// call set up function to set up pins: void setup(void) { // Start up instructions: freq[0].begin(11); // Initialize our first tone generator freq[1].begin(12); // Initialize our second tone generator keypad.setHoldTime(1500); // hold for two seconds to change state to HOLD pinMode(10, INPUT); // 2600 button pinMode(13, OUTPUT); // LED for recording keypad.addEventListener(procButton); notify(); // boot successful Serial.begin(9600); }
void loop() { char key = keypad.getKey(); if (key != NO_KEY) { Serial.println(key); } }
void keyPresets() { char key = kpd.getKey(); if(key=='1'){ turnUpServo(); seconds = 5; timer(); mode = 0; } if(key=='2'){ turnUpServo(); seconds = 15; timer(); mode = 1; } if(key=='3'){ turnUpServo(); seconds = 35; timer(); mode = 1; } if(key=='0'){ if(mode == 0){ phTurnOff = 0; mode = 1; Serial.println("AUTO mode activated"); } else if(mode == 1){ mode = 0; myservo.write(180); Serial.println("MANUAL mode activated"); } } }
// our main() function: void loop(void) { // Here we just get the button, pressed or held, and 2600 switch char button = keypad.getKey(); // check for button press if(digitalRead(10)==HIGH) { // play 2600Hz if top button pressed super(); // supervisory signalling } return; // end main() }
// --- setup --- void setup() { pinMode(alarmPin, OUTPUT); pinMode(pirPin, INPUT); // pinMode(relayPin, OUTPUT); kpd.addEventListener(kpdEvent); //keypad event listener Serial.begin(9600); // serial debug slcd.begin(); set_lcd("bonjour", ""); delay(3000); set_lcd("demarre", ""); }
int main(void) { const byte rows = 4; //four rows const byte cols = 3; //three columns char keys[rows][cols] = { {'1','2','3'}, {'4','5','6'}, {'7','8','9'}, {'*','0','#'} }; byte rowPins[rows] = {J1_9, J1_8, J1_7, J1_6}; //connect to the row pinouts of the keypad byte colPins[cols] = {J1_5, J1_4, J1_3}; //connect to the column pinouts of the keypad Serial pc(PA_1, PA_0); Keypad keypad = Keypad( makeKeymap(keys), rowPins, colPins, rows, cols ); pc.baud(19200); pc.println("InputNumber"); wait_ms(500); while (1) { char c = keypad.getKey(); if (c) pc.write(c); } }
void task_keypad(void* p){ /*KeyPad code*/ while(1) { char key = keypad.getKey(); //print out the key that is pressed if (key != NO_KEY){ dprintf("%c",key); data[ID_DATA_KEYPAD] = (int) key; } //Serial.println("---------------------"); vTaskDelay(taskDelay); } /*KeyPad Code*/ }
void loop(){ if (delayInactif.check()) { stateProgram = NORMAL; clearBuffers(); Serial.println("raz"); } char key = keypad.getKey(); if (key != NO_KEY){ delayInactif.reset(); delay(100); switch (key){ case 'A': case 'B': case 'C': case 'D': break; case '#': // reset pwd if (stateProgram == NORMAL) { chaineReset(&pwd_buffer); } else { modifyPwd(key); } break; case '*': // check pwd if (stateProgram == NORMAL) { checkPwd(); chaineReset(&pwd_buffer); } else { modifyPwd(key); } break; default: //append to buffer if (stateProgram == NORMAL) { chaineAppend(key, &pwd_buffer); chainePrint(pwd_buffer); } else { modifyPwd(key); } // end of switch } } }
int main(void) { init(); oBus.SetEventReceive(EventBusRx); oBus.SetEventRequest(EventBusTx); for (;;) { if(nKey < 20) { char key = oKey.getKey(); if (key != NO_KEY) { ccKey[nKey] = key; nKey++; } } } return 0; }
void kpdEvent (KeypadEvent Key) { switch (kpd.getState()) { case PRESSED : Serial.println(Key); // mj switch (Key) { // appui sur '*' -> vérification de la saisie en cours case '*' : checkPassword(); break; // appui sur '#' -> réinitialisation de la saisie en cours case '#' : pwd.reset(); clear_lcd_pin(); break; // sinon on ajoute le chiffre à la combinaison default : pwd.append(Key); break; } set_lcd_pin(); default : break; } }
//=============================================================================== void program() { switch(progState) { case 0: lcd.setCursor(0,0); lcd.print("Use keypad ? "); lcd.setCursor(0,1); lcd.print("*-Yes #-No"); programed = false; but = keypadA.getKey(); if (but == '#') { keypadBool = false; progState = 1; but = NO_KEY; } else if (but == '*') { keypadBool = true; progState = 1; but = NO_KEY; } break; //---------------------------------------------------------------------- case 1: lcd.setCursor(0,0); lcd.print("Use key ? "); lcd.setCursor(0,1); lcd.print("*-Yes #-No"); but = keypadA.getKey(); if (but == '#') { keyBool = false; progState = 2; but = NO_KEY; } else if (but == '*') { keyBool = true; progState = 2; but = NO_KEY; } break; //---------------------------------------------------------------------- case 2: lcd.setCursor(0,0); lcd.print("Use Wires ? "); lcd.setCursor(0,1); lcd.print("*-Yes #-No"); but = keypadA.getKey(); if (but == '#') { wireBool = false; progState = 3; but = NO_KEY; } else if (but == '*') { wireBool = true; progState = 3; but = NO_KEY; } break; //---------------------------------------------------------------------- case 3: lcd.setCursor(0,0); lcd.print("Use Timer ? "); lcd.setCursor(0,1); lcd.print("*-Yes #-No"); but = keypadA.getKey(); if (but == '#') { timerBool = false; progState = 4; but = NO_KEY; } else if (but == '*') { timerBool = true; progState = 4; but = NO_KEY; } break; //---------------------------------------------------------------------- case 4: lcd.setCursor(0,0); lcd.print("KP-"); lcd.print(keypadBool); lcd.print("Ky-"); lcd.print(keyBool); lcd.print("W-"); lcd.print(wireBool); lcd.print("T-"); lcd.print(timerBool); lcd.setCursor(0,1); lcd.print("*-Yes #-No"); but = keypadA.getKey(); if (but == '#') { progState = 5; but = NO_KEY; } else if (but == '*') { progState = 5; statea = 1; i = 0; but = NO_KEY; } break; //---------------------------------------------------------------------- case 5: switch(mode) { case 1: if(keypadBool == true) { switch (statea) { case 1: lcd.setCursor(0, 0); lcd.print("Enter 4Digit pin"); lcd.setCursor(0, 1); lcd.print(code[0]); lcd.print(code[1]); lcd.print(code[2]); lcd.print(code[3]); lcd.print(" "); but = keypadA.getKey(); if((but != NO_KEY) && (i < 4)) { code[i] = but; i++; but = '-'; } if(i >= 4) { statea = 2; i = 0; } break; case 2: lcd.setCursor(0, 0); lcd.print("# of attempts "); lcd.setCursor(0, 1); lcd.print(time[0]); lcd.print(time[1]); lcd.print(time[2]); lcd.print(time[3]); but = keypadA.getKey(); if((i >= 4) || (but == '#')) { attempts = atoi(time); if(attempts == 0) attem = false; else attem = true; statea = 3; but = NO_KEY; } if((but != NO_KEY) && (i < 4)) { time[i] = but; i++; but = '-'; } break; case 3: lcd.setCursor(0, 0); lcd.print("C -"); lcd.print(code[0]); lcd.print(code[1]); lcd.print(code[2]); lcd.print(code[3]); lcd.print(" A -"); lcd.print(attempts); lcd.setCursor(0, 1); lcd.print("*-Yes #-No"); but = keypadA.getKey(); if (but == '#') { statea = 1; i = 0; code[0] = '-'; code[1] = '-'; code[2] = '-'; code[3] = '-'; but = NO_KEY; } else if (but == '*') { statea = 5; mode = 2; attemCount = attempts; but = NO_KEY; } break; } } else mode = 2; break; case 2: if(keyBool == true) { if(digitalRead(largeKey) == HIGH) lKey = false; else lKey = true; } statea = 1; mode = 3; break; case 3: if(wireBool == true) { switch(statea) { case 1: lcd.setCursor(0, 0); lcd.print("Sel disarm wire"); lcd.setCursor(0, 1); lcd.print(" "); but = keypadA.getKey(); if(but == '1') { safeWire = 1; but = '-'; statea = 2; } else if(but == '2') { safeWire = 2; but = '-'; statea = 2; } else if(but == '3') { safeWire = 3; but = '-'; statea = 2; } else if(but == '4') { safeWire = 4; but = '-'; statea = 2; } break; case 2: lcd.setCursor(0, 0); lcd.print("Disarm wire - "); lcd.print(safeWire); lcd.setCursor(0, 1); lcd.print("*-Yes #-No"); but = keypadA.getKey(); if (but == '#') { statea = 1; safeWire = 0; but = NO_KEY; } else if (but == '*') { statea = 5; progState = 6; but = NO_KEY; } break; } } else { progState = 6; } break; } break; //---------------------------------------------------------------------- case 6: lcd.setCursor(0, 0); lcd.print("Remove prog key"); lcd.setCursor(0, 1); lcd.print(" to arm "); programed = true; statea = 1; i = 0; wireDis = false; keyDis = false; keypadDis = false; bang = false; break; } }
// --- loop --- void loop(){ char Key = kpd.getKey(); switch (alarmState) { // off - system idle case off: set_sirene(false); goto_on_if_password(); break; // wait_on - delay before on (delai de sortie maison) case wait_on: set_sirene(false); goto_off_if_password(); if(wait_on_timer.check() == 1){ set_lcd("alarm on", ""); next_alarmState = on; } break; // on - system is running case on: set_sirene(false); if(get_sensors()) { next_alarmState = detection; set_lcd("detection", ""); } goto_off_if_password(); break; // detection - movement detected case detection: set_sirene(false); send_sms(); goto_off_if_password(); before_sirene_timer.reset(); next_alarmState = before_sirene; break; // before_sirene - delay before sirene (delai d'entrée dans maison) case before_sirene: set_sirene(false); if(before_sirene_timer.check() == 1){ ring_sirene_timer.reset(); next_alarmState = ring_sirene; set_lcd("sirene", ""); } goto_off_if_password(); break; // sirene - sirene is crying case ring_sirene: set_sirene(true); goto_off_if_password(); if(ring_sirene_timer.check() == 1){ wait_on_timer.reset(); next_alarmState = wait_on; set_lcd("wait_on", ""); } break; } alarmState = next_alarmState; }
void task_poll_sensor(void* p){ while(1){ //unsigned int uS = sonar.ping(); // Send ping, get ping time in microseconds (uS). //unsigned int uS2 = sonar2.ping(); /* Serial.print("Sonar 1: "); Serial.print(sonar.convert_cm(uS)); // Convert ping time to distance and print result (0 = outside set distance range, no ping echo) Serial.println("cm"); Serial.print("Sonar 2: "); Serial.print(sonar2.convert_cm(uS2)); Serial.println("cm");*/ // dprintf("%d",(int)sonar.convert_cm(uS)); // vTaskDelay(1000); // dprintf("%d",(int)sonar.convert_cm(uS2)); /* if(sonar.convert_cm(uS)<50){ digitalWrite(MOTOR, HIGH); // sets the LED on delay(100); // waits for a second //digitalWrite(MOTOR, LOW); // sets the LED off //delay(1000); // waits for a second }else{ digitalWrite(MOTOR, LOW); delay(100); } */ /* digitalWrite(TRIGGER_PIN, LOW); delayMicroseconds(2); digitalWrite(TRIGGER_PIN, HIGH); delayMicroseconds(10); digitalWrite(TRIGGER_PIN, LOW); pinMode(ECHO_PIN,INPUT); duration = pulseIn(ECHO_PIN, HIGH,100000); //Calculate the distance (in cm) based on the speed of sound. distance = duration/58.2; // dprintf("%d 1", (int)distance); digitalWrite(TRIGGER_PIN2, LOW); delayMicroseconds(2); digitalWrite(TRIGGER_PIN2, HIGH); delayMicroseconds(10); digitalWrite(TRIGGER_PIN2, LOW); pinMode(ECHO_PIN2,INPUT); duration = pulseIn(ECHO_PIN2, HIGH,100000); //Calculate the distance (in cm) based on the speed of sound. distance = duration/58.2; // dprintf("%d 2", (int)distance); digitalWrite(TRIGGER_PIN3, LOW); delayMicroseconds(2); digitalWrite(TRIGGER_PIN3, HIGH); delayMicroseconds(10); digitalWrite(TRIGGER_PIN3, LOW); pinMode(ECHO_PIN3,INPUT); duration = pulseIn(ECHO_PIN3, HIGH,100000); //Calculate the distance (in cm) based on the speed of sound. distance = duration/58.2; // dprintf("%d 3", (int)distance); digitalWrite(TRIGGER_PIN4, LOW); delayMicroseconds(2); digitalWrite(TRIGGER_PIN4, HIGH); delayMicroseconds(10); digitalWrite(TRIGGER_PIN4, LOW); pinMode(ECHO_PIN4,INPUT); duration = pulseIn(ECHO_PIN4, HIGH,100000); //Calculate the distance (in cm) based on the speed of sound. distance = duration/58.2; // dprintf("%d 4", (int)distance); digitalWrite(TRIGGER_PIN5, LOW); delayMicroseconds(2); digitalWrite(TRIGGER_PIN5, HIGH); delayMicroseconds(10); digitalWrite(TRIGGER_PIN5, LOW); pinMode(ECHO_PIN5,INPUT); duration = pulseIn(ECHO_PIN5, HIGH,100000); //Calculate the distance (in cm) based on the speed of sound. distance = duration/58.2; // dprintf("%d 5", (int)distance); //Calculate the distance (in cm) based on the speed of sound. /*distance = duration/58.2;*/ float distance1,distance2,distance3,distance4,distance5; distance1 = sonar_read(TRIGGER_PIN,ECHO_PIN); distance2= sonar_read(TRIGGER_PIN2,ECHO_PIN2); distance3 = sonar_read(TRIGGER_PIN3,ECHO_PIN3); distance4 = sonar_read(TRIGGER_PIN4,ECHO_PIN4); distance5 = sonar_read(TRIGGER_PIN5,ECHO_PIN5); dprintf("%d %d %d %d %d",(int)distance1,(int)distance2,(int)distance3,(int)distance4,(int)distance5); /*dprintf("%d", (int) sonar_read(TRIGGER_PIN,ECHO_PIN)); dprintf("%d", (int) sonar_read(TRIGGER_PIN2,ECHO_PIN2)); dprintf("%d", (int) sonar_read(TRIGGER_PIN3,ECHO_PIN3)); dprintf("%d", (int) sonar_read(TRIGGER_PIN4,ECHO_PIN4)); dprintf("%d", (int) sonar_read(TRIGGER_PIN5,ECHO_PIN5));*/ /*sonar final code digitalWrite(TRIGGER_PIN, LOW); delayMicroseconds(2); digitalWrite(TRIGGER_PIN, HIGH); delayMicroseconds(10); digitalWrite(TRIGGER_PIN, LOW); pinMode(ECHO_PIN,INPUT); duration = pulseIn(ECHO_PIN, HIGH,100000); //Calculate the distance (in cm) based on the speed of sound. distance = duration/58.2; */ /* pinMode(ECHO_PIN,INPUT); digitalWrite(TRIGGER_PIN,HIGH); delayMicroseconds(1000); digitalWrite(TRIGGER_PIN,LOW); duration = pulseIn(ECHO_PIN,HIGH); distance = (duration/2)/29.1;*/ /* if(distance>10 && distance < 60){ digitalWrite(MOTOR, HIGH); // sets the LED on // delay(100); // waits for a second //digitalWrite(MOTOR, LOW); // sets the LED off //delay(1000); // waits for a second }else{ digitalWrite(MOTOR, LOW); // delay(100); }*/ // dprintf("%d",(int)distance); /*********************************** ** reading sensors ************************************/ compass.read(); dprintf("%d", int(compass.heading())); //dprintf("%d z",(int)(compass.a.z/16.0)); /*if(compass.a.z/16.0<-1000){ distFromStart += 33; step++; dprintf("%d step",step); }*/ /* float heading = compass.heading(); float XaVal, YaVal, ZaVal, fXa, fYa,fZa, pitch, roll,pitch_print, roll_print; const float alpha = 0.15; XaVal = compass.a.x/16.0; //Acceleration data registers contain a left-aligned 12-bit number, so values should be shifted right by 4 bits (divided by 16) YaVal = compass.a.y/16.0; //unit is in cm/s2 ZaVal = compass.a.z/16.0; /*********************************** ** keypad ************************************/ char key = keypad.getKey(); //print out the key that is pressed if (key != NO_KEY){ // Serial.print("You have pressed "); Serial.println(key); } /*********************************** ** altitude ************************************/ float pressure = ps.readPressureMillibars() + 248.5; float altitude = ps.pressureToAltitudeMeters(pressure); //dprintf("alt %d , pres %d",(int)altitude,(int)pressure); // Serial.print("Pressure is "); // Serial.print(pressure); // Serial.println(" mbar"); // Serial.print("Altitude is "); // Serial.print(altitude);// causes error // Serial.println(" m."); //dprintf("%d",(int)pressure); //dprintf("%d",(int)altitude); /****************************************************** ** gyro meter reading ******************************************************/ gyro.read(); /*Serial.println("Gyro meter "); Serial.print("X: "); Serial.print((int)gyro.g.x * 8.75 /1000); Serial.println(" degree/second"); Serial.print("Y: "); Serial.print((int)gyro.g.y * 8.75 /1000); Serial.println(" degree/second"); Serial.print("Z: "); Serial.print((int)gyro.g.z * 8.75 /1000); Serial.println(" degree/second"); Serial.println("");*/ //dprintf("x: %d",(int)(gyro.g.x * 8.75 /1000)); //dprintf("y: %d",(int)(gyro.g.y * 8.75 /1000)); //dprintf("z: %d",(int)(gyro.g.z * 8.75 /1000)); /******************************************************************* get Headings When given no arguments, the heading() function returns the angular difference in the horizontal plane between a default vector and north, in degrees. /* When given no arguments, the heading() function returns the angular difference in the horizontal plane between a default vector and north, in degrees. The default vector is chosen by the library to point along the surface of the PCB, in the direction of the top of the text on the silkscreen. This is the +X axis on the Pololu LSM303D carrier and the -Y axis on the Pololu LSM303DLHC, LSM303DLM, and LSM303DLH carriers. To use a different vector as a reference, use the version of heading() that takes a vector argument; for example, use compass.heading((LSM303::vector<int>){0, 0, 1}); to use the +Z axis as a reference. *******************************************************************/ // String direction = ""; /*if(heading>=340 || heading <= 20) dprintf("North"); // direction = "North"; else if (heading>=70 && heading <= 110) dprintf("East"); // direction = "East"; else if (heading>=160 && heading <= 200) dprintf("South"); //direction = "South"; else if (heading>=250 && heading <= 290) dprintf("West"); // direction = "West"; else if (heading>20 && heading < 70) dprintf("North East"); // direction = "North East"; else if (heading>110 && heading < 160) dprintf("South East"); // direction = "South East"; else if (heading>200 && heading < 250) dprintf("South West");// direction = "South West"; else if (heading>290 && heading < 340) dprintf("North West"); // direction = "North West"; // Serial.print("Heading is "); //Serial.println(direction); //Serial.println("degree."); /****************************************************** ** Method 1 to calculate distance: using steps ******************************************************/ // a step and distance using Z-ACCELERATION /* if(ZaVal<-950){ distFromStart+=33; //1 step is 33 cm step++; } /* Serial.print("X accel is ");Serial.print(XaVal); Serial.print(" cm/s2"); Serial.println(" "); Serial.print("Y accel is ");Serial.print(YaVal); Serial.print(" cm/s2"); Serial.println(" "); Serial.print("Z accel is ");Serial.print(ZaVal);Serial.print(" cm/s2"); Serial.println(" "); Serial.print("1. You have walked "); Serial.print(step); Serial.print(" steps and distance is "); Serial.print(distFromStart); Serial.println(" cm from start");*/ /*dprintf("x accel %d", (int)XaVal); dprintf("y accel %d",(int) YaVal); dprintf("z accel %d", (int)ZaVal); */ /****************************************************** ** pitch and roll ******************************************************/ // Low-Pass filter accelerometer /* fXa = XaVal * alpha + (fXa * (1.0 - alpha)); fYa = YaVal * alpha + (fYa * (1.0 - alpha)); fZa = ZaVal * alpha + (fZa * (1.0 - alpha)); /* Serial.print("Low pass X accel is ");Serial.print(fXa); Serifal.print(" cm/s2"); Serial.println(" "); Serial.print("Low pass Y accel is ");Serial.print(fYa); Serial.print(" cm/s2"); Serial.println(" "); Serial.print("Low pass Z accel is ");Serial.print(fZa);Serial.print(" cm/s2"); Serial.println(" "); */ /* roll = atan2(fYa, sqrt(fXa*fXa + fZa*fZa)); pitch = atan2(fXa, sqrt(fYa*fYa + fZa*fZa)); roll_print = roll*180.0/M_PI; pitch_print = pitch*180.0/M_PI; /* Serial.print("pitch(Y) is "); Serial.print(pitch_print); Serial.println("degree "); Serial.print("roll(X) is "); Serial.print(roll_print); Serial.println("degree ");*/ /****************************************************** ** Method 2 to calculate distance: using accelerations ******************************************************/ /* newTime = millis(); deltaTime = newTime - oldTime; XaVal = XaVal - (1000 * (sin(pitch)));//offsetting pitch // estimate the average acceleration since the previous sample, by averaging the two samples long avgAccel = (oldXaVal + XaVal) / 2; //if ((XaVal < 50 && XaVal > -50) && (oldXaVal < 50 && oldXaVal > -50)) // avgAccel = 0; /* working Serial.print("the avgAccel is "); Serial.print(avgAccel); Serial.println(" cm/s2");*/ // integrate the average accel and add it to the previous speed to calculate the new speed // long newVelocity = oldVelocity + (avgAccel * deltaTime/1000); //estimate the average speed since the previous sample, by averaging the two speeds //long avgVelocity = (oldVelocity + newVelocity) / 2; // if ((XaVal < 50 && XaVal > -50) && (oldXaVal < 50 && oldXaVal > -50)) // avgVelocity = 0; // integrate the average speed and add it to the previous displacement to get the new displacement /* long newDisplacement = oldDis + (avgVelocity * deltaTime/1000); oldTime = newTime; oldVelocity = newVelocity ; oldDis = newDisplacement; oldXaVal = XaVal;*/ /*working Serial.print("2. You have walked "); Serial.print(newDisplacement); Serial.println("cm from start"); */ /****************************************************** ** IR sensor meter reading ******************************************************/ sensorValue = analogRead(sensorIR); cm = 10650.08 * pow(sensorValue,-0.935) - 10; /* Serial.print("IR sensor reads "); Serial.print(cm); Serial.println(" Cm");*/ //delay(100); vTaskDelay(100); } }
void task_sensor_poll(void* p){ while(1){ /*********************************** ** reading sensors ************************************/ compass.read(); /* float heading = compass.heading(); float XaVal, YaVal, ZaVal, fXa, fYa,fZa, pitch, roll,pitch_print, roll_print; const float alpha = 0.15; XaVal = compass.a.x/16.0; //Acceleration data registers contain a left-aligned 12-bit number, so values should be shifted right by 4 bits (divided by 16) YaVal = compass.a.y/16.0; //unit is in cm/s2 ZaVal = compass.a.z/16.0; /* /*********************************** ** keypad ************************************/ char key = keypad.getKey(); //print out the key that is pressed if (key != NO_KEY){ Serial.print("You have pressed "); Serial.println(key); } /*********************************** ** altitude ************************************/ float pressure = ps.readPressureMillibars() + 248.5; float altitude = ps.pressureToAltitudeMeters(pressure); /* Serial.print("Pressure is "); Serial.print(pressure); Serial.println(" mbar"); Serial.print("Altitude is "); Serial.print(altitude); Serial.println(" m."); /****************************************************** ** gyro meter reading ******************************************************/ gyro.read(); /* Serial.println("Gyro meter "); Serial.print("X: "); Serial.print((int)gyro.g.x * 8.75 /1000); Serial.println(" degree/second"); Serial.print("Y: "); Serial.print((int)gyro.g.y * 8.75 /1000); Serial.println(" degree/second"); Serial.print("Z: "); Serial.print((int)gyro.g.z * 8.75 /1000); Serial.println(" degree/second"); Serial.println(""); /******************************************************************* get Headings When given no arguments, the heading() function returns the angular difference in the horizontal plane between a default vector and north, in degrees. /* When given no arguments, the heading() function returns the angular difference in the horizontal plane between a default vector and north, in degrees. The default vector is chosen by the library to point along the surface of the PCB, in the direction of the top of the text on the silkscreen. This is the +X axis on the Pololu LSM303D carrier and the -Y axis on the Pololu LSM303DLHC, LSM303DLM, and LSM303DLH carriers. To use a different vector as a reference, use the version of heading() that takes a vector argument; for example, use compass.heading((LSM303::vector<int>){0, 0, 1}); to use the +Z axis as a reference. *******************************************************************/ /* String direction = ""; if(heading>=340 || heading <= 20) direction = "North"; else if (heading>=70 && heading <= 110) direction = "East"; else if (heading>=160 && heading <= 200) direction = "South"; else if (heading>=250 && heading <= 290) direction = "West"; else if (heading>20 && heading < 70) direction = "North East"; else if (heading>110 && heading < 160) direction = "South East"; else if (heading>200 && heading < 250) direction = "South West"; else if (heading>290 && heading < 340) direction = "North West"; Serial.print("Heading is "); Serial.println(direction); //Serial.println("degree."); /****************************************************** ** Method 1 to calculate distance: using steps ******************************************************/ // a step and distance using Z-ACCELERATION /* if(ZaVal<-965){ distFromStart+=33; //1 step is 33 cm step++; } Serial.print("X accel is ");Serial.print(XaVal); Serial.print(" cm/s2"); Serial.println(" "); Serial.print("Y accel is ");Serial.print(YaVal); Serial.print(" cm/s2"); Serial.println(" "); Serial.print("Z accel is ");Serial.print(ZaVal);Serial.print(" cm/s2"); Serial.println(" "); Serial.print("1. You have walked "); Serial.print(step); Serial.print(" steps and distance is "); Serial.print(distFromStart); Serial.println(" cm from start"); /****************************************************** ** pitch and roll ******************************************************/ // Low-Pass filter accelerometer /* fXa = XaVal * alpha + (fXa * (1.0 - alpha)); fYa = YaVal * alpha + (fYa * (1.0 - alpha)); fZa = ZaVal * alpha + (fZa * (1.0 - alpha)); Serial.print("Low pass X accel is ");Serial.print(fXa); Serial.print(" cm/s2"); Serial.println(" "); Serial.print("Low pass Y accel is ");Serial.print(fYa); Serial.print(" cm/s2"); Serial.println(" "); Serial.print("Low pass Z accel is ");Serial.print(fZa);Serial.print(" cm/s2"); Serial.println(" "); roll = atan2(fYa, sqrt(fXa*fXa + fZa*fZa)); pitch = atan2(fXa, sqrt(fYa*fYa + fZa*fZa)); roll_print = roll*180.0/M_PI; pitch_print = pitch*180.0/M_PI; Serial.print("pitch(Y) is "); Serial.print(pitch_print); Serial.println("degree "); Serial.print("roll(X) is "); Serial.print(roll_print); Serial.println("degree "); /****************************************************** ** Method 2 to calculate distance: using accelerations ******************************************************/ //newTime = millis(); /* deltaTime = newTime - oldTime; XaVal = XaVal - (1000 * (sin(pitch)));//offsetting pitch // estimate the average acceleration since the previous sample, by averaging the two samples long avgAccel = (oldXaVal + XaVal) / 2; //if ((XaVal < 50 && XaVal > -50) && (oldXaVal < 50 && oldXaVal > -50)) // avgAccel = 0; /* Serial.print("the avgAccel is "); Serial.print(avgAccel); Serial.println(" cm/s2"); // integrate the average accel and add it to the previous speed to calculate the new speed long newVelocity = oldVelocity + (avgAccel * deltaTime/1000); //estimate the average speed since the previous sample, by averaging the two speeds long avgVelocity = (oldVelocity + newVelocity) / 2; // if ((XaVal < 50 && XaVal > -50) && (oldXaVal < 50 && oldXaVal > -50)) // avgVelocity = 0; // integrate the average speed and add it to the previous displacement to get the new displacement long newDisplacement = oldDis + (avgVelocity * deltaTime/1000); oldTime = newTime; oldVelocity = newVelocity ; oldDis = newDisplacement; oldXaVal = XaVal; Serial.print("2. You have walked "); Serial.print(newDisplacement); Serial.println("cm from start"); /****************************************************** ** IR sensor meter reading ******************************************************/ sensorValue = analogRead(sensorIR); cm = 10650.08 * pow(sensorValue,-0.935) - 10; /* Serial.print("IR sensor reads "); Serial.print(cm); Serial.println(" Cm"); /*********************************** ** reading sensors ************************************/ /* //digitalWrite(ECHO_PIN2 ,LOW); unsigned int uS2 = sonar2.ping(); Serial.print("Sonar 2: "); Serial.print(sonar2.convert_cm(uS2)); Serial.println("cm"); if(sonar2.convert_cm(uS2)<50){ digitalWrite(MOTOR, HIGH); // waits for a second // sets the LED off //delay(1000); // waits for a second } else{ digitalWrite(MOTOR, LOW); } //delay(100); */ /* The following trigPin/echoPin cycle is used to determine the distance of the nearest object by bouncing soundwaves off of it. */ digitalWrite(TRIGGER_PIN, LOW); delayMicroseconds(2); digitalWrite(TRIGGER_PIN, HIGH); delayMicroseconds(10); digitalWrite(TRIGGER_PIN, LOW); duration = pulseIn(ECHO_PIN, HIGH); //Calculate the distance (in cm) based on the speed of sound. distance = duration/58.2; dprintf("%d",(int)distance); /* Serial.print("sonar distance is "); Serial.println(distance); Serial.println();*/ if (distance >= 10 && distance <= 70){ /* Send a negative number to computer and Turn LED ON to indicate "out of range" */ //Serial.println("-1"); digitalWrite(MOTOR, HIGH); } else { /* Send the distance to the computer using Serial protocol, and turn LED OFF to indicate successful reading. */ //Serial.println(distance); digitalWrite(MOTOR, LOW); } //Delay 50ms before next reading. delay(50); } }
//=============================================================================== void running() { if(programed == true) { switch(statea) { case 1: lcd.setCursor(0, 0); lcd.print(" Armed "); lcd.setCursor(0, 1); if((keyBool == true) && (keyDis != true)) { lcd.print("K="); if((digitalRead(largeKey) == HIGH) && (lKey == true)) { keyDis = true; lcd.print("D"); } else if((digitalRead(largeKey) == LOW) && (lKey == false)) { keyDis = true; lcd.print("D"); } else lcd.print("A"); } if((keypadBool == true) && (keypadDis != true)) { but = keypadA.getKey(); if((but != NO_KEY) && (i < 4)) { butt[i] = but; i++; if(i == 4) { if((code[0] == butt[0]) && (code[1] == butt[1]) && (code[2] == butt[2]) && (code[3] == butt[3])) keypadDis = true; else { butt[0] = '-'; butt[1] = '-'; butt[2] = '-'; butt[3] = '-'; i = 0; if(attem == true) { attemCount--; if(attemCount == 0) { bang = true; } } } } but = '-'; } lcd.print(butt[0]); lcd.print(butt[1]); lcd.print(butt[2]); lcd.print(butt[3]); lcd.print(" "); lcd.print(attemCount); } if(wireBool == true) { if((digitalRead(wire1) == LOW) && (safeWire == 1)) wireDis = true; else if((digitalRead(wire1) == LOW) && (safeWire != 1)) bang = true; if((digitalRead(wire2) == LOW) && (safeWire == 2)) wireDis = true; else if((digitalRead(wire2) == LOW) && (safeWire != 2)) bang = true; if((digitalRead(wire3) == LOW) && (safeWire == 3)) wireDis = true; else if((digitalRead(wire3) == LOW) && (safeWire != 3)) bang = true; if((digitalRead(wire4) == LOW) && (safeWire == 4)) wireDis = true; else if((digitalRead(wire4) == LOW) && (safeWire != 4)) bang = true; } if(bang == true) { statea = 3; } if((wireDis == true) || ((keyDis == keyBool) && (keypadDis == keypadBool))) { statea = 2; } break; case 2://Disarmed lcd.setCursor(0, 0); lcd.print(" Disarmed "); lcd.setCursor(0, 1); lcd.print(" "); break; case 3://Bang lcd.setCursor(0, 0); lcd.print(" BANG "); lcd.setCursor(0, 1); lcd.print(" You lose "); break; } } else { lcd.setCursor(0, 0); lcd.print("Not configured"); lcd.setCursor(0, 1); lcd.print(" "); } }
void loop() { key = 0; key = my_keypad.getKey(); while(!key) { lcd.setCursor(0,0); lcd.print("Press any key..."); lcd.setCursor(0,1); lcd.print(".....to Proceed."); key = my_keypad.getKey(); if(key) break; } lcd.clear(); lcd.print("Enter Code:"); key = my_keypad.getKey(); int i=0; key=0; while(i<4) // there are only four digit code { key = my_keypad.getKey(); // Read Key from keypad if(key) // if Key value is not zero { code_user[i]=key; // then store the first digit first array element i++; lcd.setCursor(i,1); lcd.print("*"); // Display '*' (Asterik) at each key stroke } key=0; // initiliaze key value for next key stroke } delay(500); // wait for half second after all key are pressed int count = 0; // define a new count variable to compare two arrays for(i=0; i<4; i++) // i.e. one EEPROM and other code_user { if(EEPROM.read(i) == code_user[i]) count++; // Compare each code here } if(count == 4) { while(~key) { //lcd.clear(); lcd.setCursor(0,0); lcd.print("1.LOCK "); // A menu view of the system lcd.print("2.UNLOCK"); lcd.setCursor(0,1); // at the begning lcd.print("3.CHANGE CODE "); key = my_keypad.getKey(); if(key) break; } switch(key) { case '1': { lcd.clear(); lcd.print("Closing Door..."); digitalWrite(motor_BW, HIGH); digitalWrite(motor_FW, LOW); delay(1000); // for 2 seconds digitalWrite(motor_BW, LOW); break; } case '2' : { lcd.clear(); lcd.print("Opening Door...."); digitalWrite(motor_FW, HIGH); digitalWrite(motor_BW, LOW); delay(1000); // for 2 seconds digitalWrite(motor_FW, LOW); break; } case'3': { lcd.clear(); lcd.print("Enter New Code."); i = key = 0; while(i<4) { key = my_keypad.getKey(); if(key) { code_temp[i] = key; i++; lcd.setCursor(i,1); lcd.print("*"); } key=0; } delay(500); lcd.clear(); lcd.print("Verify New Code."); i = key = count = 0; while(i<4) { key = my_keypad.getKey(); if(key) { if(code_temp[i] == key) { count++; } i++; lcd.setCursor(i,1); lcd.print("*"); } key=0; } delay(500); if(count==4) { for(i=0; i<4; i++) { EEPROM.write(i,code_temp[i]); } lcd.clear(); lcd.setCursor(6,0); lcd.print("DONE!"); } else { lcd.clear(); lcd.setCursor(4,0); lcd.print("NOT DONE!"); } delay(500); break; } } } else { lcd.clear(); lcd.print("DID NOT MATCHED!"); chance++; if(chance>=3) { chance = 0; lcd.clear(); lcd.print("ACCESS DENIED!"); lcd.setCursor(0,1); lcd.print("Try later!"); digitalWrite(buzzer, HIGH); delay(3000); digitalWrite(buzzer, LOW); // tone(buzzer, 500); // delay(3000); // noTone(buzzer); } delay(500); } }
// Process buttons: void procButton(KeypadEvent b) { b -= 48; switch (keypad.getState()) { case RELEASED: // drop right away return; case PRESSED: // momentary if(mode==2) { // Signal Switching 4 ss4Signal(b); break; } else if(mode==3) { pulse(b); // pulse it return; } if(mode==4&&(b<10&&b>=0||b==-13||b==-6||(b>=49&&b<=52))) { // MF tone mf(b); } if(b<10&&b>=0||b==-13||b==-6) { // MF tone mf(b); } else if(b==52) { // D if (stored) playStored(); // don't copy function onto stack if not needed return; } else if(mode==1) { // international kp2/st2 if(b>=49&&b<=51) { mf(b); return; } } else if(mode==0&&(b<=51&&b>=49)) { // A,B,C redbox redBox(b); // pass it to RedBox() return; } break; case HOLD: // HELD (special functions) if(b==50&&mode==3) { // HOLD B for MF2 in PD Mode (mf2)? mf2 = 0 : mf2 = 1; // turn off if on, or on if off freq[0].play(440,70); delay(140); freq[0].play(440,70); delay(140); } if(b<10&&b>=0||b==-13||b==-6) { dial(b); } else if(b==51) { // C takes care of recording now if(rec) { // we are done recording: digitalWrite(13, LOW); // turn off LED rec = 0; stored=1; // we have digits stored recNotify(); } else { // we start recording digitalWrite(13, HIGH); // light up LED rec = 1; for(int i=0; i<=23; i++) { // reset array store[i] = -1; } recNotify(); } // END recording code } else if(b==49) { // ('A' HELD) switching any mode "on" changes to mode, all "off" is domestic if(mode==0) { // mf to international mode=1; } else if(mode==1) { // international to ss4 mode mode=2; } else if(mode==2) { // ss4 mode to pulse mode mode=3; } else if(mode==3) { // pulse mode to DTMF mode=4; } else if(mode==4) { // DTMF to domestic mode=0; } notifyMode(); return; } break; } return; }