bool intersect3(const Cubic& c1, const Cubic& c2, Intersections& i) { bool result = intersect3(c1, 0, 1, c2, 0, 1, 1, i); // FIXME: pass in cached bounds from caller _Rect c1Bounds, c2Bounds; c1Bounds.setBounds(c1); // OPTIMIZE use setRawBounds ? c2Bounds.setBounds(c2); result |= intersectEnd(c1, false, c2, c2Bounds, i); result |= intersectEnd(c1, true, c2, c2Bounds, i); bool selfIntersect = c1 == c2; if (!selfIntersect) { i.swap(); result |= intersectEnd(c2, false, c1, c1Bounds, i); result |= intersectEnd(c2, true, c1, c1Bounds, i); i.swap(); } // If an end point and a second point very close to the end is returned, the second // point may have been detected because the approximate quads // intersected at the end and close to it. Verify that the second point is valid. if (i.used() <= 1 || i.coincidentUsed()) { return result; } _Point pt[2]; if (closeStart(c1, 0, i, pt[0]) && closeStart(c2, 1, i, pt[1]) && pt[0].approximatelyEqual(pt[1])) { i.removeOne(1); } if (closeEnd(c1, 0, i, pt[0]) && closeEnd(c2, 1, i, pt[1]) && pt[0].approximatelyEqual(pt[1])) { i.removeOne(i.used() - 2); } return result; }
// FIXME: add intersection of convex null on cubics' ends with the opposite cubic. The hull line // segments can be constructed to be only as long as the calculated precision suggests. If the hull // line segments intersect the cubic, then use the intersections to construct a subdivision for // quadratic curve fitting. bool intersect2(const Cubic& c1, const Cubic& c2, Intersections& i) { #if SK_DEBUG debugDepth = 0; #endif bool result = intersect2(c1, 0, 1, c2, 0, 1, 1, i); // FIXME: pass in cached bounds from caller _Rect c1Bounds, c2Bounds; c1Bounds.setBounds(c1); // OPTIMIZE use setRawBounds ? c2Bounds.setBounds(c2); result |= intersectEnd(c1, false, c2, c2Bounds, i); result |= intersectEnd(c1, true, c2, c2Bounds, i); i.swap(); result |= intersectEnd(c2, false, c1, c1Bounds, i); result |= intersectEnd(c2, true, c1, c1Bounds, i); i.swap(); return result; }
// this flavor approximates the cubics with quads to find the intersecting ts // OPTIMIZE: if this strategy proves successful, the quad approximations, or the ts used // to create the approximations, could be stored in the cubic segment // FIXME: this strategy needs to intersect the convex hull on either end with the opposite to // account for inset quadratics that cause the endpoint intersection to avoid detection // the segments can be very short -- the length of the maximum quadratic error (precision) // FIXME: this needs to recurse on itself, taking a range of T values and computing the new // t range ala is linear inner. The range can be figured by taking the dx/dy and determining // the fraction that matches the precision. That fraction is the change in t for the smaller cubic. static bool intersect2(const Cubic& cubic1, double t1s, double t1e, const Cubic& cubic2, double t2s, double t2e, double precisionScale, Intersections& i) { Cubic c1, c2; sub_divide(cubic1, t1s, t1e, c1); sub_divide(cubic2, t2s, t2e, c2); SkTDArray<double> ts1; cubic_to_quadratics(c1, calcPrecision(c1) * precisionScale, ts1); SkTDArray<double> ts2; cubic_to_quadratics(c2, calcPrecision(c2) * precisionScale, ts2); double t1Start = t1s; int ts1Count = ts1.count(); for (int i1 = 0; i1 <= ts1Count; ++i1) { const double tEnd1 = i1 < ts1Count ? ts1[i1] : 1; const double t1 = t1s + (t1e - t1s) * tEnd1; Cubic part1; sub_divide(cubic1, t1Start, t1, part1); Quadratic q1; demote_cubic_to_quad(part1, q1); // start here; // should reduceOrder be looser in this use case if quartic is going to blow up on an // extremely shallow quadratic? Quadratic s1; int o1 = reduceOrder(q1, s1); double t2Start = t2s; int ts2Count = ts2.count(); for (int i2 = 0; i2 <= ts2Count; ++i2) { const double tEnd2 = i2 < ts2Count ? ts2[i2] : 1; const double t2 = t2s + (t2e - t2s) * tEnd2; Cubic part2; sub_divide(cubic2, t2Start, t2, part2); Quadratic q2; demote_cubic_to_quad(part2, q2); Quadratic s2; double o2 = reduceOrder(q2, s2); Intersections locals; if (o1 == 3 && o2 == 3) { intersect2(q1, q2, locals); } else if (o1 <= 2 && o2 <= 2) { locals.fUsed = intersect((const _Line&) s1, (const _Line&) s2, locals.fT[0], locals.fT[1]); } else if (o1 == 3 && o2 <= 2) { intersect(q1, (const _Line&) s2, locals); } else { SkASSERT(o1 <= 2 && o2 == 3); intersect(q2, (const _Line&) s1, locals); for (int s = 0; s < locals.fUsed; ++s) { SkTSwap(locals.fT[0][s], locals.fT[1][s]); } } for (int tIdx = 0; tIdx < locals.used(); ++tIdx) { double to1 = t1Start + (t1 - t1Start) * locals.fT[0][tIdx]; double to2 = t2Start + (t2 - t2Start) * locals.fT[1][tIdx]; // if the computed t is not sufficiently precise, iterate _Point p1, p2; xy_at_t(cubic1, to1, p1.x, p1.y); xy_at_t(cubic2, to2, p2.x, p2.y); if (p1.approximatelyEqual(p2)) { i.insert(i.swapped() ? to2 : to1, i.swapped() ? to1 : to2); } else { double dt1, dt2; computeDelta(cubic1, to1, (t1e - t1s), cubic2, to2, (t2e - t2s), dt1, dt2); double scale = precisionScale; if (dt1 > 0.125 || dt2 > 0.125) { scale /= 2; SkDebugf("%s scale=%1.9g\n", __FUNCTION__, scale); } #if SK_DEBUG ++debugDepth; assert(debugDepth < 10); #endif i.swap(); intersect2(cubic2, SkTMax(to2 - dt2, 0.), SkTMin(to2 + dt2, 1.), cubic1, SkTMax(to1 - dt1, 0.), SkTMin(to1 + dt1, 1.), scale, i); i.swap(); #if SK_DEBUG --debugDepth; #endif } } t2Start = t2; } t1Start = t1; } return i.intersected(); }