS_PROFILE_FUNC();

    // Note: Particles are always considered to be animated even though
    //       the node does not have the IsAnimated() flag.

    // Extract our particle emitter at the given time
    TimeValue ticks = GetTimeValueFromFrame(time);
    Object *obj = mMaxNode->EvalWorldState(ticks).obj;

	SaveMetaData(mMaxNode, this);

	SimpleParticle* pSimpleParticle = (SimpleParticle*)obj->GetInterface(I_SIMPLEPARTICLEOBJ);
	IPFSystem* ipfSystem = GetPFSystemInterface(obj);
	IParticleObjectExt* particlesExt = GetParticleObjectExtInterface(obj);
	
#ifdef THINKING_PARTICLES
	ParticleMat* pThinkingParticleMat = NULL;
	TP_MasterSystemInterface* pTPMasterSystemInt = NULL;
	if(obj->CanConvertToType(MATTERWAVES_CLASS_ID))
	{
		pThinkingParticleMat = reinterpret_cast<ParticleMat*>(obj->ConvertToType(ticks, MATTERWAVES_CLASS_ID));
		pTPMasterSystemInt = reinterpret_cast<TP_MasterSystemInterface*>(obj->GetInterface(IID_TP_MASTERSYSTEM));     

	}
#endif

	const bool bAutomaticInstancing = GetCurrentJob()->GetOption("automaticInstancing");

	if( 
#ifdef THINKING_PARTICLES
		!pThinkingParticleMat && 
#endif
		!particlesExt && !pSimpleParticle){
		return false;
	}


	//We have to put the particle system into the renders state so that PFOperatorMaterialFrequency::Proceed will set the materialID channel
	//Note: settting the render state to true breaks the shape node instancing export
	bool bRenderStateForced = false;
	if(bAutomaticInstancing && ipfSystem && !ipfSystem->IsRenderState()){
		ipfSystem->SetRenderState(true);
		bRenderStateForced = true;
	}

	int numParticles = 0;
#ifdef THINKING_PARTICLES
	if(pThinkingParticleMat){
		numParticles = pThinkingParticleMat->NumParticles();	
	}
	else 
#endif
	if(particlesExt){
		particlesExt->UpdateParticles(mMaxNode, ticks);
		numParticles = particlesExt->NumParticles();
	}
	else if(pSimpleParticle){
		pSimpleParticle->Update(ticks, mMaxNode);
		numParticles = pSimpleParticle->parts.points.Count();
	}


    // Store positions, velocity, width/size, scale, id, bounding box
    std::vector<Abc::V3f> positionVec;
    std::vector<Abc::V3f> velocityVec;
    std::vector<Abc::V3f> scaleVec;
    std::vector<float> widthVec;
    std::vector<float> ageVec;
    std::vector<float> massVec;
    std::vector<float> shapeTimeVec;
    std::vector<Abc::uint64_t> idVec;
    std::vector<Abc::uint16_t> shapeTypeVec;
    std::vector<Abc::uint16_t> shapeInstanceIDVec;
    std::vector<Abc::Quatf> orientationVec;
    std::vector<Abc::Quatf> angularVelocityVec;
    std::vector<Abc::C4f> colorVec;

    positionVec.reserve(numParticles);
    velocityVec.reserve(numParticles);
    scaleVec.reserve(numParticles);
    widthVec.reserve(numParticles);
    ageVec.reserve(numParticles);
    massVec.reserve(numParticles);
    shapeTimeVec.reserve(numParticles);
    idVec.reserve(numParticles);
    shapeTypeVec.reserve(numParticles);
    shapeInstanceIDVec.reserve(numParticles);
    orientationVec.reserve(numParticles);
    angularVelocityVec.reserve(numParticles);
    colorVec.reserve(numParticles);

    //std::vector<std::string> instanceNamesVec;
    Abc::Box3d bbox;
    bool constantPos = true;
    bool constantVel = true;
    bool constantScale = true;
    bool constantWidth = true;
    bool constantAge = true;
    bool constantOrientation = true;
    bool constantAngularVel = true;
	bool constantColor = true;


	if(bAutomaticInstancing){
		SetMaxSceneTime(ticks);
	}

	//The MAX interfaces return everything in world coordinates,
	//so we need to multiply the inverse the node world transform matrix
    Matrix3 nodeWorldTM = mMaxNode->GetObjTMAfterWSM(ticks);
    // Convert the max transform to alembic
    Matrix3 alembicMatrix;
    ConvertMaxMatrixToAlembicMatrix(nodeWorldTM, alembicMatrix);
    Abc::M44d nodeWorldTrans(	alembicMatrix.GetRow(0).x,  alembicMatrix.GetRow(0).y,  alembicMatrix.GetRow(0).z,  0,
										alembicMatrix.GetRow(1).x,  alembicMatrix.GetRow(1).y,  alembicMatrix.GetRow(1).z,  0,
										alembicMatrix.GetRow(2).x,  alembicMatrix.GetRow(2).y,  alembicMatrix.GetRow(2).z,  0,
										alembicMatrix.GetRow(3).x,  alembicMatrix.GetRow(3).y,  alembicMatrix.GetRow(3).z,  1);
	Abc::M44d nodeWorldTransInv = nodeWorldTrans.inverse();


	//ESS_LOG_WARNING("tick: "<<ticks<<"   numParticles: "<<numParticles<<"\n");

	ExoNullView nullView;
	particleGroupInterface groupInterface(particlesExt, obj, mMaxNode, &nullView);

    {
    ESS_PROFILE_SCOPE("AlembicPoints::SAVE - numParticlesLoop");

	for (int i = 0; i < numParticles; ++i)
	{
		Abc::V3f pos(0.0);
		Abc::V3f vel(0.0);
		Abc::V3f scale(1.0);
		Abc::C4f color(0.5, 0.5, 0.5, 1.0);
		float age = 0;
		Abc::uint64_t id = 0;
	    Abc::Quatd orientation(0.0, 0.0, 1.0, 0.0);
		Abc::Quatd spin(0.0, 0.0, 1.0, 0.0);
		// Particle size is a uniform scale multiplier in XSI.  In Max, I need to learn where to get this 
		// For now, we'll just default to 1
		float width = 1.0f;

		ShapeType shapetype = ShapeType_Point;
		float shapeInstanceTime = (float)time;
		Abc::uint16_t shapeInstanceId = 0;

#ifdef THINKING_PARTICLES
		if(pThinkingParticleMat){
            

			if(pTPMasterSystemInt->IsAlive(i) == FALSE){
				continue;
			}

			//TimeValue ageValue = particlesExt->GetParticleAgeByIndex(i);
			TimeValue ageValue = pTPMasterSystemInt->Age(i);
			if(ageValue == -1){
				continue;
			}

            ESS_PROFILE_SCOPE("AlembicPoints::SAVE - numParticlesLoop - ThinkingParticles");
			age = (float)GetSecondsFromTimeValue(ageValue);

			//pos = ConvertMaxPointToAlembicPoint(*particlesExt->GetParticlePositionByIndex(i));
			pos = ConvertMaxPointToAlembicPoint(pTPMasterSystemInt->Position(i));
			//vel = ConvertMaxVectorToAlembicVector(*particlesExt->GetParticleSpeedByIndex(i) * TIME_TICKSPERSEC);
			vel = ConvertMaxVectorToAlembicVector(pTPMasterSystemInt->Velocity(i) * TIME_TICKSPERSEC);
			scale = ConvertMaxScaleToAlembicScale(pTPMasterSystemInt->Scale(i));
			scale *= pTPMasterSystemInt->Size(i);
			
			//ConvertMaxEulerXYZToAlembicQuat(*particlesExt->GetParticleOrientationByIndex(i), orientation);

			Matrix3 alignmentMatMax = pTPMasterSystemInt->Alignment(i);
			Abc::M44d alignmentMat;
			ConvertMaxMatrixToAlembicMatrix(alignmentMatMax, alignmentMat);
			/*alignmentMat = Abc::M44d( alignmentMatMax.GetRow(0).x,  alignmentMatMax.GetRow(0).y,  alignmentMatMax.GetRow(0).z,  0,
                                 alignmentMatMax.GetRow(1).x,  alignmentMatMax.GetRow(1).y,  alignmentMatMax.GetRow(1).z,  0,
                                 alignmentMatMax.GetRow(2).x,  alignmentMatMax.GetRow(2).y,  alignmentMatMax.GetRow(2).z,  0,
                                 alignmentMatMax.GetRow(3).x,  alignmentMatMax.GetRow(3).y,  alignmentMatMax.GetRow(3).z,  1);*/
			//orientation = ConvertMaxQuatToAlembicQuat(extracctuat(alignmentMat), true);

			alignmentMat = alignmentMat * nodeWorldTransInv;
			orientation = extractQuat(alignmentMat);

			//ConvertMaxAngAxisToAlembicQuat(*particlesExt->GetParticleSpinByIndex(i), spin);
			ConvertMaxAngAxisToAlembicQuat(pTPMasterSystemInt->Spin(i), spin);


			id = particlesExt->GetParticleBornIndex(i);

			//seems to always return 0
			//int nPid = pThinkingParticleMat->ParticleID(i);
					
			int nMatId = -1;
			Matrix3 meshTM;
			meshTM.IdentityMatrix();
			BOOL bNeedDelete = FALSE;
			BOOL bChanged = FALSE;
            Mesh* pMesh = NULL;
            {
            ESS_PROFILE_SCOPE("AlembicPoints::SAVE - numParticlesLoop - ThinkingParticles - GetParticleRenderMesh");
			pMesh = pThinkingParticleMat->GetParticleRenderMesh(ticks, mMaxNode, nullView, bNeedDelete, i, meshTM, bChanged);
            }

			if(pMesh){
                ESS_PROFILE_SCOPE("AlembicPoints::SAVE - numParticlesLoop - ThinkingParticles - CacheShapeMesh");
            meshInfo mi = CacheShapeMesh(pMesh, bNeedDelete, meshTM, nMatId, i, ticks, shapetype, shapeInstanceId, shapeInstanceTime);
            Abc::V3d min = pos + mi.bbox.min;
            Abc::V3d max = pos + mi.bbox.max;
            bbox.extendBy(min);
            bbox.extendBy(max);
			}
			else{
				shapetype = ShapeType_Point;
			}
		}
		else 
#endif
		if(particlesExt && ipfSystem){

			TimeValue ageValue = particlesExt->GetParticleAgeByIndex(i);
			if(ageValue == -1){
				continue;
			}
			age = (float)GetSecondsFromTimeValue(ageValue);

			pos = ConvertMaxPointToAlembicPoint(*particlesExt->GetParticlePositionByIndex(i));
			vel = ConvertMaxVectorToAlembicVector(*particlesExt->GetParticleSpeedByIndex(i) * TIME_TICKSPERSEC);
			scale = ConvertMaxScaleToAlembicScale(*particlesExt->GetParticleScaleXYZByIndex(i));
			ConvertMaxEulerXYZToAlembicQuat(*particlesExt->GetParticleOrientationByIndex(i), orientation);
			ConvertMaxAngAxisToAlembicQuat(*particlesExt->GetParticleSpinByIndex(i), spin);
			//age = (float)GetSecondsFromTimeValue(particlesExt->GetParticleAgeByIndex(i));
			id = particlesExt->GetParticleBornIndex(i);
			if(bAutomaticInstancing){

				int nMatId = -1;
				if(ipfSystem){
					if( groupInterface.setCurrentParticle(ticks, i) ){
						nMatId = groupInterface.getCurrentMtlId();
					}
					else{
						ESS_LOG_WARNING("Error: cound retrieve material ID for particle mesh "<<i);
					}
				}

				Matrix3 meshTM;
				meshTM.IdentityMatrix();
				BOOL bNeedDelete = FALSE;
				BOOL bChanged = FALSE;
				Mesh* pMesh = pMesh = particlesExt->GetParticleShapeByIndex(i);

				if(pMesh){
					meshInfo mi = CacheShapeMesh(pMesh, bNeedDelete, meshTM, nMatId, i, ticks, shapetype, shapeInstanceId, shapeInstanceTime);
               Abc::V3d min = pos + mi.bbox.min;
               Abc::V3d max = pos + mi.bbox.max;
               bbox.extendBy(min);
               bbox.extendBy(max);
				}
				else{
					shapetype = ShapeType_Point;
				}
			}
			else{
				GetShapeType(particlesExt, i, ticks, shapetype, shapeInstanceId, shapeInstanceTime);
			}
			color = GetColor(particlesExt, i, ticks);
		}
		else if(pSimpleParticle){
			if( ! pSimpleParticle->parts.Alive( i ) ) {
				continue;
			}

			pos = ConvertMaxPointToAlembicPoint(pSimpleParticle->ParticlePosition(ticks, i));
			vel = ConvertMaxVectorToAlembicVector(pSimpleParticle->ParticleVelocity(ticks, i));
			//simple particles have no scale?
			//simple particles have no orientation?
			age = (float)GetSecondsFromTimeValue( pSimpleParticle->ParticleAge(ticks, i) );
			//simple particles have born index
			width = pSimpleParticle->ParticleSize(ticks, i);

         Abc::V3d min(pos.x - width/2, pos.y - width/2, pos.z - width/2);
         Abc::V3d max(pos.x + width/2, pos.y + width/2, pos.z + width/2);
         bbox.extendBy(min);
         bbox.extendBy(max);
		}

        {
        ESS_PROFILE_SCOPE("AlembicPoints::SAVE - numParticlesLoop - end loop save");

		//move everything from world space to local space
		pos = pos * nodeWorldTransInv;

		Abc::V4f vel4(vel.x, vel.y, vel.z, 0.0);
		vel4 = vel4 * nodeWorldTransInv;
		vel.setValue(vel4.x, vel4.y, vel4.z);

		//scale = scale * nodeWorldTransInv;
		//orientation = Abc::extractQuat(orientation.toMatrix44() * nodeWorldTransInv);
		//spin = Abc::extractQuat(spin.toMatrix44() * nodeWorldTransInv);

		bbox.extendBy( pos );




		positionVec.push_back( pos );
		velocityVec.push_back( vel );
		scaleVec.push_back( scale );
		widthVec.push_back( width );
		ageVec.push_back( age );
		idVec.push_back( id );
		orientationVec.push_back( orientation );
		angularVelocityVec.push_back( spin );

        shapeTypeVec.push_back( shapetype );
        shapeInstanceIDVec.push_back( shapeInstanceId );
        shapeTimeVec.push_back( shapeInstanceTime );
		colorVec.push_back( color );

		constantPos &= (pos == positionVec[0]);
		constantVel &= (vel == velocityVec[0]);
		constantScale &= (scale == scaleVec[0]);
		constantWidth &= (width == widthVec[0]);
		constantAge &= (age == ageVec[0]);
		constantOrientation &= (orientation == orientationVec[0]);
		constantAngularVel &= (spin == angularVelocityVec[0]);
		constantColor &= (color == colorVec[0]);

		// Set the archive bounding box
		// Positions for particles are already cnsider to be in world space
		if (mJob)
		{
			mJob->GetArchiveBBox().extendBy(pos);
		}

        }
	}

    }

  //  if (numParticles > 1)
  //  {
  //     ESS_PROFILE_SCOPE("AlembicPoints::Save - vectorResize");
  //      if (constantPos)        { positionVec.resize(1); }
  //      if (constantVel)        { velocityVec.resize(1); }
  //      if (constantScale)      { scaleVec.resize(1); }
  //      if (constantWidth)      { widthVec.resize(1); }
  //      if (constantAge)        { ageVec.resize(1); }
  //      if (constantOrientation){ orientationVec.resize(1); }
  //      if (constantAngularVel) { angularVelocityVec.resize(1); }
		//if (constantColor)		{ colorVec.resize(1); }
  //  }

    {
    ESS_PROFILE_SCOPE("AlembicPoints::Save - sample writing");
    // Store the information into our properties and points schema
    Abc::P3fArraySample positionSample( positionVec);
    Abc::P3fArraySample velocitySample(velocityVec);
    Abc::P3fArraySample scaleSample(scaleVec);
    Abc::FloatArraySample widthSample(widthVec);
    Abc::FloatArraySample ageSample(ageVec);
    Abc::FloatArraySample massSample(massVec);
    Abc::FloatArraySample shapeTimeSample(shapeTimeVec);
    Abc::UInt64ArraySample idSample(idVec);
    Abc::UInt16ArraySample shapeTypeSample(shapeTypeVec);
    Abc::UInt16ArraySample shapeInstanceIDSample(shapeInstanceIDVec);
    Abc::QuatfArraySample orientationSample(orientationVec);
    Abc::QuatfArraySample angularVelocitySample(angularVelocityVec);
    Abc::C4fArraySample colorSample(colorVec);  

    mScaleProperty.set(scaleSample);
    mAgeProperty.set(ageSample);
    mMassProperty.set(massSample);
    mShapeTimeProperty.set(shapeTimeSample);
    mShapeTypeProperty.set(shapeTypeSample);
    mShapeInstanceIDProperty.set(shapeInstanceIDSample);
    mOrientationProperty.set(orientationSample);
    mAngularVelocityProperty.set(angularVelocitySample);
    mColorProperty.set(colorSample);

    mPointsSample.setPositions(positionSample);
    mPointsSample.setVelocities(velocitySample);
    mPointsSample.setWidths(AbcG::OFloatGeomParam::Sample(widthSample, AbcG::kVertexScope));
    mPointsSample.setIds(idSample);
    mPointsSample.setSelfBounds(bbox);
	mPointsSchema.getChildBoundsProperty().set( bbox);

    mPointsSchema.set(mPointsSample);
    }

    mNumSamples++;

	//mInstanceNames.pop_back();

	if(bAutomaticInstancing){
		saveCurrentFrameMeshes();
	}

	if(bRenderStateForced){
		ipfSystem->SetRenderState(false);
	}

    if(bLastFrame){
       ESS_PROFILE_SCOPE("AlembicParticles::Save - save instance names property");

       std::vector<std::string> instanceNames(mNumShapeMeshes);

       for(faceVertexHashToShapeMap::iterator it = mShapeMeshCache.begin(); it != mShapeMeshCache.end(); it++){
          std::stringstream pathStream;
          pathStream << "/" << it->second.name<< "/" << it->second.name <<"Shape";
          instanceNames[it->second.nMeshInstanceId] = pathStream.str();
       }

	   //for some reason the .dims property is not written when there is exactly one entry if we don't push an empty string
	   //having an extra unreferenced entry seems to be harmless
	   instanceNames.push_back("");

       mInstanceNamesProperty.set(Abc::StringArraySample(instanceNames));
    }

    return true;
}
//+>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>+
//|							From IPFTest									 |
//+>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>+
bool PFTestSplitByAmount::Proceed(IObject* pCont, 
							PreciseTimeValue timeStart, 
							PreciseTimeValue& timeEnd, 
							Object* pSystem, 
							INode* pNode, 
							INode* actionNode, 
							IPFIntegrator* integrator, 
							BitArray& testResult, 
							Tab<float>& testTime)
{
	int contIndex;
	if (!hasParticleContainer(pCont, contIndex)) return false;
	_lastUpdate(contIndex) = timeEnd.TimeValue();
	bool exactStep = IsExactIntegrationStep(timeEnd, pSystem);

	// update all other systems to the current time; everybody should be in sync
	// for proper accumulation amounts
	int i;
	for(i=0; i<allParticleContainers().Count(); i++) {
		if (allParticleContainer(i) == pCont) continue;
		if (allSystemNode(i) == pNode) continue;
		if (lastUpdate(i) == timeEnd.TimeValue()) continue;
		TimeValue timeToUpdateTo = timeEnd.TimeValue();
		allSystemNode(i)->NotifyDependents(FOREVER, PartID(&timeToUpdateTo), kPFMSG_UpdateToTime, NOTIFY_ALL, TRUE );
	}

	// get channel container interface
	IChannelContainer* chCont;
	chCont = GetChannelContainerInterface(pCont);
	if (chCont == NULL) return false;

	// acquire absolutely necessary particle channels
	IParticleChannelAmountR* chAmount = GetParticleChannelAmountRInterface(pCont);
	if (chAmount == NULL) return false; // can't find number of particles in the container
	IParticleChannelNewR* chNew = GetParticleChannelNewRInterface(pCont);
	if (chNew == NULL) return false; // can't find "new" property of particles in the container

	// acquire TestSplitByAmount private particle channel; if not present then create it		
	IParticleChannelBoolW* chTestW = (IParticleChannelBoolW*)chCont->EnsureInterface(PARTICLECHANNELTESTSPLITBYAMOUNTW_INTERFACE,
																			ParticleChannelBool_Class_ID,
																			true, PARTICLECHANNELTESTSPLITBYAMOUNTR_INTERFACE,
																			PARTICLECHANNELTESTSPLITBYAMOUNTW_INTERFACE, false,
																			actionNode, (Object*)this);
	IParticleChannelBoolR* chTestR = (IParticleChannelBoolR*)chCont->GetPrivateInterface(PARTICLECHANNELTESTSPLITBYAMOUNTR_INTERFACE, (Object*)this);
	if ((chTestR == NULL) || (chTestW == NULL)) return false; // can't set test value for newly entered particles

	int count = chAmount->Count();
	
	// check if all particles are "old". If some particles are "new" then we
	// have to calculate test values for those.
	if (!chNew->IsAllOld())
	{
		RandGenerator* randGen = randLinker().GetRandGenerator(pCont);
		if (randGen == NULL) return false;

		int testType	= pblock()->GetInt(kSplitByAmount_testType, timeStart);
		float fraction = GetPFFloat(pblock(), kSplitByAmount_fraction, timeStart);
		int everyN = GetPFInt(pblock(), kSplitByAmount_everyN, timeStart);
		int firstN = pblock()->GetInt(kSplitByAmount_firstN, timeStart);
		bool perSource = (pblock()->GetInt(kSplitByAmount_perSource, timeStart) != 0);
		int curWentThru = perSource ? wentThruTotal(pNode) : wentThruTotal();

		// number of "first N" particles is adjusted by multiplier coefficient
		// of the master particle system. This is done to make "first N"
		// parameter to be consistent to "total" number of particles acclaimed
		// by a birth operator
		IPFSystem* pfSys = PFSystemInterface(pSystem);
		if (pfSys == NULL) return false; // no handle for PFSystem interface
		firstN *= pfSys->GetMultiplier(timeStart); 

		for(i=0; i<count; i++) {
			if (chNew->IsNew(i)) { // calculate test value only for new particles
				bool sendOut = false;
				switch(testType) {
				case kSplitByAmount_testType_fraction:
					sendOut = (randGen->Rand01() <= fraction);
					break;
				case kSplitByAmount_testType_everyN:
					_wentThruAccum(contIndex) += 1;
					if (wentThruAccum(contIndex) >= everyN) {
						sendOut = true;
						_wentThruAccum(contIndex) = 0;
					}
					break;
				case kSplitByAmount_testType_firstN:
					_wentThruTotal(contIndex) += 1;
					if (curWentThru++ < firstN) sendOut = true;
					break;
				case kSplitByAmount_testType_afterFirstN:
					_wentThruTotal(contIndex) += 1;
					if (curWentThru++ >= firstN) sendOut = true;
					break;
				}
				chTestW->SetValue(i, sendOut);
			}
		}
	}

	// check all particles by predefined test channel
	testResult.SetSize(count);
	testResult.ClearAll();
	testTime.SetCount(count);
	if (exactStep) {
		for(i=0; i<count; i++)
		{	
			if (chTestR->GetValue(i)) {
				testResult.Set(i);
				testTime[i] = 0.0f;
			}
		}
	}
	return true;
}