//---------------------------------------------------------------------------
bool IValue::operator<=(const IValue &a_Val) const
{
    char_type type1 = GetType(),
        type2 = a_Val.GetType();

    if (type1 == type2 || (IsScalar() && a_Val.IsScalar()))
    {
        switch (GetType())
        {
        case 's': return GetString() <= a_Val.GetString();
        case 'i':
        case 'f':
        case 'c': return GetFloat() <= a_Val.GetFloat();
        case 'b': return GetBool() <= a_Val.GetBool();
        default:
            ErrorContext err;
            err.Errc = ecINTERNAL_ERROR;
            err.Pos = -1;
            err.Type1 = GetType();
            err.Type2 = a_Val.GetType();
            throw ParserError(err);

        } // switch this type
    }
    else
    {
        ErrorContext err;
        err.Errc = ecTYPE_CONFLICT_FUN;
        err.Arg = (type1 != 'f' && type1 != 'i') ? 1 : 2;
        err.Type1 = type2;
        err.Type2 = type1;
        throw ParserError(err);
    }
}
//---------------------------------------------------------------------------
bool IValue::operator!=(const IValue &a_Val) const
{
    char_type type1 = GetType(),
        type2 = a_Val.GetType();

    if (type1 == type2 || (IsScalar() && a_Val.IsScalar()))
    {
        switch (GetType())
        {
        case 's': return GetString() != a_Val.GetString();
        case 'i':
        case 'f': return GetFloat() != a_Val.GetFloat();
        case 'c': return (GetFloat() != a_Val.GetFloat()) || (GetImag() != a_Val.GetImag());
        case 'b': return GetBool() != a_Val.GetBool();
        case 'v': return true;
        case 'm': if (GetRows() != a_Val.GetRows() || GetCols() != a_Val.GetCols())
        {
            return true;
        }
                  else
                  {
                      for (int i = 0; i < GetRows(); ++i)
                      {
                          if (const_cast<IValue*>(this)->At(i) != const_cast<IValue&>(a_Val).At(i))
                              return true;
                      }

                      return false;
                  }
        default:
            ErrorContext err;
            err.Errc = ecINTERNAL_ERROR;
            err.Pos = -1;
            err.Type2 = GetType();
            err.Type1 = a_Val.GetType();
            throw ParserError(err);
        } // switch this type
    }
    else
    {
        return true;
    }
}
Esempio n. 3
0
  //---------------------------------------------------------------------------
  Value::Value(const IValue &a_Val)
    :IValue(cmVAL)
    ,m_psVal(nullptr)
    ,m_pvVal(nullptr)
    ,m_pCache(nullptr)
  {
    Reset();

    switch(a_Val.GetType())
    {
    case 'i': 
    case 'f': 
    case 'b': m_val = cmplx_type(a_Val.GetFloat(), 0);
              break;


    case 'c': m_val = cmplx_type(a_Val.GetFloat(), a_Val.GetImag());
              break;

    case 's': if (!m_psVal)
                m_psVal = new string_type(a_Val.GetString());
              else
               *m_psVal = a_Val.GetString();
              break;

    case 'm': if (!m_pvVal) 
                m_pvVal = new matrix_type(a_Val.GetArray());
              else
               *m_pvVal  = a_Val.GetArray();  
              break;

    case 'v': break;
    default:  MUP_FAIL(INVALID_TYPE_CODE);
    }
    
    m_cType = a_Val.GetType();
  }
Esempio n. 4
0
  //---------------------------------------------------------------------------
  void ParserXBase::CreateRPN() const
  {
    if (!m_pTokenReader->GetExpr().length()) 
      Error(ecUNEXPECTED_EOF, 0);

    // The Stacks take the ownership over the tokens
    Stack<ptr_tok_type> stOpt;
    Stack<ptr_val_type> stVal;
    Stack<ICallback*>   stFunc;  
    Stack<int>  stArgCount;
    Stack<int>  stIdxCount;
    ptr_tok_type pTok, pTokPrev;
    Value val;    

    ReInit();

    // The outermost counter counts the number of seperated items
    // such as in "a=10,b=20,c=c+a"
    stArgCount.push(1);

    for(bool bLoop=true; bLoop;)
    {
      pTokPrev = pTok;
      pTok = m_pTokenReader->ReadNextToken();

#if defined(MUP_DUMP_TOKENS)
      cout << pTok->AsciiDump() << endl;
#endif
      ECmdCode eCmd = pTok->GetCode();
      switch (eCmd)
      {
      case  cmVAR:
      case  cmVAL:
            {
              IValue *pVal = pTok->AsIValue();
              if (stFunc.empty() && pVal->GetType()=='n')
              {
                ErrorContext err;
                err.Errc  = ecUNEXPECTED_PARENS;
                err.Ident = _T(")");
                err.Pos   = pTok->GetExprPos();
                throw ParserError(err);
              }

              stVal.push( ptr_val_type(pVal) );
              
              // Arrays can't be added directly to the reverse polish notation
              // since there may be an index operator following next...
              m_rpn.Add(pTok);

              // Apply infix operator if existant
              if (stOpt.size() && stOpt.top()->GetCode()==cmOPRT_INFIX) 
                ApplyFunc(stOpt, stVal, 1);
            }
            break;

      case  cmIC:
            {
              // The argument count for parameterless functions is zero
              // by default an opening bracket sets parameter count to 1
              // in preparation of arguments to come. If the last token
              // was an opening bracket we know better...
              if (pTokPrev.Get()!=NULL && pTokPrev->GetCode()==cmIO)
                --stArgCount.top();

              ApplyRemainingOprt(stOpt, stVal);

              // if opt is "]" and opta is "[" the bracket content has been evaluated.
              // Now its time to check if there is either a function or a sign pending.
              // - Neither the opening nor the closing bracket will be pushed back to
              //   the operator stack
              // - Check if a function is standing in front of the opening bracket, 
              //   if so evaluate it afterwards to apply an infix operator.
              if ( stOpt.size() && stOpt.top()->GetCode()==cmIO )
              {
                //
                // Find out how many dimensions were used in the index operator.
                //
                std::size_t iArgc = stArgCount.pop();

                stOpt.pop(); // Take opening bracket from stack
                
                IOprtIndex *pOprtIndex = pTok->AsIOprtIndex();
                MUP_ASSERT(pOprtIndex!=NULL);

                pOprtIndex->SetNumArgsPresent(iArgc);
                m_rpn.Add(pTok);
                
                // Pop the index values from the stack
                MUP_ASSERT(stVal.size()>=iArgc+1); 
                for (std::size_t i=0; i<iArgc; ++i)
                  stVal.pop();

                // Now i would need to pop the topmost value from the stack, apply the index
                // opertor and push the result back to the stack. But here we are just creating the
                // RPN and are working with dummy values anyway so i just mark the topmost value as 
                // volatile and leave it were it is. The real index logic is in the RPN evaluator...
                stVal.top()->AddFlags(IToken::flVOLATILE);
              } // if opening index bracket is on top of operator stack
            }
            break;

      case  cmBC:
            {
              // The argument count for parameterless functions is zero
              // by default an opening bracket sets parameter count to 1
              // in preparation of arguments to come. If the last token
              // was an opening bracket we know better...
              if (pTokPrev.Get()!=NULL && pTokPrev->GetCode()==cmBO)
                --stArgCount.top();

              ApplyRemainingOprt(stOpt, stVal);

              // if opt is ")" and opta is "(" the bracket content has been evaluated.
              // Now its time to check if there is either a function or a sign pending.
              // - Neither the opening nor the closing bracket will be pushed back to
              //   the operator stack
              // - Check if a function is standing in front of the opening bracket, 
              //   if so evaluate it afterwards to apply an infix operator.
              if ( stOpt.size() && stOpt.top()->GetCode()==cmBO )
              {
                //
                // Here is the stuff to evaluate a function token
                //
                int iArgc = stArgCount.pop();

                stOpt.pop(); // Take opening bracket from stack
                if ( stOpt.empty() )
                  break;
                  
                if ( (stOpt.top()->GetCode()!=cmFUNC) && (stOpt.top()->GetCode()!=cmOPRT_INFIX) )
                  break;

                ICallback *pFun = stOpt.top()->AsICallback();
                stFunc.pop(); 

                if (pFun->GetArgc()!=-1 && iArgc > pFun->GetArgc())
                  Error(ecTOO_MANY_PARAMS, pTok->GetExprPos(), pFun);

                if (iArgc < pFun->GetArgc())
                  Error(ecTOO_FEW_PARAMS, pTok->GetExprPos(), pFun);

                // Evaluate the function
                ApplyFunc(stOpt, stVal, iArgc);

                // Apply an infix operator, if present
                if (stOpt.size() && stOpt.top()->GetCode()==cmOPRT_INFIX) 
                  ApplyFunc(stOpt, stVal, 1);
              }
            }
            break;

      case  cmELSE:
            ApplyRemainingOprt(stOpt, stVal);
            m_rpn.Add(pTok);
            stOpt.push(pTok);
            break;

      case  cmSCRIPT_NEWLINE:
            {
              ApplyRemainingOprt(stOpt, stVal);

              // Value stack plätten
              // Stack der RPN um die Anzahl im stack enthaltener Werte zurück setzen
              int n = stVal.size();
              m_rpn.AddNewline(pTok, n);
              stVal.clear();
              stOpt.clear();
            }
            break;

      case  cmARG_SEP:
            if (stArgCount.empty())
              Error(ecUNEXPECTED_COMMA, m_pTokenReader->GetPos());

            ++stArgCount.top();

            //if (stVal.size()) // increase argument counter
            //  stArgCount.top()++;

            ApplyRemainingOprt(stOpt, stVal);
            break;

      case  cmEOE:
            ApplyRemainingOprt(stOpt, stVal);
            m_rpn.Finalize();
            break;

      case  cmIF:
      case  cmOPRT_BIN:
            {
              while ( stOpt.size() && 
                      stOpt.top()->GetCode() != cmBO && 
                      stOpt.top()->GetCode() != cmIO && 
                      stOpt.top()->GetCode() != cmELSE &&
                      stOpt.top()->GetCode() != cmIF)
              {
                IToken *pOprt1 = stOpt.top().Get();
                IToken *pOprt2 = pTok.Get();
                MUP_ASSERT(pOprt1 && pOprt2);  
                MUP_ASSERT(pOprt1->AsIPrecedence() && pOprt2->AsIPrecedence());  

                int nPrec1 = pOprt1->AsIPrecedence()->GetPri(),
                    nPrec2 = pOprt2->AsIPrecedence()->GetPri();

                if (pOprt1->GetCode()==pOprt2->GetCode())
                {
                  // Deal with operator associativity
                  EOprtAsct eOprtAsct = pOprt1->AsIPrecedence()->GetAssociativity();
                  if ( (eOprtAsct==oaRIGHT && (nPrec1 <= nPrec2)) || 
                       (eOprtAsct==oaLEFT  && (nPrec1 <  nPrec2)) )
                  {
                    break;
                  }
                }
                else if (nPrec1 < nPrec2)
                {
                  break;
                }
                
                // apply the operator now 
                // (binary operators are identic to functions with two arguments)
                ApplyFunc(stOpt, stVal, 2);
              } // while ( ... )

              if (pTok->GetCode()==cmIF)
                m_rpn.Add(pTok);

              stOpt.push(pTok);
            }
            break;

      //
      //  Postfix Operators
      //
      case  cmOPRT_POSTFIX:
            {
              MUP_ASSERT(stVal.size());

              ptr_val_type &pVal(stVal.top());
              try
              {
                // place a dummy return value into the value stack, do not
                // evaluate pOprt (this is important for lazy evaluation!)
                // The only place where evaluation takes place is the RPN 
                // engine!
                pVal = ptr_val_type(new Value());
                m_rpn.Add(pTok);
              }
              catch(ParserError &)
              {
                if (!m_bIsQueryingExprVar)
                  throw;
              }
            }
  		      break;

      case  cmIO:
      case  cmBO:    
            stOpt.push(pTok);
            stArgCount.push(1);
            break;

      //
      // Functions
      //
      case  cmOPRT_INFIX:
      case  cmFUNC:
            {
              ICallback *pFunc = pTok->AsICallback();
              MUP_ASSERT(pFunc);

              // Check if this function is a argument to another function
              // if so check if the the return type fits.
              if (!stFunc.empty() && stFunc.top()->GetCode()==cmFUNC)
              {
                MUP_ASSERT(stArgCount.size());
                int iArgc = (int)stArgCount.top() /*+ 1*/;

                ICallback *pOuterFunc = stFunc.top();
                if (pOuterFunc->GetArgc()!=-1 && iArgc>pOuterFunc->GetArgc())
		              Error(ecTOO_MANY_PARAMS, m_pTokenReader->GetPos());

                MUP_ASSERT(pOuterFunc->GetArgc()==-1 || iArgc<=pOuterFunc->GetArgc());
              }

              stOpt.push(pTok);  
              stFunc.push(pFunc); // to collect runtime type information
            }
	          break;

      default: 
            Error(ecINTERNAL_ERROR);
      } // switch Code

      if (ParserXBase::s_bDumpStack)
      {
        StackDump( stVal, stOpt );
      }

      if ( pTok->GetCode() == cmEOE )
        bLoop = false;
    } // for (all tokens)

    if (ParserXBase::s_bDumpRPN)
    {
      m_rpn.AsciiDump();
    }

    m_nFinalResultIdx = stArgCount.top()-1;
    MUP_ASSERT(stVal.size());
  }