void LiveRangeCalc::extend(LiveRange &LR, SlotIndex Kill, unsigned PhysReg) { assert(Kill.isValid() && "Invalid SlotIndex"); assert(Indexes && "Missing SlotIndexes"); assert(DomTree && "Missing dominator tree"); MachineBasicBlock *KillMBB = Indexes->getMBBFromIndex(Kill.getPrevSlot()); assert(KillMBB && "No MBB at Kill"); // Is there a def in the same MBB we can extend? if (LR.extendInBlock(Indexes->getMBBStartIdx(KillMBB), Kill)) return; // Find the single reaching def, or determine if Kill is jointly dominated by // multiple values, and we may need to create even more phi-defs to preserve // VNInfo SSA form. Perform a search for all predecessor blocks where we // know the dominating VNInfo. if (findReachingDefs(LR, *KillMBB, Kill, PhysReg)) return; // When there were multiple different values, we may need new PHIs. calculateValues(); }
void LiveRangeCalc::createDeadDefs(LiveRange &LR, unsigned Reg) { assert(MRI && Indexes && "call reset() first"); // Visit all def operands. If the same instruction has multiple defs of Reg, // LR.createDeadDef() will deduplicate. for (MachineRegisterInfo::def_iterator I = MRI->def_begin(Reg), E = MRI->def_end(); I != E; ++I) { const MachineInstr *MI = &*I; // Find the corresponding slot index. SlotIndex Idx; if (MI->isPHI()) // PHI defs begin at the basic block start index. Idx = Indexes->getMBBStartIdx(MI->getParent()); else // Instructions are either normal 'r', or early clobber 'e'. Idx = Indexes->getInstructionIndex(MI) .getRegSlot(I.getOperand().isEarlyClobber()); // Create the def in LR. This may find an existing def. LR.createDeadDef(Idx, *Alloc); } }
void LiveRangeCalc::extend(LiveRange &LR, SlotIndex Use, unsigned PhysReg, ArrayRef<SlotIndex> Undefs) { assert(Use.isValid() && "Invalid SlotIndex"); assert(Indexes && "Missing SlotIndexes"); assert(DomTree && "Missing dominator tree"); MachineBasicBlock *UseMBB = Indexes->getMBBFromIndex(Use.getPrevSlot()); assert(UseMBB && "No MBB at Use"); // Is there a def in the same MBB we can extend? auto EP = LR.extendInBlock(Undefs, Indexes->getMBBStartIdx(UseMBB), Use); if (EP.first != nullptr || EP.second) return; // Find the single reaching def, or determine if Use is jointly dominated by // multiple values, and we may need to create even more phi-defs to preserve // VNInfo SSA form. Perform a search for all predecessor blocks where we // know the dominating VNInfo. if (findReachingDefs(LR, *UseMBB, Use, PhysReg, Undefs)) return; // When there were multiple different values, we may need new PHIs. calculateValues(); }
// overlaps - Return true if the intersection of the two live ranges is // not empty. // // An example for overlaps(): // // 0: A = ... // 4: B = ... // 8: C = A + B ;; last use of A // // The live ranges should look like: // // A = [3, 11) // B = [7, x) // C = [11, y) // // A->overlaps(C) should return false since we want to be able to join // A and C. // bool LiveRange::overlapsFrom(const LiveRange& other, const_iterator StartPos) const { assert(!empty() && "empty range"); const_iterator i = begin(); const_iterator ie = end(); const_iterator j = StartPos; const_iterator je = other.end(); assert((StartPos->start <= i->start || StartPos == other.begin()) && StartPos != other.end() && "Bogus start position hint!"); if (i->start < j->start) { i = std::upper_bound(i, ie, j->start); if (i != begin()) --i; } else if (j->start < i->start) { ++StartPos; if (StartPos != other.end() && StartPos->start <= i->start) { assert(StartPos < other.end() && i < end()); j = std::upper_bound(j, je, i->start); if (j != other.begin()) --j; } } else { return true; } if (j == je) return false; while (i != ie) { if (i->start > j->start) { std::swap(i, j); std::swap(ie, je); } if (i->end > j->start) return true; ++i; } return false; }
void PSMarkSweepDecorator::precompact() { // Reset our own compact top. set_compaction_top(space()->bottom()); /* We allow some amount of garbage towards the bottom of the space, so * we don't start compacting before there is a significant gain to be made. * Occasionally, we want to ensure a full compaction, which is determined * by the MarkSweepAlwaysCompactCount parameter. This is a significant * performance improvement! */ bool skip_dead = ((PSMarkSweep::total_invocations() % MarkSweepAlwaysCompactCount) != 0); size_t allowed_deadspace = 0; if (skip_dead) { const size_t ratio = allowed_dead_ratio(); allowed_deadspace = space()->capacity_in_words() * ratio / 100; } // Fetch the current destination decorator PSMarkSweepDecorator* dest = destination_decorator(); ObjectStartArray* start_array = dest->start_array(); HeapWord* compact_top = dest->compaction_top(); HeapWord* compact_end = dest->space()->end(); HeapWord* q = space()->bottom(); HeapWord* t = space()->top(); HeapWord* end_of_live= q; /* One byte beyond the last byte of the last live object. */ HeapWord* first_dead = space()->end(); /* The first dead object. */ LiveRange* liveRange = NULL; /* The current live range, recorded in the first header of preceding free area. */ _first_dead = first_dead; const intx interval = PrefetchScanIntervalInBytes; while (q < t) { assert(oop(q)->mark()->is_marked() || oop(q)->mark()->is_unlocked() || oop(q)->mark()->has_bias_pattern(), "these are the only valid states during a mark sweep"); if (oop(q)->is_gc_marked()) { /* prefetch beyond q */ Prefetch::write(q, interval); size_t size = oop(q)->size(); size_t compaction_max_size = pointer_delta(compact_end, compact_top); // This should only happen if a space in the young gen overflows the // old gen. If that should happen, we null out the start_array, because // the young spaces are not covered by one. while(size > compaction_max_size) { // First record the last compact_top dest->set_compaction_top(compact_top); // Advance to the next compaction decorator advance_destination_decorator(); dest = destination_decorator(); // Update compaction info start_array = dest->start_array(); compact_top = dest->compaction_top(); compact_end = dest->space()->end(); assert(compact_top == dest->space()->bottom(), "Advanced to space already in use"); assert(compact_end > compact_top, "Must always be space remaining"); compaction_max_size = pointer_delta(compact_end, compact_top); } // store the forwarding pointer into the mark word if (q != compact_top) { oop(q)->forward_to(oop(compact_top)); assert(oop(q)->is_gc_marked(), "encoding the pointer should preserve the mark"); } else { // if the object isn't moving we can just set the mark to the default // mark and handle it specially later on. oop(q)->init_mark(); assert(oop(q)->forwardee() == NULL, "should be forwarded to NULL"); } // Update object start array if (start_array) { start_array->allocate_block(compact_top); } VALIDATE_MARK_SWEEP_ONLY(MarkSweep::register_live_oop(oop(q), size)); compact_top += size; assert(compact_top <= dest->space()->end(), "Exceeding space in destination"); q += size; end_of_live = q; } else { /* run over all the contiguous dead objects */ HeapWord* end = q; do { /* prefetch beyond end */ Prefetch::write(end, interval); end += oop(end)->size(); } while (end < t && (!oop(end)->is_gc_marked())); /* see if we might want to pretend this object is alive so that * we don't have to compact quite as often. */ if (allowed_deadspace > 0 && q == compact_top) { size_t sz = pointer_delta(end, q); if (insert_deadspace(allowed_deadspace, q, sz)) { size_t compaction_max_size = pointer_delta(compact_end, compact_top); // This should only happen if a space in the young gen overflows the // old gen. If that should happen, we null out the start_array, because // the young spaces are not covered by one. while (sz > compaction_max_size) { // First record the last compact_top dest->set_compaction_top(compact_top); // Advance to the next compaction decorator advance_destination_decorator(); dest = destination_decorator(); // Update compaction info start_array = dest->start_array(); compact_top = dest->compaction_top(); compact_end = dest->space()->end(); assert(compact_top == dest->space()->bottom(), "Advanced to space already in use"); assert(compact_end > compact_top, "Must always be space remaining"); compaction_max_size = pointer_delta(compact_end, compact_top); } // store the forwarding pointer into the mark word if (q != compact_top) { oop(q)->forward_to(oop(compact_top)); assert(oop(q)->is_gc_marked(), "encoding the pointer should preserve the mark"); } else { // if the object isn't moving we can just set the mark to the default // mark and handle it specially later on. oop(q)->init_mark(); assert(oop(q)->forwardee() == NULL, "should be forwarded to NULL"); } // Update object start array if (start_array) { start_array->allocate_block(compact_top); } VALIDATE_MARK_SWEEP_ONLY(MarkSweep::register_live_oop(oop(q), sz)); compact_top += sz; assert(compact_top <= dest->space()->end(), "Exceeding space in destination"); q = end; end_of_live = end; continue; } } /* for the previous LiveRange, record the end of the live objects. */ if (liveRange) { liveRange->set_end(q); } /* record the current LiveRange object. * liveRange->start() is overlaid on the mark word. */ liveRange = (LiveRange*)q; liveRange->set_start(end); liveRange->set_end(end); /* see if this is the first dead region. */ if (q < first_dead) { first_dead = q; } /* move on to the next object */ q = end; } } assert(q == t, "just checking"); if (liveRange != NULL) { liveRange->set_end(q); } _end_of_live = end_of_live; if (end_of_live < first_dead) { first_dead = end_of_live; } _first_dead = first_dead; // Update compaction top dest->set_compaction_top(compact_top); }
void UserValue::computeIntervals(MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI, LiveIntervals &LIS, LexicalScopes &LS) { SmallVector<std::pair<SlotIndex, unsigned>, 16> Defs; // Collect all defs to be extended (Skipping undefs). for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) if (I.value() != UndefLocNo) Defs.push_back(std::make_pair(I.start(), I.value())); // Extend all defs, and possibly add new ones along the way. for (unsigned i = 0; i != Defs.size(); ++i) { SlotIndex Idx = Defs[i].first; unsigned LocNo = Defs[i].second; const MachineOperand &Loc = locations[LocNo]; if (!Loc.isReg()) { extendDef(Idx, LocNo, nullptr, nullptr, nullptr, LIS); continue; } // Register locations are constrained to where the register value is live. if (TargetRegisterInfo::isVirtualRegister(Loc.getReg())) { LiveInterval *LI = nullptr; const VNInfo *VNI = nullptr; if (LIS.hasInterval(Loc.getReg())) { LI = &LIS.getInterval(Loc.getReg()); VNI = LI->getVNInfoAt(Idx); } SmallVector<SlotIndex, 16> Kills; extendDef(Idx, LocNo, LI, VNI, &Kills, LIS); if (LI) addDefsFromCopies(LI, LocNo, Kills, Defs, MRI, LIS); continue; } // For physregs, use the live range of the first regunit as a guide. unsigned Unit = *MCRegUnitIterator(Loc.getReg(), &TRI); LiveRange *LR = &LIS.getRegUnit(Unit); const VNInfo *VNI = LR->getVNInfoAt(Idx); // Don't track copies from physregs, it is too expensive. extendDef(Idx, LocNo, LR, VNI, nullptr, LIS); } // Erase all the undefs. for (LocMap::iterator I = locInts.begin(); I.valid();) if (I.value() == UndefLocNo) I.erase(); else ++I; // The computed intervals may extend beyond the range of the debug // location's lexical scope. In this case, splitting of an interval // can result in an interval outside of the scope being created, // causing extra unnecessary DBG_VALUEs to be emitted. To prevent // this, trim the intervals to the lexical scope. LexicalScope *Scope = LS.findLexicalScope(dl); if (!Scope) return; SlotIndex PrevEnd; LocMap::iterator I = locInts.begin(); // Iterate over the lexical scope ranges. Each time round the loop // we check the intervals for overlap with the end of the previous // range and the start of the next. The first range is handled as // a special case where there is no PrevEnd. for (const InsnRange &Range : Scope->getRanges()) { SlotIndex RStart = LIS.getInstructionIndex(*Range.first); SlotIndex REnd = LIS.getInstructionIndex(*Range.second); // At the start of each iteration I has been advanced so that // I.stop() >= PrevEnd. Check for overlap. if (PrevEnd && I.start() < PrevEnd) { SlotIndex IStop = I.stop(); unsigned LocNo = I.value(); // Stop overlaps previous end - trim the end of the interval to // the scope range. I.setStopUnchecked(PrevEnd); ++I; // If the interval also overlaps the start of the "next" (i.e. // current) range create a new interval for the remainder (which // may be further trimmed). if (RStart < IStop) I.insert(RStart, IStop, LocNo); } // Advance I so that I.stop() >= RStart, and check for overlap. I.advanceTo(RStart); if (!I.valid()) return; if (I.start() < RStart) { // Interval start overlaps range - trim to the scope range. I.setStartUnchecked(RStart); // Remember that this interval was trimmed. trimmedDefs.insert(RStart); } // The end of a lexical scope range is the last instruction in the // range. To convert to an interval we need the index of the // instruction after it. REnd = REnd.getNextIndex(); // Advance I to first interval outside current range. I.advanceTo(REnd); if (!I.valid()) return; PrevEnd = REnd; } // Check for overlap with end of final range. if (PrevEnd && I.start() < PrevEnd) I.setStopUnchecked(PrevEnd); }
/// Merge all of the segments in RHS into this live range as the specified /// value number. The segments in RHS are allowed to overlap with segments in /// the current range, but only if the overlapping segments have the /// specified value number. void LiveRange::MergeSegmentsInAsValue(const LiveRange &RHS, VNInfo *LHSValNo) { LiveRangeUpdater Updater(this); for (const_iterator I = RHS.begin(), E = RHS.end(); I != E; ++I) Updater.add(I->start, I->end, LHSValNo); }
void LiveRange::join(LiveRange &Other, const int *LHSValNoAssignments, const int *RHSValNoAssignments, SmallVectorImpl<VNInfo *> &NewVNInfo) { verify(); // Determine if any of our values are mapped. This is uncommon, so we want // to avoid the range scan if not. bool MustMapCurValNos = false; unsigned NumVals = getNumValNums(); unsigned NumNewVals = NewVNInfo.size(); for (unsigned i = 0; i != NumVals; ++i) { unsigned LHSValID = LHSValNoAssignments[i]; if (i != LHSValID || (NewVNInfo[LHSValID] && NewVNInfo[LHSValID] != getValNumInfo(i))) { MustMapCurValNos = true; break; } } // If we have to apply a mapping to our base range assignment, rewrite it now. if (MustMapCurValNos && !empty()) { // Map the first live range. iterator OutIt = begin(); OutIt->valno = NewVNInfo[LHSValNoAssignments[OutIt->valno->id]]; for (iterator I = std::next(OutIt), E = end(); I != E; ++I) { VNInfo* nextValNo = NewVNInfo[LHSValNoAssignments[I->valno->id]]; assert(nextValNo != 0 && "Huh?"); // If this live range has the same value # as its immediate predecessor, // and if they are neighbors, remove one Segment. This happens when we // have [0,4:0)[4,7:1) and map 0/1 onto the same value #. if (OutIt->valno == nextValNo && OutIt->end == I->start) { OutIt->end = I->end; } else { // Didn't merge. Move OutIt to the next segment, ++OutIt; OutIt->valno = nextValNo; if (OutIt != I) { OutIt->start = I->start; OutIt->end = I->end; } } } // If we merge some segments, chop off the end. ++OutIt; segments.erase(OutIt, end()); } // Rewrite Other values before changing the VNInfo ids. // This can leave Other in an invalid state because we're not coalescing // touching segments that now have identical values. That's OK since Other is // not supposed to be valid after calling join(); for (iterator I = Other.begin(), E = Other.end(); I != E; ++I) I->valno = NewVNInfo[RHSValNoAssignments[I->valno->id]]; // Update val# info. Renumber them and make sure they all belong to this // LiveRange now. Also remove dead val#'s. unsigned NumValNos = 0; for (unsigned i = 0; i < NumNewVals; ++i) { VNInfo *VNI = NewVNInfo[i]; if (VNI) { if (NumValNos >= NumVals) valnos.push_back(VNI); else valnos[NumValNos] = VNI; VNI->id = NumValNos++; // Renumber val#. } } if (NumNewVals < NumVals) valnos.resize(NumNewVals); // shrinkify // Okay, now insert the RHS live segments into the LHS. LiveRangeUpdater Updater(this); for (iterator I = Other.begin(), E = Other.end(); I != E; ++I) Updater.add(*I); }
bool LiveRangeCalc::findReachingDefs(LiveRange &LR, MachineBasicBlock &UseMBB, SlotIndex Use, unsigned PhysReg, ArrayRef<SlotIndex> Undefs) { unsigned UseMBBNum = UseMBB.getNumber(); // Block numbers where LR should be live-in. SmallVector<unsigned, 16> WorkList(1, UseMBBNum); // Remember if we have seen more than one value. bool UniqueVNI = true; VNInfo *TheVNI = nullptr; bool FoundUndef = false; // Using Seen as a visited set, perform a BFS for all reaching defs. for (unsigned i = 0; i != WorkList.size(); ++i) { MachineBasicBlock *MBB = MF->getBlockNumbered(WorkList[i]); #ifndef NDEBUG if (MBB->pred_empty()) { MBB->getParent()->verify(); errs() << "Use of " << printReg(PhysReg) << " does not have a corresponding definition on every path:\n"; const MachineInstr *MI = Indexes->getInstructionFromIndex(Use); if (MI != nullptr) errs() << Use << " " << *MI; report_fatal_error("Use not jointly dominated by defs."); } if (TargetRegisterInfo::isPhysicalRegister(PhysReg) && !MBB->isLiveIn(PhysReg)) { MBB->getParent()->verify(); const TargetRegisterInfo *TRI = MRI->getTargetRegisterInfo(); errs() << "The register " << printReg(PhysReg, TRI) << " needs to be live in to " << printMBBReference(*MBB) << ", but is missing from the live-in list.\n"; report_fatal_error("Invalid global physical register"); } #endif FoundUndef |= MBB->pred_empty(); for (MachineBasicBlock *Pred : MBB->predecessors()) { // Is this a known live-out block? if (Seen.test(Pred->getNumber())) { if (VNInfo *VNI = Map[Pred].first) { if (TheVNI && TheVNI != VNI) UniqueVNI = false; TheVNI = VNI; } continue; } SlotIndex Start, End; std::tie(Start, End) = Indexes->getMBBRange(Pred); // First time we see Pred. Try to determine the live-out value, but set // it as null if Pred is live-through with an unknown value. auto EP = LR.extendInBlock(Undefs, Start, End); VNInfo *VNI = EP.first; FoundUndef |= EP.second; setLiveOutValue(Pred, EP.second ? &UndefVNI : VNI); if (VNI) { if (TheVNI && TheVNI != VNI) UniqueVNI = false; TheVNI = VNI; } if (VNI || EP.second) continue; // No, we need a live-in value for Pred as well if (Pred != &UseMBB) WorkList.push_back(Pred->getNumber()); else // Loopback to UseMBB, so value is really live through. Use = SlotIndex(); } } LiveIn.clear(); FoundUndef |= (TheVNI == nullptr || TheVNI == &UndefVNI); if (!Undefs.empty() && FoundUndef) UniqueVNI = false; // Both updateSSA() and LiveRangeUpdater benefit from ordered blocks, but // neither require it. Skip the sorting overhead for small updates. if (WorkList.size() > 4) array_pod_sort(WorkList.begin(), WorkList.end()); // If a unique reaching def was found, blit in the live ranges immediately. if (UniqueVNI) { assert(TheVNI != nullptr && TheVNI != &UndefVNI); LiveRangeUpdater Updater(&LR); for (unsigned BN : WorkList) { SlotIndex Start, End; std::tie(Start, End) = Indexes->getMBBRange(BN); // Trim the live range in UseMBB. if (BN == UseMBBNum && Use.isValid()) End = Use; else Map[MF->getBlockNumbered(BN)] = LiveOutPair(TheVNI, nullptr); Updater.add(Start, End, TheVNI); } return true; } // Prepare the defined/undefined bit vectors. EntryInfoMap::iterator Entry; bool DidInsert; std::tie(Entry, DidInsert) = EntryInfos.insert( std::make_pair(&LR, std::make_pair(BitVector(), BitVector()))); if (DidInsert) { // Initialize newly inserted entries. unsigned N = MF->getNumBlockIDs(); Entry->second.first.resize(N); Entry->second.second.resize(N); } BitVector &DefOnEntry = Entry->second.first; BitVector &UndefOnEntry = Entry->second.second; // Multiple values were found, so transfer the work list to the LiveIn array // where UpdateSSA will use it as a work list. LiveIn.reserve(WorkList.size()); for (unsigned BN : WorkList) { MachineBasicBlock *MBB = MF->getBlockNumbered(BN); if (!Undefs.empty() && !isDefOnEntry(LR, Undefs, *MBB, DefOnEntry, UndefOnEntry)) continue; addLiveInBlock(LR, DomTree->getNode(MBB)); if (MBB == &UseMBB) LiveIn.back().Kill = Use; } return false; }
bool LiveRangeCalc::isDefOnEntry(LiveRange &LR, ArrayRef<SlotIndex> Undefs, MachineBasicBlock &MBB, BitVector &DefOnEntry, BitVector &UndefOnEntry) { unsigned BN = MBB.getNumber(); if (DefOnEntry[BN]) return true; if (UndefOnEntry[BN]) return false; auto MarkDefined = [BN, &DefOnEntry](MachineBasicBlock &B) -> bool { for (MachineBasicBlock *S : B.successors()) DefOnEntry[S->getNumber()] = true; DefOnEntry[BN] = true; return true; }; SetVector<unsigned> WorkList; // Checking if the entry of MBB is reached by some def: add all predecessors // that are potentially defined-on-exit to the work list. for (MachineBasicBlock *P : MBB.predecessors()) WorkList.insert(P->getNumber()); for (unsigned i = 0; i != WorkList.size(); ++i) { // Determine if the exit from the block is reached by some def. unsigned N = WorkList[i]; MachineBasicBlock &B = *MF->getBlockNumbered(N); if (Seen[N]) { const LiveOutPair &LOB = Map[&B]; if (LOB.first != nullptr && LOB.first != &UndefVNI) return MarkDefined(B); } SlotIndex Begin, End; std::tie(Begin, End) = Indexes->getMBBRange(&B); // Treat End as not belonging to B. // If LR has a segment S that starts at the next block, i.e. [End, ...), // std::upper_bound will return the segment following S. Instead, // S should be treated as the first segment that does not overlap B. LiveRange::iterator UB = std::upper_bound(LR.begin(), LR.end(), End.getPrevSlot()); if (UB != LR.begin()) { LiveRange::Segment &Seg = *std::prev(UB); if (Seg.end > Begin) { // There is a segment that overlaps B. If the range is not explicitly // undefined between the end of the segment and the end of the block, // treat the block as defined on exit. If it is, go to the next block // on the work list. if (LR.isUndefIn(Undefs, Seg.end, End)) continue; return MarkDefined(B); } } // No segment overlaps with this block. If this block is not defined on // entry, or it undefines the range, do not process its predecessors. if (UndefOnEntry[N] || LR.isUndefIn(Undefs, Begin, End)) { UndefOnEntry[N] = true; continue; } if (DefOnEntry[N]) return MarkDefined(B); // Still don't know: add all predecessors to the work list. for (MachineBasicBlock *P : B.predecessors()) WorkList.insert(P->getNumber()); } UndefOnEntry[BN] = true; return false; }
bool LiveRangeCalc::findReachingDefs(LiveRange &LR, MachineBasicBlock &UseMBB, SlotIndex Use, unsigned PhysReg) { unsigned UseMBBNum = UseMBB.getNumber(); // Block numbers where LR should be live-in. SmallVector<unsigned, 16> WorkList(1, UseMBBNum); // Remember if we have seen more than one value. bool UniqueVNI = true; VNInfo *TheVNI = nullptr; // Using Seen as a visited set, perform a BFS for all reaching defs. for (unsigned i = 0; i != WorkList.size(); ++i) { MachineBasicBlock *MBB = MF->getBlockNumbered(WorkList[i]); #ifndef NDEBUG if (MBB->pred_empty()) { MBB->getParent()->verify(); errs() << "Use of " << PrintReg(PhysReg) << " does not have a corresponding definition on every path:\n"; const MachineInstr *MI = Indexes->getInstructionFromIndex(Use); if (MI != nullptr) errs() << Use << " " << *MI; llvm_unreachable("Use not jointly dominated by defs."); } if (TargetRegisterInfo::isPhysicalRegister(PhysReg) && !MBB->isLiveIn(PhysReg)) { MBB->getParent()->verify(); errs() << "The register " << PrintReg(PhysReg) << " needs to be live in to BB#" << MBB->getNumber() << ", but is missing from the live-in list.\n"; llvm_unreachable("Invalid global physical register"); } #endif for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), PE = MBB->pred_end(); PI != PE; ++PI) { MachineBasicBlock *Pred = *PI; // Is this a known live-out block? if (Seen.test(Pred->getNumber())) { if (VNInfo *VNI = Map[Pred].first) { if (TheVNI && TheVNI != VNI) UniqueVNI = false; TheVNI = VNI; } continue; } SlotIndex Start, End; std::tie(Start, End) = Indexes->getMBBRange(Pred); // First time we see Pred. Try to determine the live-out value, but set // it as null if Pred is live-through with an unknown value. VNInfo *VNI = LR.extendInBlock(Start, End); setLiveOutValue(Pred, VNI); if (VNI) { if (TheVNI && TheVNI != VNI) UniqueVNI = false; TheVNI = VNI; continue; } // No, we need a live-in value for Pred as well if (Pred != &UseMBB) WorkList.push_back(Pred->getNumber()); else // Loopback to UseMBB, so value is really live through. Use = SlotIndex(); } } LiveIn.clear(); // Both updateSSA() and LiveRangeUpdater benefit from ordered blocks, but // neither require it. Skip the sorting overhead for small updates. if (WorkList.size() > 4) array_pod_sort(WorkList.begin(), WorkList.end()); // If a unique reaching def was found, blit in the live ranges immediately. if (UniqueVNI) { LiveRangeUpdater Updater(&LR); for (SmallVectorImpl<unsigned>::const_iterator I = WorkList.begin(), E = WorkList.end(); I != E; ++I) { SlotIndex Start, End; std::tie(Start, End) = Indexes->getMBBRange(*I); // Trim the live range in UseMBB. if (*I == UseMBBNum && Use.isValid()) End = Use; else Map[MF->getBlockNumbered(*I)] = LiveOutPair(TheVNI, nullptr); Updater.add(Start, End, TheVNI); } return true; } // Multiple values were found, so transfer the work list to the LiveIn array // where UpdateSSA will use it as a work list. LiveIn.reserve(WorkList.size()); for (SmallVectorImpl<unsigned>::const_iterator I = WorkList.begin(), E = WorkList.end(); I != E; ++I) { MachineBasicBlock *MBB = MF->getBlockNumbered(*I); addLiveInBlock(LR, DomTree->getNode(MBB)); if (MBB == &UseMBB) LiveIn.back().Kill = Use; } return false; }
/// shrinkToUses - After removing some uses of a register, shrink its live /// range to just the remaining uses. This method does not compute reaching /// defs for new uses, and it doesn't remove dead defs. bool LiveIntervals::shrinkToUses(LiveInterval *li, SmallVectorImpl<MachineInstr*> *dead) { DEBUG(dbgs() << "Shrink: " << *li << '\n'); assert(TargetRegisterInfo::isVirtualRegister(li->reg) && "Can only shrink virtual registers"); // Find all the values used, including PHI kills. SmallVector<std::pair<SlotIndex, VNInfo*>, 16> WorkList; // Blocks that have already been added to WorkList as live-out. SmallPtrSet<MachineBasicBlock*, 16> LiveOut; // Visit all instructions reading li->reg. for (MachineRegisterInfo::reg_instr_iterator I = MRI->reg_instr_begin(li->reg), E = MRI->reg_instr_end(); I != E; ) { MachineInstr *UseMI = &*(I++); if (UseMI->isDebugValue() || !UseMI->readsVirtualRegister(li->reg)) continue; SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot(); LiveQueryResult LRQ = li->Query(Idx); VNInfo *VNI = LRQ.valueIn(); if (!VNI) { // This shouldn't happen: readsVirtualRegister returns true, but there is // no live value. It is likely caused by a target getting <undef> flags // wrong. DEBUG(dbgs() << Idx << '\t' << *UseMI << "Warning: Instr claims to read non-existent value in " << *li << '\n'); continue; } // Special case: An early-clobber tied operand reads and writes the // register one slot early. if (VNInfo *DefVNI = LRQ.valueDefined()) Idx = DefVNI->def; WorkList.push_back(std::make_pair(Idx, VNI)); } // Create new live ranges with only minimal live segments per def. LiveRange NewLR; for (LiveInterval::vni_iterator I = li->vni_begin(), E = li->vni_end(); I != E; ++I) { VNInfo *VNI = *I; if (VNI->isUnused()) continue; NewLR.addSegment(LiveRange::Segment(VNI->def, VNI->def.getDeadSlot(), VNI)); } // Keep track of the PHIs that are in use. SmallPtrSet<VNInfo*, 8> UsedPHIs; // Extend intervals to reach all uses in WorkList. while (!WorkList.empty()) { SlotIndex Idx = WorkList.back().first; VNInfo *VNI = WorkList.back().second; WorkList.pop_back(); const MachineBasicBlock *MBB = getMBBFromIndex(Idx.getPrevSlot()); SlotIndex BlockStart = getMBBStartIdx(MBB); // Extend the live range for VNI to be live at Idx. if (VNInfo *ExtVNI = NewLR.extendInBlock(BlockStart, Idx)) { (void)ExtVNI; assert(ExtVNI == VNI && "Unexpected existing value number"); // Is this a PHIDef we haven't seen before? if (!VNI->isPHIDef() || VNI->def != BlockStart || !UsedPHIs.insert(VNI)) continue; // The PHI is live, make sure the predecessors are live-out. for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PE = MBB->pred_end(); PI != PE; ++PI) { if (!LiveOut.insert(*PI)) continue; SlotIndex Stop = getMBBEndIdx(*PI); // A predecessor is not required to have a live-out value for a PHI. if (VNInfo *PVNI = li->getVNInfoBefore(Stop)) WorkList.push_back(std::make_pair(Stop, PVNI)); } continue; } // VNI is live-in to MBB. DEBUG(dbgs() << " live-in at " << BlockStart << '\n'); NewLR.addSegment(LiveRange::Segment(BlockStart, Idx, VNI)); // Make sure VNI is live-out from the predecessors. for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PE = MBB->pred_end(); PI != PE; ++PI) { if (!LiveOut.insert(*PI)) continue; SlotIndex Stop = getMBBEndIdx(*PI); assert(li->getVNInfoBefore(Stop) == VNI && "Wrong value out of predecessor"); WorkList.push_back(std::make_pair(Stop, VNI)); } } // Handle dead values. bool CanSeparate = false; for (LiveInterval::vni_iterator I = li->vni_begin(), E = li->vni_end(); I != E; ++I) { VNInfo *VNI = *I; if (VNI->isUnused()) continue; LiveRange::iterator LRI = NewLR.FindSegmentContaining(VNI->def); assert(LRI != NewLR.end() && "Missing segment for PHI"); if (LRI->end != VNI->def.getDeadSlot()) continue; if (VNI->isPHIDef()) { // This is a dead PHI. Remove it. VNI->markUnused(); NewLR.removeSegment(LRI->start, LRI->end); DEBUG(dbgs() << "Dead PHI at " << VNI->def << " may separate interval\n"); CanSeparate = true; } else { // This is a dead def. Make sure the instruction knows. MachineInstr *MI = getInstructionFromIndex(VNI->def); assert(MI && "No instruction defining live value"); MI->addRegisterDead(li->reg, TRI); if (dead && MI->allDefsAreDead()) { DEBUG(dbgs() << "All defs dead: " << VNI->def << '\t' << *MI); dead->push_back(MI); } } } // Move the trimmed segments back. li->segments.swap(NewLR.segments); DEBUG(dbgs() << "Shrunk: " << *li << '\n'); return CanSeparate; }
void InterferenceCache::Entry::update(unsigned MBBNum) { SlotIndex Start, Stop; tie(Start, Stop) = Indexes->getMBBRange(MBBNum); // Use advanceTo only when possible. if (PrevPos != Start) { if (!PrevPos.isValid() || Start < PrevPos) { for (unsigned i = 0, e = RegUnits.size(); i != e; ++i) { RegUnitInfo &RUI = RegUnits[i]; RUI.VirtI.find(Start); RUI.FixedI = RUI.Fixed->find(Start); } } else { for (unsigned i = 0, e = RegUnits.size(); i != e; ++i) { RegUnitInfo &RUI = RegUnits[i]; RUI.VirtI.advanceTo(Start); if (RUI.FixedI != RUI.Fixed->end()) RUI.FixedI = RUI.Fixed->advanceTo(RUI.FixedI, Start); } } PrevPos = Start; } MachineFunction::const_iterator MFI = MF->getBlockNumbered(MBBNum); BlockInterference *BI = &Blocks[MBBNum]; ArrayRef<SlotIndex> RegMaskSlots; ArrayRef<const uint32_t*> RegMaskBits; for (;;) { BI->Tag = Tag; BI->First = BI->Last = SlotIndex(); // Check for first interference from virtregs. for (unsigned i = 0, e = RegUnits.size(); i != e; ++i) { LiveIntervalUnion::SegmentIter &I = RegUnits[i].VirtI; if (!I.valid()) continue; SlotIndex StartI = I.start(); if (StartI >= Stop) continue; if (!BI->First.isValid() || StartI < BI->First) BI->First = StartI; } // Same thing for fixed interference. for (unsigned i = 0, e = RegUnits.size(); i != e; ++i) { LiveInterval::const_iterator I = RegUnits[i].FixedI; LiveInterval::const_iterator E = RegUnits[i].Fixed->end(); if (I == E) continue; SlotIndex StartI = I->start; if (StartI >= Stop) continue; if (!BI->First.isValid() || StartI < BI->First) BI->First = StartI; } // Also check for register mask interference. RegMaskSlots = LIS->getRegMaskSlotsInBlock(MBBNum); RegMaskBits = LIS->getRegMaskBitsInBlock(MBBNum); SlotIndex Limit = BI->First.isValid() ? BI->First : Stop; for (unsigned i = 0, e = RegMaskSlots.size(); i != e && RegMaskSlots[i] < Limit; ++i) if (MachineOperand::clobbersPhysReg(RegMaskBits[i], PhysReg)) { // Register mask i clobbers PhysReg before the LIU interference. BI->First = RegMaskSlots[i]; break; } PrevPos = Stop; if (BI->First.isValid()) break; // No interference in this block? Go ahead and precompute the next block. if (++MFI == MF->end()) return; MBBNum = MFI->getNumber(); BI = &Blocks[MBBNum]; if (BI->Tag == Tag) return; tie(Start, Stop) = Indexes->getMBBRange(MBBNum); } // Check for last interference in block. for (unsigned i = 0, e = RegUnits.size(); i != e; ++i) { LiveIntervalUnion::SegmentIter &I = RegUnits[i].VirtI; if (!I.valid() || I.start() >= Stop) continue; I.advanceTo(Stop); bool Backup = !I.valid() || I.start() >= Stop; if (Backup) --I; SlotIndex StopI = I.stop(); if (!BI->Last.isValid() || StopI > BI->Last) BI->Last = StopI; if (Backup) ++I; } // Fixed interference. for (unsigned i = 0, e = RegUnits.size(); i != e; ++i) { LiveInterval::iterator &I = RegUnits[i].FixedI; LiveRange *LR = RegUnits[i].Fixed; if (I == LR->end() || I->start >= Stop) continue; I = LR->advanceTo(I, Stop); bool Backup = I == LR->end() || I->start >= Stop; if (Backup) --I; SlotIndex StopI = I->end; if (!BI->Last.isValid() || StopI > BI->Last) BI->Last = StopI; if (Backup) ++I; } // Also check for register mask interference. SlotIndex Limit = BI->Last.isValid() ? BI->Last : Start; for (unsigned i = RegMaskSlots.size(); i && RegMaskSlots[i-1].getDeadSlot() > Limit; --i) if (MachineOperand::clobbersPhysReg(RegMaskBits[i-1], PhysReg)) { // Register mask i-1 clobbers PhysReg after the LIU interference. // Model the regmask clobber as a dead def. BI->Last = RegMaskSlots[i-1].getDeadSlot(); break; } }
void HexagonExpandCondsets::updateDeadsInRange(unsigned Reg, LaneBitmask LM, LiveRange &Range) { assert(TargetRegisterInfo::isVirtualRegister(Reg)); if (Range.empty()) return; // Return two booleans: { def-modifes-reg, def-covers-reg }. auto IsRegDef = [this,Reg,LM] (MachineOperand &Op) -> std::pair<bool,bool> { if (!Op.isReg() || !Op.isDef()) return { false, false }; unsigned DR = Op.getReg(), DSR = Op.getSubReg(); if (!TargetRegisterInfo::isVirtualRegister(DR) || DR != Reg) return { false, false }; LaneBitmask SLM = getLaneMask(DR, DSR); LaneBitmask A = SLM & LM; return { A.any(), A == SLM }; }; // The splitting step will create pairs of predicated definitions without // any implicit uses (since implicit uses would interfere with predication). // This can cause the reaching defs to become dead after live range // recomputation, even though they are not really dead. // We need to identify predicated defs that need implicit uses, and // dead defs that are not really dead, and correct both problems. auto Dominate = [this] (SetVector<MachineBasicBlock*> &Defs, MachineBasicBlock *Dest) -> bool { for (MachineBasicBlock *D : Defs) if (D != Dest && MDT->dominates(D, Dest)) return true; MachineBasicBlock *Entry = &Dest->getParent()->front(); SetVector<MachineBasicBlock*> Work(Dest->pred_begin(), Dest->pred_end()); for (unsigned i = 0; i < Work.size(); ++i) { MachineBasicBlock *B = Work[i]; if (Defs.count(B)) continue; if (B == Entry) return false; for (auto *P : B->predecessors()) Work.insert(P); } return true; }; // First, try to extend live range within individual basic blocks. This // will leave us only with dead defs that do not reach any predicated // defs in the same block. SetVector<MachineBasicBlock*> Defs; SmallVector<SlotIndex,4> PredDefs; for (auto &Seg : Range) { if (!Seg.start.isRegister()) continue; MachineInstr *DefI = LIS->getInstructionFromIndex(Seg.start); Defs.insert(DefI->getParent()); if (HII->isPredicated(*DefI)) PredDefs.push_back(Seg.start); } SmallVector<SlotIndex,8> Undefs; LiveInterval &LI = LIS->getInterval(Reg); LI.computeSubRangeUndefs(Undefs, LM, *MRI, *LIS->getSlotIndexes()); for (auto &SI : PredDefs) { MachineBasicBlock *BB = LIS->getMBBFromIndex(SI); auto P = Range.extendInBlock(Undefs, LIS->getMBBStartIdx(BB), SI); if (P.first != nullptr || P.second) SI = SlotIndex(); } // Calculate reachability for those predicated defs that were not handled // by the in-block extension. SmallVector<SlotIndex,4> ExtTo; for (auto &SI : PredDefs) { if (!SI.isValid()) continue; MachineBasicBlock *BB = LIS->getMBBFromIndex(SI); if (BB->pred_empty()) continue; // If the defs from this range reach SI via all predecessors, it is live. // It can happen that SI is reached by the defs through some paths, but // not all. In the IR coming into this optimization, SI would not be // considered live, since the defs would then not jointly dominate SI. // That means that SI is an overwriting def, and no implicit use is // needed at this point. Do not add SI to the extension points, since // extendToIndices will abort if there is no joint dominance. // If the abort was avoided by adding extra undefs added to Undefs, // extendToIndices could actually indicate that SI is live, contrary // to the original IR. if (Dominate(Defs, BB)) ExtTo.push_back(SI); } if (!ExtTo.empty()) LIS->extendToIndices(Range, ExtTo, Undefs); // Remove <dead> flags from all defs that are not dead after live range // extension, and collect all def operands. They will be used to generate // the necessary implicit uses. // At the same time, add <dead> flag to all defs that are actually dead. // This can happen, for example, when a mux with identical inputs is // replaced with a COPY: the use of the predicate register disappears and // the dead can become dead. std::set<RegisterRef> DefRegs; for (auto &Seg : Range) { if (!Seg.start.isRegister()) continue; MachineInstr *DefI = LIS->getInstructionFromIndex(Seg.start); for (auto &Op : DefI->operands()) { auto P = IsRegDef(Op); if (P.second && Seg.end.isDead()) { Op.setIsDead(true); } else if (P.first) { DefRegs.insert(Op); Op.setIsDead(false); } } } // Now, add implicit uses to each predicated def that is reached // by other defs. for (auto &Seg : Range) { if (!Seg.start.isRegister() || !Range.liveAt(Seg.start.getPrevSlot())) continue; MachineInstr *DefI = LIS->getInstructionFromIndex(Seg.start); if (!HII->isPredicated(*DefI)) continue; // Construct the set of all necessary implicit uses, based on the def // operands in the instruction. std::set<RegisterRef> ImpUses; for (auto &Op : DefI->operands()) if (Op.isReg() && Op.isDef() && DefRegs.count(Op)) ImpUses.insert(Op); if (ImpUses.empty()) continue; MachineFunction &MF = *DefI->getParent()->getParent(); for (RegisterRef R : ImpUses) MachineInstrBuilder(MF, DefI).addReg(R.Reg, RegState::Implicit, R.Sub); } }