int 
InitialInterpolatedLineSearch::search(double s0, 
				      double s1, 
				      LinearSOE &theSOE, 
				      IncrementalIntegrator &theIntegrator)
{
  double s = s1;

  //intialize r = ratio of residuals 
  double r0 = 0.0;

  if ( s0 != 0.0 ) 
    r0 = fabs( s / s0 );
	
  if  (r0 <= tolerance )
    return 0; // Line Search Not Required Residual Decrease Less Than Tolerance

  double eta = 1.0;     //initial value of line search parameter
  double etaPrev = 1.0;
  double r = r0;

  const Vector &dU = theSOE.getX();

  int count = 0; //intial value of iteration counter 

  if (printFlag == 0) {
    opserr << "InitialInterpolated Line Search - initial       "
	 << "    eta : " << eta 
	 << " , Ratio |s/s0| = " << r0 << endln;
  }    


  // Solution procedure follows the one in Crissfields book.
  // (M.A. Crissfield, Nonlinear Finite Element Analysis of Solid and Structures, Wiley. 97).
  // NOTE: it is not quite linear interpolation/false-position/regula-falsi as eta(0) = 0.0
  // does not change. uses eta(i) = eta(i-1)*s0
  //                                -----------
  //                                s0 - s(i-1)  to compute eta(i)


  //  opserr << "dU: " << dU;

  while ( r > tolerance  &&  count < maxIter ) {

    count++;
    
    eta *=  s0 / (s0 - s); 

    //-- want to put limits on eta(i)
    if (eta > maxEta)  eta = maxEta;
    if (r   > r0    )  eta =  1.0;
    if (eta < minEta)  eta = minEta;

    if (eta == etaPrev)
      break; // no change in response break

    //dx = ( eta * dx0 ); 
    *x = dU;
    *x *= eta-etaPrev;
	    
    if (theIntegrator.update(*x) < 0) {
      opserr << "WARNInG InitialInterpolatedLineSearch::search() -";
      opserr << "the Integrator failed in update()\n";	
      return -1;
    }
    
    if (theIntegrator.formUnbalance() < 0) {
      opserr << "WARNInG InitialInterpolatedLineSearch::search() -";
      opserr << "the Integrator failed in formUnbalance()\n";	
      return -2;
    }	

    //new residual
    const Vector &ResidI = theSOE.getB();
    
    //new value of s
    s = dU ^ ResidI;

    //new value of r 
    r = fabs( s / s0 ); 

    if (printFlag == 0) {
      opserr << "InitialInterpolated Line Search - iteration: " << count 
	   << " , eta(j) : " << eta
	   << " , Ratio |sj/s0| = " << r << endln;
    }    

    // reset the variables, also check not just hitting bounds over and over
    if (eta == etaPrev)
      count = maxIter;
    else
      etaPrev = eta;

  } //end while

  // set X in the SOE for the revised dU, needed for convergence tests
  *x = dU;

  if (eta != 0.0)
    *x *= eta;

  theSOE.setX(*x);

  return 0;
}
Esempio n. 2
0
int 
PeriodicNewton::solveCurrentStep(void)
{
    // set up some pointers and check they are valid
    // NOTE this could be taken away if we set Ptrs as protecetd in superclass
    AnalysisModel       *theAnalysisModel = this->getAnalysisModelPtr();
    IncrementalIntegrator *theIncIntegratorr = this->getIncrementalIntegratorPtr();
    LinearSOE	        *theSOE = this->getLinearSOEptr();

    if ((theAnalysisModel == 0) || (theIncIntegratorr == 0) || (theSOE == 0)
	|| (theTest == 0)){
	opserr << "WARNING PeriodicNewton::solveCurrentStep() - setLinks() has";
	opserr << " not been called - or no ConvergenceTest has been set\n";
	return -5;
    }	

    // we form the tangent
    
    if (theIncIntegratorr->formUnbalance() < 0) {
	opserr << "WARNING PeriodicNewton::solveCurrentStep() -";
	opserr << "the Integrator failed in formUnbalance()\n";	
	return -2;
    }	

    if (theIncIntegratorr->formTangent(tangent) < 0){
	opserr << "WARNING PeriodicNewton::solveCurrentStep() -";
	opserr << "the Integrator failed in formTangent()\n";
	return -1;
    }		    

    // set itself as the ConvergenceTest objects EquiSolnAlgo
    theTest->setEquiSolnAlgo(*this);
    if (theTest->start() < 0) {
      opserr << "PeriodicNewton::solveCurrentStep() -";
      opserr << "the ConvergenceTest object failed in start()\n";
      return -3;
    }

    // repeat until convergence is obtained or reach max num iterations
    int result = -1;
    int count = 0;
	int iter = 0;
    do {
	if (theSOE->solve() < 0) {
	    opserr << "WARNING PeriodicNewton::solveCurrentStep() -";
	    opserr << "the LinearSysOfEqn failed in solve()\n";	
	    return -3;
	}	    

	if (theIncIntegratorr->update(theSOE->getX()) < 0) {
	    opserr << "WARNING PeriodicNewton::solveCurrentStep() -";
	    opserr << "the Integrator failed in update()\n";	
	    return -4;
	}	        

	if (theIncIntegratorr->formUnbalance() < 0) {
	    opserr << "WARNING PeriodicNewton::solveCurrentStep() -";
	    opserr << "the Integrator failed in formUnbalance()\n";	
	    return -2;
	}	

	this->record(count++);
	result = theTest->test();
	
	iter++;
	if (iter > maxCount) {
		if (theIncIntegratorr->formTangent(tangent) < 0){
		opserr << "WARNING PeriodicNewton::solveCurrentStep() -";
		opserr << "the Integrator failed in formTangent()\n";
		return -1;
		}
		iter = 0;
	}

    } while (result == -1);

    if (result == -2) {
      opserr << "PeriodicNewton::solveCurrentStep() -";
      opserr << "the ConvergenceTest object failed in test()\n";
      return -3;
    }

    return result;
}
Esempio n. 3
0
int HHTGeneralized_TP::newStep(double _deltaT)
{
    if (beta == 0 || gamma == 0 )  {
        opserr << "HHTGeneralized_TP::newStep() - error in variable\n";
        opserr << "gamma = " << gamma << " beta = " << beta << endln;
        return -1;
    }
    
    deltaT = _deltaT;
    if (deltaT <= 0.0)  {
        opserr << "HHTGeneralized_TP::newStep() - error in variable\n";
        opserr << "dT = " << deltaT << endln;
        return -2;
    }
    
    // get a pointer to the LinearSOE and the AnalysisModel
    LinearSOE *theLinSOE = this->getLinearSOE();
    AnalysisModel *theModel = this->getAnalysisModel();
    if (theLinSOE == 0 || theModel == 0)  {
        opserr << "WARNING HHT_TP::newStep() - ";
        opserr << "no LinearSOE or AnalysisModel has been set\n";
        return -3;
    }
    
    // set the constants
    c1 = 1.0;
    c2 = gamma/(beta*deltaT);
    c3 = 1.0/(beta*deltaT*deltaT);
       
    if (U == 0)  {
        opserr << "HHTGeneralized_TP::newStep() - domainChange() failed or hasn't been called\n";
        return -4;
    }
    
    // set response at t to be that at t+deltaT of previous step
    (*Ut) = *U;
    (*Utdot) = *Udot;
    (*Utdotdot) = *Udotdot;
    
    // get unbalance at t and store it
    alphaM = (1.0 - alphaI);
    alphaD = alphaR = alphaP = (1.0 - alphaF);
    this->TransientIntegrator::formUnbalance();
    (*Put) = theLinSOE->getB();
    
    // determine new velocities and accelerations at t+deltaT
    double a1 = (1.0 - gamma/beta);
    double a2 = deltaT*(1.0 - 0.5*gamma/beta);
    Udot->addVector(a1, *Utdotdot, a2);
    
    double a3 = -1.0/(beta*deltaT);
    double a4 = 1.0 - 0.5/beta;  
    Udotdot->addVector(a4, *Utdot, a3);
    
    // set the trial response quantities
    theModel->setVel(*Udot);
    theModel->setAccel(*Udotdot);
    
    // increment the time to t+deltaT and apply the load
    double time = theModel->getCurrentDomainTime();
    time += deltaT;
    if (theModel->updateDomain(time, deltaT) < 0)  {
        opserr << "HHTGeneralized_TP::newStep() - failed to update the domain\n";
        return -5;
    }
    
    // modify constants for subsequent iterations
    alphaM = alphaI;
    alphaD = alphaR = alphaP = alphaF;
    
    return 0;
}
Esempio n. 4
0
int HHTGeneralized_TP::domainChanged()
{
    AnalysisModel *myModel = this->getAnalysisModel();
    LinearSOE *theLinSOE = this->getLinearSOE();
    const Vector &x = theLinSOE->getX();
    int size = x.Size();
    
    // create the new Vector objects
    if (Ut == 0 || Ut->Size() != size)  {
        
        // delete the old
        if (Ut != 0)
            delete Ut;
        if (Utdot != 0)
            delete Utdot;
        if (Utdotdot != 0)
            delete Utdotdot;
        if (U != 0)
            delete U;
        if (Udot != 0)
            delete Udot;
        if (Udotdot != 0)
            delete Udotdot;
        if (Put != 0)
            delete Put;
        
        // create the new
        Ut = new Vector(size);
        Utdot = new Vector(size);
        Utdotdot = new Vector(size);
        U = new Vector(size);
        Udot = new Vector(size);
        Udotdot = new Vector(size);
        Put = new Vector(size);
        
        // check we obtained the new
        if (Ut == 0 || Ut->Size() != size ||
            Utdot == 0 || Utdot->Size() != size ||
            Utdotdot == 0 || Utdotdot->Size() != size ||
            U == 0 || U->Size() != size ||
            Udot == 0 || Udot->Size() != size ||
            Udotdot == 0 || Udotdot->Size() != size ||
            Put == 0 || Put->Size() != size)  {
            
            opserr << "HHTGeneralized_TP::domainChanged - ran out of memory\n";
            
            // delete the old
            if (Ut != 0)
                delete Ut;
            if (Utdot != 0)
                delete Utdot;
            if (Utdotdot != 0)
                delete Utdotdot;
            if (U != 0)
                delete U;
            if (Udot != 0)
                delete Udot;
            if (Udotdot != 0)
                delete Udotdot;
            if (Put != 0)
                delete Put;
            
            Ut = 0; Utdot = 0; Utdotdot = 0;
            U = 0; Udot = 0; Udotdot = 0;
            Put = 0;
            
            return -1;
        }
    }
    
    // now go through and populate U, Udot and Udotdot by iterating through
    // the DOF_Groups and getting the last committed velocity and accel
    DOF_GrpIter &theDOFs = myModel->getDOFs();
    DOF_Group *dofPtr;
    while ((dofPtr = theDOFs()) != 0)  {
        const ID &id = dofPtr->getID();
        int idSize = id.Size();
        
        int i;
        const Vector &disp = dofPtr->getCommittedDisp();
        for (i=0; i < idSize; i++)  {
            int loc = id(i);
            if (loc >= 0)  {
                (*U)(loc) = disp(i);
            }
        }
        
        const Vector &vel = dofPtr->getCommittedVel();
        for (i=0; i < idSize; i++)  {
            int loc = id(i);
            if (loc >= 0)  {
                (*Udot)(loc) = vel(i);
            }
        }
        
        const Vector &accel = dofPtr->getCommittedAccel();
        for (i=0; i < idSize; i++)  {
            int loc = id(i);
            if (loc >= 0)  {
                (*Udotdot)(loc) = accel(i);
            }
        }
    }
    
    return 0;
}
Esempio n. 5
0
int 
DisplacementControl::domainChanged(void)
{
    // we first create the Vectors needed
    AnalysisModel *theModel = this->getAnalysisModel();
    LinearSOE *theLinSOE = this->getLinearSOE();    
    if (theModel == 0 || theLinSOE == 0) {
	opserr << "WARNING DisplacementControl::update() ";
	opserr << "No AnalysisModel or LinearSOE has been set\n";
	return -1;
    }    
    int size = theModel->getNumEqn(); // ask model in case N+1 space

    if (deltaUhat == 0 || deltaUhat->Size() != size) { // create new Vector
	if (deltaUhat != 0)
	    delete deltaUhat;   // delete the old
	deltaUhat = new Vector(size);
	if (deltaUhat == 0 || deltaUhat->Size() != size) { // check got it
	    opserr << "FATAL DisplacementControl::domainChanged() - ran out of memory for";
	    opserr << " deltaUhat Vector of size " << size << endln;
	    exit(-1);
	}
    }

    if (deltaUbar == 0 || deltaUbar->Size() != size) { // create new Vector
	if (deltaUbar != 0)
	    delete deltaUbar;   // delete the old
	deltaUbar = new Vector(size);
	if (deltaUbar == 0 || deltaUbar->Size() != size) { // check got it
	    opserr << "FATAL DisplacementControl::domainChanged() - ran out of memory for";
	    opserr << " deltaUbar Vector of size " << size << endln;
	    exit(-1);
	}
    }
    
    if (deltaU == 0 || deltaU->Size() != size) { // create new Vector
	if (deltaU != 0)
	    delete deltaU;   // delete the old
	deltaU = new Vector(size);
	if (deltaU == 0 || deltaU->Size() != size) { // check got it
	    opserr << "FATAL DisplacementControl::domainChanged() - ran out of memory for";
	    opserr << " deltaU Vector of size " << size << endln;
	    exit(-1);
	}
    }

    if (deltaUstep == 0 || deltaUstep->Size() != size) { 
	if (deltaUstep != 0)
	    delete deltaUstep;  
	deltaUstep = new Vector(size);
	if (deltaUstep == 0 || deltaUstep->Size() != size) { 
	    opserr << "FATAL DisplacementControl::domainChanged() - ran out of memory for";
	    opserr << " deltaUstep Vector of size " << size << endln;
	    exit(-1);
	}
    }

    if (phat == 0 || phat->Size() != size) { 
	if (phat != 0)
	    delete phat;  
	phat = new Vector(size);
	if (phat == 0 || phat->Size() != size) { 
	    opserr << "FATAL DisplacementControl::domainChanged() - ran out of memory for";
	    opserr << " phat Vector of size " << size << endln;
	    exit(-1);
	}
    }    

    // now we have to determine phat
    // do this by incrementing lambda by 1, applying load
    // and getting phat from unbalance.
    currentLambda = theModel->getCurrentDomainTime();
    currentLambda += 1.0;
    theModel->applyLoadDomain(currentLambda);    
    this->formUnbalance(); // NOTE: this assumes unbalance at last was 0
    (*phat) = theLinSOE->getB();
    currentLambda -= 1.0;
    theModel->setCurrentDomainTime(currentLambda);    


    // check there is a reference load
    int haveLoad = 0;
    for (int i=0; i<size; i++)
      if ( (*phat)(i) != 0.0 ) {
	haveLoad = 1;
	i = size;
      }

    if (haveLoad == 0) {
      opserr << "WARNING DisplacementControl::domainChanged() - zero reference load";
      return -1;
    }

    // lastly we determine the id of the nodal dof
    // EXTRA CODE TO DO SOME ERROR CHECKING REQUIRED
    
    Node *theNodePtr = theDomain->getNode(theNode);
	if (theNodePtr == 0) {
		opserr << "DisplacementControl::domainChanged - no node\n";
		return -1;
	}

    DOF_Group *theGroup = theNodePtr->getDOF_GroupPtr();
	if (theGroup == 0) {
	   return 0;
	}
    const ID &theID = theGroup->getID();
    theDofID = theID(theDof);
    
    return 0;
}
Esempio n. 6
0
int
DisplacementControl::newStep(void)
{
	if (theDofID == -1) {
		opserr << "DisplacementControl::newStep() - domainChanged has not been called\n";
		return -1;
	}

    // get pointers to AnalysisModel and LinearSOE
    AnalysisModel *theModel = this->getAnalysisModel();
    LinearSOE *theLinSOE = this->getLinearSOE();    
    if (theModel == 0 || theLinSOE == 0) {
	opserr << "WARNING DisplacementControl::newStep() ";
	opserr << "No AnalysisModel or LinearSOE has been set\n";
	return -1;
    }


    // determine increment for this iteration
    double factor = specNumIncrStep/numIncrLastStep;
    theIncrement *=factor;

    if (theIncrement < minIncrement)
      theIncrement = minIncrement;
    else if (theIncrement > maxIncrement)
      theIncrement = maxIncrement;


    // get the current load factor
    currentLambda = theModel->getCurrentDomainTime();

    // determine dUhat
    this->formTangent();
    theLinSOE->setB(*phat);

    if (theLinSOE->solve() < 0) {
      opserr << "DisplacementControl::newStep(void) - failed in solver\n";
      return -1;
    }

    (*deltaUhat) = theLinSOE->getX();
    Vector &dUhat = *deltaUhat;

    double dUahat = dUhat(theDofID);
    if (dUahat == 0.0) {
	opserr << "WARNING DisplacementControl::newStep() ";
	opserr << "dUahat is zero -- zero reference displacement at control node DOF\n";
	return -1;
    }
    
    // determine delta lambda(1) == dlambda    
    double dLambda = theIncrement/dUahat;

    deltaLambdaStep = dLambda;
    currentLambda += dLambda;
 //   opserr << "DisplacementControl: " << dUahat  << " " << theDofID << endln;
 //   opserr << "DisplacementControl::newStep() : " << deltaLambdaStep << endln;
    // determine delta U(1) == dU
    (*deltaU) = dUhat;
    (*deltaU) *= dLambda;
    (*deltaUstep) = (*deltaU);

    // update model with delta lambda and delta U
    theModel->incrDisp(*deltaU);    
    theModel->applyLoadDomain(currentLambda);    
    if (theModel->updateDomain() < 0) {
      opserr << "DisplacementControl::newStep - model failed to update for new dU\n";
      return -1;
    }

    numIncrLastStep = 0;

    return 0;
}
Esempio n. 7
0
int 
SecantLineSearch::search(double s0, 
				 double s1, 
				 LinearSOE &theSOE, 
				 IncrementalIntegrator &theIntegrator)
{
  double r0 = 0.0;

  if ( s0 != 0.0 ) 
    r0 = fabs( s1 / s0 );
	
  if  (r0 <= tolerance )
    return 0; // Line Search Not Required Residual Decrease Less Than Tolerance

  if (s1 == s0)
    return 0;  // Secant will have a divide-by-zero if continue

  // set some variables
  double eta    = 1.0;
  double s      = s1;
  double etaJ   = 1.0;
  double etaJm1 = 0.0;
  double sJ     = s1;
  double sJm1   = s0;
  double r = r0;

  const Vector &dU = theSOE.getX();

  if (printFlag == 0) {
    opserr << "Secant Line Search - initial: "
	 << "      eta(0) : " << eta << " , Ratio |s/s0| = " << r0 << endln;
  }

  // perform the secant iterations:
  //
  //                eta(j+1) = eta(j) -  s(j) * (eta(j-1)-eta(j))
  //                                     ------------------------
  //                                           s(j-1) - s(j)

  int count = 0; //intial value of iteration counter 
  while ( r > tolerance  &&  count < maxIter ) {
    
    count++;

    eta = etaJ - sJ * (etaJm1-etaJ) / (sJm1 - sJ);

    //-- want to put limits on eta and stop solution blowing up
    if (eta > maxEta)  eta = maxEta;
    if (r   > r0    )  eta =  1.0;
    if (eta < minEta)  eta = minEta;
    
    //update the incremental difference in response and determine new unbalance
    if (eta == etaJ) 
      break; // no change in response

    *x = dU;
    *x *= eta-etaJ;
	    
    if (theIntegrator.update(*x) < 0) {
      opserr << "WARNING SecantLineSearch::search() -";
      opserr << "the Integrator failed in update()\n";	
      return -1;
    }
    
    if (theIntegrator.formUnbalance() < 0) {
      opserr << "WARNING SecantLineSearch::search() -";
      opserr << "the Integrator failed in formUnbalance()\n";	
      return -2;
    }	

    //new residual
    const Vector &ResidJ = theSOE.getB();
    
    //new value of s
    s = dU ^ ResidJ;
    
    //new value of r 
    r = fabs( s / s0 ); 

    if (printFlag == 0) {
      opserr << "Secant Line Search - iteration: " << count 
	   << " , eta(j) : " << eta << " , Ratio |sj/s0| = " << r << endln;
    }

    if (etaJ == eta)
      count = maxIter;

    // set variables for next iteration
    etaJm1 = etaJ;
    etaJ = eta;
    sJm1 = sJ;
    sJ = s;

    if (sJm1 == sJ)
      count = maxIter;
    
  } //end while

  // set X in the SOE for the revised dU, needed for convergence tests
  *x = dU;
  *x *= eta;
  theSOE.setX(*x);

  return 0;
}
int CollocationHSFixedNumIter::domainChanged()
{
    AnalysisModel *myModel = this->getAnalysisModel();
    LinearSOE *theLinSOE = this->getLinearSOE();
    const Vector &x = theLinSOE->getX();
    int size = x.Size();
    
    // if damping factors exist set them in the ele & node of the domain
    if (alphaM != 0.0 || betaK != 0.0 || betaKi != 0.0 || betaKc != 0.0)
        myModel->setRayleighDampingFactors(alphaM, betaK, betaKi, betaKc);
    
    // create the new Vector objects
    if (Ut == 0 || Ut->Size() != size)  {
        
        // delete the old
        if (Ut != 0)
            delete Ut;
        if (Utdot != 0)
            delete Utdot;
        if (Utdotdot != 0)
            delete Utdotdot;
        if (U != 0)
            delete U;
        if (Udot != 0)
            delete Udot;
        if (Udotdot != 0)
            delete Udotdot;
        if (Utm1 != 0)
            delete Utm1;
        if (Utm2 != 0)
            delete Utm2;
        if (scaledDeltaU != 0)
            delete scaledDeltaU;
        
        // create the new
        Ut = new Vector(size);
        Utdot = new Vector(size);
        Utdotdot = new Vector(size);
        U = new Vector(size);
        Udot = new Vector(size);
        Udotdot = new Vector(size);
        Utm1 = new Vector(size);
        Utm2 = new Vector(size);
        scaledDeltaU = new Vector(size);
        
        // check we obtained the new
        if (Ut == 0 || Ut->Size() != size ||
            Utdot == 0 || Utdot->Size() != size ||
            Utdotdot == 0 || Utdotdot->Size() != size ||
            U == 0 || U->Size() != size ||
            Udot == 0 || Udot->Size() != size ||
            Udotdot == 0 || Udotdot->Size() != size ||
            Utm1 == 0 || Utm1->Size() != size ||
            Utm2 == 0 || Utm2->Size() != size ||
            scaledDeltaU == 0 || scaledDeltaU->Size() != size)  {
            
            opserr << "CollocationHSFixedNumIter::domainChanged - ran out of memory\n";
            
            // delete the old
            if (Ut != 0)
                delete Ut;
            if (Utdot != 0)
                delete Utdot;
            if (Utdotdot != 0)
                delete Utdotdot;
            if (U != 0)
                delete U;
            if (Udot != 0)
                delete Udot;
            if (Udotdot != 0)
                delete Udotdot;
            if (Utm1 != 0)
                delete Utm1;
            if (Utm2 != 0)
                delete Utm2;
            if (scaledDeltaU != 0)
                delete scaledDeltaU;
            
            Ut = 0; Utdot = 0; Utdotdot = 0;
            U = 0; Udot = 0; Udotdot = 0;
            Utm1 = 0; Utm2 = 0; scaledDeltaU = 0;
            
            return -1;
        }
    }        
    
    // now go through and populate U, Udot and Udotdot by iterating through
    // the DOF_Groups and getting the last committed velocity and accel
    DOF_GrpIter &theDOFs = myModel->getDOFs();
    DOF_Group *dofPtr;
    while ((dofPtr = theDOFs()) != 0)  {
        const ID &id = dofPtr->getID();
        int idSize = id.Size();
        
        int i;
        const Vector &disp = dofPtr->getCommittedDisp();	
        for (i=0; i < idSize; i++)  {
            int loc = id(i);
            if (loc >= 0)  {
                (*Utm1)(loc) = disp(i);
                (*Ut)(loc) = disp(i);
                (*U)(loc) = disp(i);		
            }
        }
        
        const Vector &vel = dofPtr->getCommittedVel();
        for (i=0; i < idSize; i++)  {
            int loc = id(i);
            if (loc >= 0)  {
                (*Udot)(loc) = vel(i);
            }
        }
        
        const Vector &accel = dofPtr->getCommittedAccel();	
        for (i=0; i < idSize; i++)  {
            int loc = id(i);
            if (loc >= 0)  {
                (*Udotdot)(loc) = accel(i);
            }
        }        
    }    
    
    if (polyOrder == 2)
        opserr << "\nWARNING: CollocationHSFixedNumIter::domainChanged() - assuming Ut-1 = Ut\n";
    else if (polyOrder == 3)
        opserr << "\nWARNING: CollocationHSFixedNumIter::domainChanged() - assuming Ut-2 = Ut-1 = Ut\n";
    
    return 0;
}
Esempio n. 9
0
int
DisplacementPath::update(const Vector &dU)
{
    // opserr << " update is invoked " << endln;
	if (theDofID == -1) {
		opserr << "DisplacementControl::newStep() - domainChanged has not been called\n";
		return -1;
	}
    AnalysisModel *theModel = this->getAnalysisModel();
    LinearSOE *theLinSOE = this->getLinearSOE();    
    if (theModel == 0 || theLinSOE == 0) {
	opserr << "WARNING DisplacementPath::update() ";
	opserr << "No AnalysisModel or LinearSOE has been set\n";
	return -1;
    }

    (*deltaUbar) = dU; // have to do this as the SOE is gonna change
    double dUabar = (*deltaUbar)(theDofID);
    
    // determine dUhat    
    theLinSOE->setB(*phat);
    theLinSOE->solve();
    (*deltaUhat) = theLinSOE->getX();    

	// add by zhong for check purpose
    //int size = deltaUhat->Size();
	//opserr << "\n size of deltaUhat = " << size << endln;
    //for (int i=0; i<size; i++) {
    //   opserr << " dektaUhat(i) = " << (*deltaUhat)(i) << endln;
    //}
	// finish here

    double dUahat = (*deltaUhat)(theDofID);
	//opserr << " theDofID = " << theDofID << endln;
	
	//opserr << "update( ) " << endln;
	//opserr << "dUahat = " << dUahat << endln;

    if (dUahat == 0.0) {
	opserr << "WARNING DisplacementPath::update() ";
	opserr << "dUahat is zero -- zero reference displacement at control node DOF\n";
	return -1;
    }
    
    // determine delta lambda(1) == dlambda    
    double dLambda = -dUabar/dUahat;

    // add by zhong
	//opserr << "\n dUahat = " << dUahat << endln;
	//opserr << " dUabar = " << dUabar << endln;
	//opserr << " dLambda = " << dLambda << endln;
	// finish
    
    // determine delta U(i)
    (*deltaU) = (*deltaUbar);    
    deltaU->addVector(1.0, *deltaUhat,dLambda);
    
    // update dU and dlambda
    (*deltaUstep) += *deltaU;
    deltaLambdaStep += dLambda;
    currentLambda += dLambda;

    // update the model
    theModel->incrDisp(*deltaU);    
    theModel->applyLoadDomain(currentLambda);    
    if (theModel->updateDomain() < 0) {
      opserr << "DisplacementPath::update - model failed to update for new dU\n";
      return -1;
    }
	
    
    // set the X soln in linearSOE to be deltaU for convergence Test
    theLinSOE->setX(*deltaU);


    return 0;
}
Esempio n. 10
0
int
DisplacementPath::newStep(void)
{
	if (theDofID == -1) {
		opserr << "DisplacementPath::newStep() - domainChanged has not been called\n";
		return -1;
	}

    // get pointers to AnalysisModel and LinearSOE
    AnalysisModel *theModel = this->getAnalysisModel();
    LinearSOE *theLinSOE = this->getLinearSOE();    
    if (theModel == 0 || theLinSOE == 0) {
	opserr << "WARNING DisplacementPath::newStep() ";
	opserr << "No AnalysisModel or LinearSOE has been set\n";
	return -1;
    }

	// check theIncrementVector Vector
	if ( theIncrementVector == 0 ) {
		opserr << "DisplacementPath::newStep() - no theIncrementVector associated with object\n";
		return -2;
	}


    // determine increment for this iteration
    if (currentStep < theIncrementVector->Size()) {
		theCurrentIncrement = (*theIncrementVector)(currentStep);
	}
	else {
		theCurrentIncrement = 0.0;
		opserr << "DisplacementPath::newStep() - reach the end of specified load path\n";
		opserr << " - setting theCurrentIncrement = 0.0\n";
	}


    // get the current load factor
    currentLambda = theModel->getCurrentDomainTime();


    // determine dUhat and dUabar
    this->formTangent();
    this->formUnbalance();

	(*deltaUbar) = theLinSOE->getX();
	double dUabar = (*deltaUbar)(theDofID);


    theLinSOE->setB(*phat);

    if (theLinSOE->solve() < 0) {
      opserr << "DisplacementControl::newStep(void) - failed in solver\n";
      return -1;
    }
    
	
	(*deltaUhat) = theLinSOE->getX();
    Vector &dUhat = *deltaUhat;

    double dUahat = dUhat(theDofID);

	//opserr << " newStep( ) " << endln;
    //opserr << " theDofID = " << theDofID << endln;
	//opserr << "dUahat = " << dUahat << endln;

    if (dUahat == 0.0) {
	opserr << "WARNING DisplacementPath::newStep() ";
	opserr << "dUahat is zero -- zero reference displacement at control node DOF\n";
    
	opserr << "currentStep = " << currentStep << endln; // add by zhong
	opserr << " theCurrentIncrement = " << theCurrentIncrement << endln; // zhong

	return -1;
    }
    

    // determine delta lambda(1) == dlambda    
    double dLambda = (theCurrentIncrement-dUabar)/dUahat;

    deltaLambdaStep = dLambda;
    currentLambda += dLambda;
 //   opserr << "DisplacementPath: " << dUahat  << " " << theDofID << endln;
 //   opserr << "DisplacementPath::newStep() : " << deltaLambdaStep << endln;
    // determine delta U(1) == dU
    (*deltaU) = dUhat;
    (*deltaU) *= dLambda;
    (*deltaUstep) = (*deltaU);

    // update model with delta lambda and delta U
    theModel->incrDisp(*deltaU);    
    theModel->applyLoadDomain(currentLambda);    
    if (theModel->updateDomain() < 0) {
      opserr << "DisplacementPath::newStep - model failed to update for new dU\n";
      return -1;
    }

    currentStep++;

    return 0;
}
Esempio n. 11
0
int
ArcLengthw::newStep(void)
{
    ofstream factor;
    factor.open("factor.dat",ios::app);
    // get pointers to AnalysisModel and LinearSOE
    AnalysisModel *theModel = this->getAnalysisModel();
    LinearSOE *theLinSOE = this->getLinearSOE();
	if (theModel == 0 || theLinSOE == 0) {
	opserr << "WARNING ArcLengthw::newStep() ";
	opserr << "No AnalysisModel or LinearSOE has been set\n";
	return -1;
    }

    // get the current load factor
    currentLambda = theModel->getCurrentDomainTime();
 
    factor<<"currentLambda"<<endln;
    factor<<currentLambda<<endln;

    // determine dUhat
    this->formTangent();
    theLinSOE->setB(*phat);
    theLinSOE->solve();
    (*deltaUhat) = theLinSOE->getX();
    Vector &dUhat = *deltaUhat;

    factor<<"dUhat"<<endln;
    //factor>>dUhat;

    int size = dUhat.Size();
    int i = 0;
    double sum = 0.0;
    int Ji_1 = 0;
    double dLambda = 0.0;
    factor<<"dWibefore"<<endln;
    factor<<dWi<<endln;
    factor<<"*phat"<<endln;
    //factor>>*phat;
    factor<<"dUhat"<<endln;
    //factor>>dUhat;
    factor<<"iFactor"<<endln;
    factor<<iFactor<<endln;
    factor<<"Jd"<<endln;
    factor<<Jd<<endln;
    factor<<"iflag"<<endln;
    factor<<iflag<<endln;
    double dJd = Jd;
    double dJi_1 = 1.0;
    if( iflag == 0 ){
       dWi = ( (*phat) ^ dUhat ) * iFactor * iFactor;
       dLambda = iFactor; 
       iflag = 1;  
    }
    else if( iflag == 1 ){
	   Ji_1 = 10; //theAlgo->getNumIteration();
       dJi_1 = Ji_1;
       dWi = dWi * pow(( dJd / dJi_1 ),0.01);
       dLambda = dWi / ( (*phat)^(dUhat) );
    }
    if( Ji_1 >0){
    factor<<"Jd/Ji-1"<<endln;
    factor<<dJd/dJi_1<<endln;
    }
    factor<<"iflag"<<endln;
    factor<<iflag<<endln;

    factor<<"Ji_1"<<endln;
    factor<<Ji_1<<endln;

    factor<<"dWi"<<endln;
    factor<<dWi<<endln;
    
    deltaLambdaStep = dLambda;
    currentLambda += dLambda;

    (*deltaU) = dUhat;
    (*deltaU) *= dLambda;
    (*deltaUstep) = (*deltaU);

    // update model with delta lambda and delta U
    theModel->incrDisp(*deltaU);    
    theModel->applyLoadDomain(currentLambda);    
    theModel->updateDomain();

    return 0;
}
Esempio n. 12
0
int 
ArcLengthw::domainChanged(void)
{
    // we first create the Vectors needed
    AnalysisModel *theModel = this->getAnalysisModel();
    LinearSOE *theLinSOE = this->getLinearSOE();    
    if (theModel == 0 || theLinSOE == 0) {
	opserr << "WARNING ArcLengthw::update() ";
	opserr << "No AnalysisModel or LinearSOE has been set\n";
	return -1;
    }    
    int size = theModel->getNumEqn(); // ask model in case N+1 space

    if (deltaUhat == 0 || deltaUhat->Size() != size) { // create new Vector
	if (deltaUhat != 0)
	    delete deltaUhat;   // delete the old
	deltaUhat = new Vector(size);
	if (deltaUhat == 0 || deltaUhat->Size() != size) { // check got it
	    opserr << "FATAL ArcLengthw::domainChanged() - ran out of memory for";
	    opserr << " deltaUhat Vector of size " << size << endln;
	    exit(-1);
	}
    }

    if (deltaUbar == 0 || deltaUbar->Size() != size) { // create new Vector
	if (deltaUbar != 0)
	    delete deltaUbar;   // delete the old
	deltaUbar = new Vector(size);
	if (deltaUbar == 0 || deltaUbar->Size() != size) { // check got it
	    opserr << "FATAL ArcLengthw::domainChanged() - ran out of memory for";
	    opserr << " deltaUbar Vector of size " << size << endln;
	    exit(-1);
	}
    }

    
    if (deltaU == 0 || deltaU->Size() != size) { // create new Vector
	if (deltaU != 0)
	    delete deltaU;   // delete the old
	deltaU = new Vector(size);
	if (deltaU == 0 || deltaU->Size() != size) { // check got it
	    opserr << "FATAL ArcLengthw::domainChanged() - ran out of memory for";
	    opserr << " deltaU Vector of size " << size << endln;
	    exit(-1);
	}
    }

    if (deltaUstep == 0 || deltaUstep->Size() != size) { 
	if (deltaUstep != 0)
	    delete deltaUstep;  
	deltaUstep = new Vector(size);
	if (deltaUstep == 0 || deltaUstep->Size() != size) { 
	    opserr << "FATAL ArcLengthw::domainChanged() - ran out of memory for";
	    opserr << " deltaUstep Vector of size " << size << endln;
	    exit(-1);
	}
    }

    if (phat == 0 || phat->Size() != size) { 
	if (phat != 0)
	    delete phat;  
	phat = new Vector(size);
	if (phat == 0 || phat->Size() != size) { 
	    opserr << "FATAL ArcLengthw::domainChanged() - ran out of memory for";
	    opserr << " phat Vector of size " << size << endln;
	    exit(-1);
	}
    }    

    // now we have to determine phat
    // do this by incrementing lambda by 1, applying load
    // and getting phat from unbalance.
    currentLambda = theModel->getCurrentDomainTime();
    currentLambda += 1.0;
    theModel->applyLoadDomain(currentLambda);    
    this->formUnbalance(); // NOTE: this assumes unbalance at last was 0
    (*phat) = theLinSOE->getB();
    currentLambda -= 1.0;
    theModel->setCurrentDomainTime(currentLambda);    
    
    return 0;
}
Esempio n. 13
0
int 
PFEMIntegrator::formSensitivityRHS(int passedGradNumber)
{
    sensitivityFlag = 1;


    // Set a couple of data members
    gradNumber = passedGradNumber;

    // Get pointer to the SOE
    LinearSOE *theSOE = this->getLinearSOE();


    // Get the analysis model
    AnalysisModel *theModel = this->getAnalysisModel();



    // Randomness in external load (including randomness in time series)
    // Get domain
    Domain *theDomain = theModel->getDomainPtr();

    // Loop through nodes to zero the unbalaced load
    Node *nodePtr;
    NodeIter &theNodeIter = theDomain->getNodes();
    while ((nodePtr = theNodeIter()) != 0)
	nodePtr->zeroUnbalancedLoad();


    // Loop through load patterns to add external load sensitivity
    LoadPattern *loadPatternPtr;
    LoadPatternIter &thePatterns = theDomain->getLoadPatterns();
    double time;
    while((loadPatternPtr = thePatterns()) != 0) {
        time = theDomain->getCurrentTime();
        loadPatternPtr->applyLoadSensitivity(time);
    }


    // Randomness in element/material contributions
    // Loop through FE elements
    FE_Element *elePtr;
    FE_EleIter &theEles = theModel->getFEs();    
    while((elePtr = theEles()) != 0) {
        theSOE->addB(  elePtr->getResidual(this),  elePtr->getID()  );
    }


    // Loop through DOF groups (IT IS IMPORTANT THAT THIS IS DONE LAST!)
    DOF_Group *dofPtr;
    DOF_GrpIter &theDOFs = theModel->getDOFs();
    while((dofPtr = theDOFs()) != 0) {
        theSOE->addB(  dofPtr->getUnbalance(this),  dofPtr->getID()  );
    }


    // Reset the sensitivity flag
    sensitivityFlag = 0;

    return 0;
}
Esempio n. 14
0
int KRAlphaExplicit::newStep(double _deltaT)
{
    updateCount = 0;
    
    if (beta == 0 || gamma == 0 )  {
        opserr << "WARNING KRAlphaExplicit::newStep() - error in variable\n";
        opserr << "gamma = " << gamma << " beta = " << beta << endln;
        return -1;
    }
    
    // get a pointer to the AnalysisModel
    AnalysisModel *theModel = this->getAnalysisModel();
    if (theModel == 0)  {
        opserr << "WARNING KRAlphaExplicit::newStep() - no AnalysisModel set\n";
        return -2;
    }
    
    if (initAlphaMatrices || _deltaT != deltaT)  {
        
        // update time step increment
        deltaT = _deltaT;
        if (deltaT <= 0.0)  {
            opserr << "WARNING KRAlphaExplicit::newStep() - error in variable\n";
            opserr << "dT = " << deltaT << endln;
            return -3;
        }
        
        // get the LinearSOE and the ConvergenceTest so we can switch back later
        LinearSOE *theLinSOE = this->getLinearSOE();
        ConvergenceTest *theTest = this->getConvergenceTest();
        
        // set up the FullLinearSOE (needed to compute the alpha matrices)
        int size = theLinSOE->getNumEqn();
        FullGenLinSolver *theFullLinSolver = new FullGenLinLapackSolver();
        LinearSOE *theFullLinSOE = new FullGenLinSOE(size, *theFullLinSolver);
        if (theFullLinSOE == 0)  {
            opserr << "WARNING KRAlphaExplicit::newStep() - failed to create FullLinearSOE\n";
            return -4;
        }
        theFullLinSOE->setLinks(*theModel);
        
        // now switch the SOE to the FullLinearSOE
        this->IncrementalIntegrator::setLinks(*theModel, *theFullLinSOE, theTest);
        
        // get a pointer to the A matrix of the FullLinearSOE
        const Matrix *tmp = theFullLinSOE->getA();
        if (tmp == 0)  {
            opserr << "WARNING KRAlphaExplicit::domainChanged() - ";
            opserr << "failed to get A matrix of FullGeneral LinearSOE\n";
            return -5;
        
        }
        
        // calculate the integration parameter matrices
        c1 = beta*deltaT*deltaT;
        c2 = gamma*deltaT;
        c3 = 1.0;
        this->TransientIntegrator::formTangent(INITIAL_TANGENT);
        Matrix A(*tmp);
        
        c1 *= (1.0 - alphaF);
        c2 *= (1.0 - alphaF);
        c3 = (1.0 -alphaM);
        this->TransientIntegrator::formTangent(INITIAL_TANGENT);
        Matrix B3(*tmp);
        
        // solve [M + gamma*deltaT*C + beta*deltaT^2*K]*[alpha3] = 
        // [alphaM*M + alphaF*gamma*deltaT*C + alphaF*beta*deltaT^2*K] for alpha3
        A.Solve(B3, *alpha3);
        
        c1 = 0.0;
        c2 = 0.0;
        c3 = 1.0;
        this->TransientIntegrator::formTangent(INITIAL_TANGENT);
        Matrix B1(*tmp);
        
        // solve [M + gamma*deltaT*C + beta*deltaT^2*K]*[alpha1] = [M] for alpha1
        A.Solve(B1, *alpha1);
        
        // calculate the effective mass matrix Mhat
        Mhat->addMatrix(0.0, B1, 1.0);
        Mhat->addMatrixProduct(1.0, B1, *alpha3, -1.0);
        
        // switch the SOE back to the user specified one
        this->IncrementalIntegrator::setLinks(*theModel, *theLinSOE, theTest);
        
        initAlphaMatrices = 0;
    }
    
    if (U == 0)  {
        opserr << "WARNING KRAlphaExplicit::newStep() - domainChange() failed or hasn't been called\n";
        return -6;
    }
    
    // set response at t to be that at t+deltaT of previous step
    (*Ut) = *U;
    (*Utdot) = *Udot;
    (*Utdotdot) = *Udotdot;
    
    // determine new response at time t+deltaT
    //U->addVector(1.0, *Utdot, deltaT);
    //double a1 = (0.5 + gamma)*deltaT*deltaT
    //U->addMatrixVector(1.0, *alpha1, *Utdotdot, a1);
    
    //Udot->addMatrixVector(1.0, *alpha1, *Utdotdot, deltaT);
    
    // determine new response at time t+deltaT
    Utdothat->addMatrixVector(0.0, *alpha1, *Utdotdot, deltaT); 
    
    U->addVector(1.0, *Utdot, deltaT);
    double a1 = (0.5 + gamma)*deltaT;
    U->addVector(1.0, *Utdothat, a1);
    
    Udot->addVector(1.0, *Utdothat, 1.0);
    
    // determine the response at t+alpha*deltaT
    Ualpha->addVector(0.0, *Ut, (1.0-alphaF));
    Ualpha->addVector(1.0, *U, alphaF);
    
    Ualphadot->addVector(0.0, *Utdot, (1.0-alphaF));
    Ualphadot->addVector(1.0, *Udot, alphaF);
    
    Ualphadotdot->addMatrixVector(0.0, *alpha3, *Utdotdot, 1.0);
    
    // set the trial response quantities
    theModel->setResponse(*Ualpha, *Ualphadot, *Ualphadotdot);
    
    // increment the time to t+alpha*deltaT and apply the load
    double time = theModel->getCurrentDomainTime();
    time += alphaF*deltaT;
    if (theModel->updateDomain(time, deltaT) < 0)  {
        opserr << "WARNING KRAlphaExplicit::newStep() - failed to update the domain\n";
        return -7;
    }
    
    return 0;
}
Esempio n. 15
0
int KRAlphaExplicit::domainChanged()
{
    AnalysisModel *myModel = this->getAnalysisModel();
    LinearSOE *theLinSOE = this->getLinearSOE();
    const Vector &x = theLinSOE->getX();
    int size = x.Size();
    
    // create the new Matrix and Vector objects
    if (Ut == 0 || Ut->Size() != size)  {
        
        // delete the old
        if (alpha1 != 0)
            delete alpha1;
        if (alpha3 != 0)
            delete alpha3;
        if (Mhat != 0)
            delete Mhat;
        if (Ut != 0)
            delete Ut;
        if (Utdot != 0)
            delete Utdot;
        if (Utdotdot != 0)
            delete Utdotdot;
        if (U != 0)
            delete U;
        if (Udot != 0)
            delete Udot;
        if (Udotdot != 0)
            delete Udotdot;
        if (Ualpha != 0)
            delete Ualpha;
        if (Ualphadot != 0)
            delete Ualphadot;
        if (Ualphadotdot != 0)
            delete Ualphadotdot;
        if (Utdothat != 0)
            delete Utdothat;
        
        // create the new
        alpha1 = new Matrix(size,size);
        alpha3 = new Matrix(size,size);
        Mhat = new Matrix(size,size);
        Ut = new Vector(size);
        Utdot = new Vector(size);
        Utdotdot = new Vector(size);
        U = new Vector(size);
        Udot = new Vector(size);
        Udotdot = new Vector(size);
        Ualpha = new Vector(size);
        Ualphadot = new Vector(size);
        Ualphadotdot = new Vector(size);
        Utdothat = new Vector(size);
        
        // check we obtained the new
        if (alpha1 == 0 || alpha1->noRows() != size || alpha1->noCols() != size ||
            alpha3 == 0 || alpha3->noRows() != size || alpha3->noCols() != size ||
            Mhat == 0 || Mhat->noRows() != size || Mhat->noCols() != size ||
            Ut == 0 || Ut->Size() != size ||
            Utdot == 0 || Utdot->Size() != size ||
            Utdotdot == 0 || Utdotdot->Size() != size ||
            U == 0 || U->Size() != size ||
            Udot == 0 || Udot->Size() != size ||
            Udotdot == 0 || Udotdot->Size() != size ||
            Ualpha == 0 || Ualpha->Size() != size ||
            Ualphadot == 0 || Ualphadot->Size() != size ||
            Ualphadotdot == 0 || Ualphadotdot->Size() != size ||
            Utdothat == 0 || Utdothat->Size() != size)  {
            
            opserr << "WARNING KRAlphaExplicit::domainChanged() - ";
            opserr << "ran out of memory\n";
            
            // delete the old
            if (alpha1 != 0)
                delete alpha1;
            if (alpha3 != 0)
                delete alpha3;
            if (Mhat != 0)
                delete Mhat;
            if (Ut != 0)
                delete Ut;
            if (Utdot != 0)
                delete Utdot;
            if (Utdotdot != 0)
                delete Utdotdot;
            if (U != 0)
                delete U;
            if (Udot != 0)
                delete Udot;
            if (Udotdot != 0)
                delete Udotdot;
            if (Ualpha != 0)
                delete Ualpha;
            if (Ualphadot != 0)
                delete Ualphadot;
            if (Ualphadotdot != 0)
                delete Ualphadotdot;
            if (Utdothat != 0)
                delete Utdothat;
            
            alpha1 = 0; alpha3 = 0; Mhat = 0;
            Ut = 0; Utdot = 0; Utdotdot = 0;
            U = 0; Udot = 0; Udotdot = 0;
            Ualpha = 0; Ualphadot = 0; Ualphadotdot = 0;
            Utdothat = 0;
            
            return -1;
        }
    }
    
    // now go through and populate U, Udot and Udotdot by iterating through
    // the DOF_Groups and getting the last committed velocity and accel
    DOF_GrpIter &theDOFs = myModel->getDOFs();
    DOF_Group *dofPtr;
    while ((dofPtr = theDOFs()) != 0)  {
        const ID &id = dofPtr->getID();
        int idSize = id.Size();
        
        int i;
        const Vector &disp = dofPtr->getCommittedDisp();
        for (i=0; i < idSize; i++)  {
            int loc = id(i);
            if (loc >= 0)  {
                (*U)(loc) = disp(i);
            }
        }
        
        const Vector &vel = dofPtr->getCommittedVel();
        for (i=0; i < idSize; i++)  {
            int loc = id(i);
            if (loc >= 0)  {
                (*Udot)(loc) = vel(i);
            }
        }
        
        const Vector &accel = dofPtr->getCommittedAccel();
        for (i=0; i < idSize; i++)  {
            int loc = id(i);
            if (loc >= 0)  {
                (*Udotdot)(loc) = accel(i);
            }
        }
    }
    
    // recalculate integration parameter matrices b/c domain changed
    initAlphaMatrices = 1;
    
    return 0;
}