Esempio n. 1
0
void
LSLocation::expand(LSLocation Base, SILModule *M, LSLocationList &Locs,
                   TypeExpansionAnalysis *TE) {
  const ProjectionPath &BasePath = Base.getPath().getValue();
  for (const auto &P : TE->getTypeExpansion(Base.getType(M), M)) {
    Locs.push_back(LSLocation(Base.getBase(), BasePath, P.getValue()));
  }
}
Esempio n. 2
0
void LSLocation::getFirstLevelLSLocations(LSLocationList &Locs,
                                          SILModule *Mod) {
  SILType Ty = getType();
  llvm::SmallVector<Projection, 8> Out;
  Projection::getFirstLevelAddrProjections(Ty, *Mod, Out);
  for (auto &X : Out) {
    ProjectionPath P;
    P.append(X);
    P.append(Path.getValue());
    Locs.push_back(LSLocation(Base, P));
  }
}
Esempio n. 3
0
void LSLocation::expand(LSLocation Base, SILModule *M, LSLocationList &Locs,
                        TypeExpansionAnalysis *TE) {
  // To expand a memory location to its indivisible parts, we first get the
  // address projection paths from the accessed type to each indivisible field,
  // i.e. leaf nodes, then we append these projection paths to the Base.
  //
  // Construct the LSLocation by appending the projection path from the
  // accessed node to the leaf nodes.
  const NewProjectionPath &BasePath = Base.getPath().getValue();
  for (const auto &P : TE->getTypeExpansion(Base.getType(M), M, TEKind::TELeaf)) {
    Locs.push_back(LSLocation(Base.getBase(), BasePath, P.getValue()));
  }
}
Esempio n. 4
0
void LSLocation::reduce(LSLocation &Base, SILModule *M, LSLocationSet &Locs,
                        TypeExpansionAnalysis *TE) {
  // First, construct the LSLocation by appending the projection path from the
  // accessed node to the leaf nodes.
  LSLocationList Nodes;
  ProjectionPath &BasePath = Base.getPath().getValue();
  for (const auto &P :
       TE->getTypeExpansionProjectionPaths(Base.getType(), M, TEKind::TENode)) {
    Nodes.push_back(LSLocation(Base.getBase(), P.getValue(), BasePath));
  }

  // Second, go from leaf nodes to their parents. This guarantees that at the
  // point the parent is processed, its children have been processed already.
  for (auto I = Nodes.rbegin(), E = Nodes.rend(); I != E; ++I) {
    LSLocationList FirstLevel;
    I->getFirstLevelLSLocations(FirstLevel, M);
    // Reached the end of the projection tree, this is a leaf node.
    if (FirstLevel.empty())
      continue;

    // If this is a class reference type, we have reached end of the type tree.
    if (I->getType().getClassOrBoundGenericClass())
      continue;

    // This is NOT a leaf node, check whether all its first level children are
    // alive.
    bool Alive = true;
    for (auto &X : FirstLevel) {
      Alive &= Locs.find(X) != Locs.end();
    }

    // All first level locations are alive, create the new aggregated location.
    if (Alive) {
      for (auto &X : FirstLevel)
        Locs.erase(X);
      Locs.insert(*I);
    }
  }
}
Esempio n. 5
0
SILValue LSValue::reduce(LSLocation &Base, SILModule *M,
                         LSLocationValueMap &Values,
                         SILInstruction *InsertPt,
                         TypeExpansionAnalysis *TE) {
  // Walk bottom up the projection tree, try to reason about how to construct
  // a single SILValue out of all the available values for all the memory
  // locations.
  //
  // First, get a list of all the leaf nodes and intermediate nodes for the
  // Base memory location.
  LSLocationList ALocs;
  ProjectionPath &BasePath = Base.getPath().getValue();
  for (const auto &P :
       TE->getTypeExpansionProjectionPaths(Base.getType(), M, TEKind::TENode)) {
    ALocs.push_back(LSLocation(Base.getBase(), P.getValue(), BasePath));
  }

  // Second, go from leaf nodes to their parents. This guarantees that at the
  // point the parent is processed, its children have been processed already.
  for (auto I = ALocs.rbegin(), E = ALocs.rend(); I != E; ++I) {
    // This is a leaf node, we have a value for it.
    //
    // Reached the end of the projection tree, this is a leaf node.
    LSLocationList FirstLevel;
    I->getFirstLevelLSLocations(FirstLevel, M);
    if (FirstLevel.empty())
      continue;

    // If this is a class reference type, we have reached end of the type tree.
    if (I->getType().getClassOrBoundGenericClass())
      continue;

    // This is NOT a leaf node, we need to construct a value for it.

    // There is only 1 children node and its value's projection path is not
    // empty, keep stripping it.
    auto Iter = FirstLevel.begin();
    LSValue &FirstVal = Values[*Iter];
    if (FirstLevel.size() == 1 && !FirstVal.hasEmptyProjectionPath()) {
      Values[*I] = FirstVal.stripLastLevelProjection();
      // We have a value for the parent, remove all the values for children.
      removeLSLocations(Values, FirstLevel);
      continue;
    }
    
    // If there are more than 1 children and all the children nodes have
    // LSValues with the same base and non-empty projection path. we can get
    // away by not extracting value for every single field.
    //
    // Simply create a new node with all the aggregated base value, i.e.
    // stripping off the last level projection.
    bool HasIdenticalValueBase = true;
    SILValue FirstBase = FirstVal.getBase();
    Iter = std::next(Iter);
    for (auto EndIter = FirstLevel.end(); Iter != EndIter; ++Iter) {
      LSValue &V = Values[*Iter];
      HasIdenticalValueBase &= (FirstBase == V.getBase());
    }

    if (FirstLevel.size() > 1 && HasIdenticalValueBase && 
        !FirstVal.hasEmptyProjectionPath()) {
      Values[*I] = FirstVal.stripLastLevelProjection();
      // We have a value for the parent, remove all the values for children.
      removeLSLocations(Values, FirstLevel);
      continue;
    }

    // In 3 cases do we need aggregation.
    //
    // 1. If there is only 1 child and we cannot strip off any projections,
    // that means we need to create an aggregation.
    // 
    // 2. There are multiple children and they have the same base, but empty
    // projection paths.
    //
    // 3. Children have values from different bases, We need to create
    // extractions and aggregation in this case.
    //
    llvm::SmallVector<SILValue, 8> Vals;
    for (auto &X : FirstLevel) {
      Vals.push_back(Values[X].materialize(InsertPt));
    }
    SILBuilder Builder(InsertPt);
    
    // We use an auto-generated SILLocation for now.
    // TODO: make the sil location more precise.
    NullablePtr<swift::SILInstruction> AI =
        Projection::createAggFromFirstLevelProjections(
            Builder, RegularLocation::getAutoGeneratedLocation(), I->getType(),
            Vals);
    // This is the Value for the current node.
    ProjectionPath P;
    Values[*I] = LSValue(SILValue(AI.get()), P);
    removeLSLocations(Values, FirstLevel);

    // Keep iterating until we have reach the top-most level of the projection
    // tree.
    // i.e. the memory location represented by the Base.
  }

  assert(Values.size() == 1 && "Should have a single location this point");

  // Finally materialize and return the forwarding SILValue.
  return Values.begin()->second.materialize(InsertPt);
}
void DSEContext::processWrite(SILInstruction *I, SILValue Val, SILValue Mem,
                              DSEKind Kind) {
  auto *S = getBlockState(I);
  // Construct a LSLocation to represent the memory read by this instruction.
  // NOTE: The base will point to the actual object this inst is accessing,
  // not this particular field.
  //
  // e.g. %1 = alloc_stack $S
  //      %2 = struct_element_addr %1, #a
  //      store %3 to %2 : $*Int
  //
  // Base will point to %1, but not %2. Projection path will indicate which
  // field is accessed.
  //
  // This will make comparison between locations easier. This eases the
  // implementation of intersection operator in the data flow.
  LSLocation L;
  if (BaseToLocIndex.find(Mem) != BaseToLocIndex.end()) {
    L = BaseToLocIndex[Mem];
  } else {
    SILValue UO = getUnderlyingObject(Mem);
    L = LSLocation(UO, ProjectionPath::getProjectionPath(UO, Mem));
  }

  // If we can't figure out the Base or Projection Path for the store
  // instruction, simply ignore it.
  if (!L.isValid())
    return;

  // Expand the given Mem into individual fields and process them as separate
  // writes.
  bool Dead = true;
  LSLocationList Locs;
  LSLocation::expand(L, Mod, Locs, TE);
  SmallBitVector V(Locs.size());

  // Are we computing max store set.
  if (isComputeMaxStoreSet(Kind)) {
    for (auto &E : Locs) {
      // Update the max store set for the basic block.
      processWriteForMaxStoreSet(S, getLocationBit(E));
    }
    return;
  }

  // Are we computing genset and killset.
  if (isBuildingGenKillSet(Kind)) {
    for (auto &E : Locs) {
      // Only building the gen and kill sets here.
      processWriteForGenKillSet(S, getLocationBit(E));
    }
    // Data flow has not stabilized, do not perform the DSE just yet.
    return;
  }

  // We are doing the actual DSE.
  assert(isPerformingDSE(Kind) && "Invalid computation kind");
  unsigned idx = 0;
  for (auto &E : Locs) {
    // This is the last iteration, compute BBWriteSetOut and perform the dead
    // store elimination.
    if (processWriteForDSE(S, getLocationBit(E)))
      V.set(idx);
    Dead &= V.test(idx);
    ++idx;
  }

  // Fully dead store - stores to all the components are dead, therefore this
  // instruction is dead.
  if (Dead) {
    LLVM_DEBUG(llvm::dbgs() << "Instruction Dead: " << *I << "\n");
    S->DeadStores.push_back(I);
    ++NumDeadStores;
    return;
  }

  // Partial dead store - stores to some locations are dead, but not all. This
  // is a partially dead store. Also at this point we know what locations are
  // dead.
  LSLocationList Alives;
  if (V.any()) {
    // Take out locations that are dead.
    for (unsigned i = 0; i < V.size(); ++i) {
      if (V.test(i))
        continue;
      // This location is alive.
      Alives.push_back(Locs[i]);
    }

    // Try to create as few aggregated stores as possible out of the locations.
    LSLocation::reduce(L, Mod, Alives);

    // Oops, we have too many smaller stores generated, bail out.
    if (Alives.size() > MaxPartialStoreCount)
      return;

    // At this point, we are performing a partial dead store elimination.
    //
    // Locations here have a projection path from their Base, but this
    // particular instruction may not be accessing the base, so we need to
    // *rebase* the locations w.r.t. to the current instruction.
    SILValue B = Locs[0].getBase();
    Optional<ProjectionPath> BP = ProjectionPath::getProjectionPath(B, Mem);
    // Strip off the projection path from base to the accessed field.
    for (auto &X : Alives) {
      X.removePathPrefix(BP);
    }

    // We merely setup the remaining live stores, but do not materialize in IR
    // yet, These stores will be materialized before the algorithm exits.
    for (auto &X : Alives) {
      SILValue Value = X.getPath()->createExtract(Val, I, true);
      SILValue Addr = X.getPath()->createExtract(Mem, I, false);
      S->LiveAddr.insert(Addr);
      S->LiveStores[Addr] = Value;
    }

    // Lastly, mark the old store as dead.
    LLVM_DEBUG(llvm::dbgs() << "Instruction Partially Dead: " << *I << "\n");
    S->DeadStores.push_back(I);
    ++NumPartialDeadStores;
  }
}