Esempio n. 1
0
void QRZT(Matrix& X, LowerTriangularMatrix& L)
{
   REPORT
	 Tracer et("QRZT(1)");
   int n = X.Ncols(); int s = X.Nrows(); L.resize(s);
   if (n == 0 || s == 0) { L = 0.0; return; }
   Real* xi = X.Store(); int k;
   for (int i=0; i<s; i++)
   {
      Real sum = 0.0;
      Real* xi0=xi; k=n; while(k--) { sum += square(*xi++); }
      sum = sqrt(sum);
      if (sum == 0.0)
      {
         REPORT
         k=n; while(k--) { *xi0++ = 0.0; }
         for (int j=i; j<s; j++) L.element(j,i) = 0.0;
      }
      else
      {
         L.element(i,i) = sum;
         Real* xj0=xi0; k=n; while(k--) { *xj0++ /= sum; }
         for (int j=i+1; j<s; j++)
         {
            sum=0.0;
            xi=xi0; Real* xj=xj0; k=n; while(k--) { sum += *xi++ * *xj++; }
            xi=xi0; k=n; while(k--) { *xj0++ -= sum * *xi++; }
            L.element(j,i) = sum;
         }
      }
   }
}
void BetaShifted_HGVolatilityParam::initializeShiftMatrix(
	LMMTenorStructure_PTR        pLMMTenorStructure, 
	const LowerTriangularMatrix& betas, 
	const std::vector<double>&   liborsInitValues)
{
	assert(betas.size1() == betas.size2() && betas.size2() == liborsInitValues.size() && pLMMTenorStructure->get_nbLIBOR());

	//unused first column, first row is automatically null since it is lower triangular matrix
	LowerTriangularMatrix m(betas.size1(), betas.size2());

	for(size_t k=0; k<m.size1();++k)
	{
		shift_matrix_(k,0) = 1.0e100;	
	}

	for(size_t liborIndex=1; liborIndex<m.size1();++liborIndex)
	{
		for(size_t timeIndex=1;timeIndex<=liborIndex;++timeIndex)
		{
			double beta = betas(liborIndex,timeIndex);
			double liborInitValue = liborsInitValues[liborIndex];
			shift_matrix_(liborIndex,timeIndex) = 1+ (1-beta)/beta*liborInitValue;
		}	
	} 
}
  inline
  Matrix<C>::Matrix(const LowerTriangularMatrix<C>& M)
    : entries_(M.row_dimension()*M.column_dimension()),
      rowdim_(M.row_dimension()), coldim_(M.column_dimension())
  {
    for (size_type i(0); i < rowdim_; i++)
      for (size_type j(0); j <= i; j++)
	{
	  this->operator () (i, j) = M(i, j);
	}
  }
Esempio n. 4
0
void MLE_D_FI::MakeCovariance()
{
   if (Covariance.Nrows()==0)
   {
      LowerTriangularMatrix LTI = LT.i();
      Covariance << LTI.t() * LTI;
      SE << Covariance;                // get diagonal
      int n = Covariance.Nrows();
      for (int i=1; i <= n; i++) SE(i) = sqrt(SE(i));
   }
}
Esempio n. 5
0
void Shifted_HGVolatilityParam::reset_g_matrix(const LowerTriangularMatrix& other_g)
{
	assert(other_g.size1() == g_matrix_.size1() );
	assert(other_g.size2() == g_matrix_.size2() );

	for(size_t indexLibor=1; indexLibor<g_matrix_.size1();++indexLibor)
	{
		for(size_t indexTime=1; indexTime<=indexLibor; ++indexTime)
		{
			g_matrix_(indexLibor,indexTime) =  other_g(indexLibor,indexTime);
		}	
	}
}
Esempio n. 6
0
void Print(const LowerTriangularMatrix& X)
{
   ++PCN;
   cout << "\nMatrix type: " << X.Type().Value() << " (";
   cout << X.Nrows() << ", ";
   cout << X.Ncols() << ")\n\n";
   if (X.IsZero()) { cout << "All elements are zero\n" << flush; return; }
   int nr=X.Nrows();
   for (int i=1; i<=nr; i++)
   {
      for (int j=1; j<=i; j++) cout << X(i,j) << "\t";
      cout << "\n";
   }
   cout << flush; ++PCZ;
}
Esempio n. 7
0
///
///
///     Function to calculate the transformation matrix X ( p = X.f )
///     according to the Whiten Crusher Model described in
///     the JKMRC monograph:
///         Napier-Munn et al.
///         "Mineral Comminution Circuits - Their Operation and Optimisation",
///         JKMRC monograph 1996,
///         p138ff
///
void WhitenCrusherTransformationMatrix(const LowerTriangularMatrix& B, const DiagonalMatrix& C, Matrix& X)
{
    int matrixSize = B.Nrows() ;
    IdentityMatrix I(matrixSize);					 
						            /// do the matrix calculations
	X = (I - C) * (I - (B * C)).i() ;

}
Esempio n. 8
0
void QRZT(Matrix& X, LowerTriangularMatrix& L)
{
   REPORT
    Tracer et("QZT(1)");
   int n = X.Ncols(); int s = X.Nrows(); L.ReSize(s);
   Real* xi = X.Store(); int k;
   for (int i=0; i<s; i++)
   {
      Real sum = 0.0;
      Real* xi0=xi; k=n; while(k--) { sum += square(*xi++); }
      sum = sqrt(sum);
      L.element(i,i) = sum;
      if (sum==0.0) Throw(SingularException(L));
      Real* xj0=xi0; k=n; while(k--) { *xj0++ /= sum; }
      for (int j=i+1; j<s; j++)
      {
         sum=0.0;
         xi=xi0; Real* xj=xj0; k=n; while(k--) { sum += *xi++ * *xj++; }
         xi=xi0; k=n; while(k--) { *xj0++ -= sum * *xi++; }
         L.element(j,i) = sum;
      }
   }
}
Esempio n. 9
0
void test3(Real* y, Real* x1, Real* x2, int nobs, int npred)
{
   cout << "\n\nTest 3 - Cholesky\n";

   // traditional sum of squares and products method of calculation
   // with subtraction of means - using Cholesky decomposition

   Matrix X(nobs,npred);
   X.Column(1) << x1;  X.Column(2) << x2;
   ColumnVector Y(nobs); Y << y;
   ColumnVector Ones(nobs); Ones = 1.0;
   RowVector M = Ones.t() * X / nobs;
   Matrix XC(nobs,npred);
   XC = X - Ones * M;
   ColumnVector YC(nobs);
   Real m = Sum(Y) / nobs;  YC = Y - Ones * m;
   SymmetricMatrix SSQ; SSQ << XC.t() * XC;

   // Cholesky decomposition of SSQ
   LowerTriangularMatrix L = Cholesky(SSQ);

   // calculate estimate
   ColumnVector A = L.t().i() * (L.i() * (XC.t() * YC));

   // calculate estimate of constant term
   Real a = m - (M * A).AsScalar();

   // Get variances of estimates from diagonal elements of invoice of SSQ
   DiagonalMatrix D; D << L.t().i() * L.i();
   ColumnVector V = D.AsColumn();
   Real v = 1.0/nobs + (L.i() * M.t()).SumSquare();

   // Calculate fitted values and residuals
   int npred1 = npred+1;
   ColumnVector Fitted = X * A + a;
   ColumnVector Residual = Y - Fitted;
   Real ResVar = Residual.SumSquare() / (nobs-npred1);

   // Get diagonals of Hat matrix (an expensive way of doing this)
   Matrix X1(nobs,npred1); X1.Column(1)<<Ones; X1.Columns(2,npred1)<<X;
   DiagonalMatrix Hat;  Hat << X1 * (X1.t() * X1).i() * X1.t();

   // print out answers
   cout << "\nEstimates and their standard errors\n\n";
   cout.setf(ios::fixed, ios::floatfield);
   cout << setw(11) << setprecision(5)  << a << " ";
   cout << setw(11) << setprecision(5)  << sqrt(v*ResVar) << endl;
   ColumnVector SE(npred);
   for (int i=1; i<=npred; i++) SE(i) = sqrt(V(i)*ResVar);
   cout << setw(11) << setprecision(5) << (A | SE) << endl;
   cout << "\nObservations, fitted value, residual value, hat value\n";
   cout << setw(9) << setprecision(3) <<
      (X | Y | Fitted | Residual | Hat.AsColumn());
   cout << "\n\n";
}
Esempio n. 10
0
void updateQRZT(Matrix& X, LowerTriangularMatrix& L)
{
   REPORT
	 Tracer et("updateQRZT");
   int n = X.Ncols(); int s = X.Nrows();
   if (s != L.Nrows())
      Throw(ProgramException("Incompatible dimensions",X,L)); 
   if (n == 0 || s == 0) return;
   Real* xi = X.Store(); int k;
   for (int i=0; i<s; i++)
   {
      Real r = L.element(i,i); 
      Real sum = 0.0;
      Real* xi0=xi; k=n; while(k--) { sum += square(*xi++); }
      sum = sqrt(sum + square(r));
      if (sum == 0.0)
      {
         REPORT
         k=n; while(k--) { *xi0++ = 0.0; }
         for (int j=i; j<s; j++) L.element(j,i) = 0.0;
      }
      else
      {
         Real frs = fabs(r) + sum;
         Real a0 = sqrt(frs / sum); Real alpha = a0 / frs;
         if (r <= 0) { REPORT L.element(i,i) = sum; alpha = -alpha; }
         else { REPORT L.element(i,i) = -sum; }
         Real* xj0=xi0; k=n; while(k--) { *xj0++ *= alpha; }
         for (int j=i+1; j<s; j++)
         {
            sum = 0.0;
            xi=xi0; Real* xj=xj0; k=n; while(k--) { sum += *xi++ * *xj++; }
            sum += a0 * L.element(j,i);
            xi=xi0; k=n; while(k--) { *xj0++ -= sum * *xi++; }
            L.element(j,i) -= sum * a0;
         }
      }
   }
}
Esempio n. 11
0
void trymatd()
{
   Tracer et("Thirteenth test of Matrix package");
   Tracer::PrintTrace();
   Matrix X(5,20);
   int i,j;
   for (j=1;j<=20;j++) X(1,j) = j+1;
   for (i=2;i<=5;i++) for (j=1;j<=20; j++) X(i,j) = (long)X(i-1,j) * j % 1001;
   SymmetricMatrix S; S << X * X.t();
   Matrix SM = X * X.t() - S;
   Print(SM);
   LowerTriangularMatrix L = Cholesky(S);
   Matrix Diff = L*L.t()-S; Clean(Diff, 0.000000001);
   Print(Diff);
   {
      Tracer et1("Stage 1");
      LowerTriangularMatrix L1(5);
      Matrix Xt = X.t(); Matrix Xt2 = Xt;
      QRZT(X,L1);
      Diff = L - L1; Clean(Diff,0.000000001); Print(Diff);
      UpperTriangularMatrix Ut(5);
      QRZ(Xt,Ut);
      Diff = L - Ut.t(); Clean(Diff,0.000000001); Print(Diff);
      Matrix Y(3,20);
      for (j=1;j<=20;j++) Y(1,j) = 22-j;
      for (i=2;i<=3;i++) for (j=1;j<=20; j++)
         Y(i,j) = (long)Y(i-1,j) * j % 101;
      Matrix Yt = Y.t(); Matrix M,Mt; Matrix Y2=Y;
      QRZT(X,Y,M); QRZ(Xt,Yt,Mt);
      Diff = Xt - X.t(); Clean(Diff,0.000000001); Print(Diff);
      Diff = Yt - Y.t(); Clean(Diff,0.000000001); Print(Diff);
      Diff = Mt - M.t(); Clean(Diff,0.000000001); Print(Diff);
      Diff = Y2 * Xt2 * S.i() - M * L.i();
      Clean(Diff,0.000000001); Print(Diff);
   }

   ColumnVector C1(5);
   {
      Tracer et1("Stage 2");
      X.ReSize(5,5);
      for (j=1;j<=5;j++) X(1,j) = j+1;
      for (i=2;i<=5;i++) for (j=1;j<=5; j++)
         X(i,j) = (long)X(i-1,j) * j % 1001;
      for (i=1;i<=5;i++) C1(i) = i*i;
      CroutMatrix A = X;
      ColumnVector C2 = A.i() * C1; C1 = X.i()  * C1;
      X = C1 - C2; Clean(X,0.000000001); Print(X);
   }

   {
      Tracer et1("Stage 3");
      X.ReSize(7,7);
      for (j=1;j<=7;j++) X(1,j) = j+1;
      for (i=2;i<=7;i++) for (j=1;j<=7; j++)
         X(i,j) = (long)X(i-1,j) * j % 1001;
      C1.ReSize(7);
      for (i=1;i<=7;i++) C1(i) = i*i;
      RowVector R1 = C1.t();
      Diff = R1 * X.i() - ( X.t().i() * R1.t() ).t(); Clean(Diff,0.000000001);
      Print(Diff);
   }

   {
      Tracer et1("Stage 4");
      X.ReSize(5,5);
      for (j=1;j<=5;j++) X(1,j) = j+1;
      for (i=2;i<=5;i++) for (j=1;j<=5; j++)
         X(i,j) = (long)X(i-1,j) * j % 1001;
      C1.ReSize(5);
      for (i=1;i<=5;i++) C1(i) = i*i;
      CroutMatrix A1 = X*X;
      ColumnVector C2 = A1.i() * C1; C1 = X.i()  * C1; C1 = X.i()  * C1;
      X = C1 - C2; Clean(X,0.000000001); Print(X);
   }


   {
      Tracer et1("Stage 5");
      int n = 40;
      SymmetricBandMatrix B(n,2); B = 0.0;
      for (i=1; i<=n; i++)
      {
         B(i,i) = 6;
         if (i<=n-1) B(i,i+1) = -4;
         if (i<=n-2) B(i,i+2) = 1;
      }
      B(1,1) = 5; B(n,n) = 5;
      SymmetricMatrix A = B;
      ColumnVector X(n);
      X(1) = 429;
      for (i=2;i<=n;i++) X(i) = (long)X(i-1) * 31 % 1001;
      X = X / 100000L;
      // the matrix B is rather ill-conditioned so the difficulty is getting
      // good agreement (we have chosen X very small) may not be surprising;
      // maximum element size in B.i() is around 1400
      ColumnVector Y1 = A.i() * X;
      LowerTriangularMatrix C1 = Cholesky(A);
      ColumnVector Y2 = C1.t().i() * (C1.i() * X) - Y1;
      Clean(Y2, 0.000000001); Print(Y2);
      UpperTriangularMatrix CU = C1.t().i();
      LowerTriangularMatrix CL = C1.i();
      Y2 = CU * (CL * X) - Y1;
      Clean(Y2, 0.000000001); Print(Y2);
      Y2 = B.i() * X - Y1; Clean(Y2, 0.000000001); Print(Y2);

      LowerBandMatrix C2 = Cholesky(B);
      Matrix M = C2 - C1; Clean(M, 0.000000001); Print(M);
      ColumnVector Y3 = C2.t().i() * (C2.i() * X) - Y1;
      Clean(Y3, 0.000000001); Print(Y3);
      CU = C1.t().i();
      CL = C1.i();
      Y3 = CU * (CL * X) - Y1;
      Clean(Y3, 0.000000001); Print(Y3);

      Y3 = B.i() * X - Y1; Clean(Y3, 0.000000001); Print(Y3);

      SymmetricMatrix AI = A.i();
      Y2 = AI*X - Y1; Clean(Y2, 0.000000001); Print(Y2);
      SymmetricMatrix BI = B.i();
      BandMatrix C = B; Matrix CI = C.i();
      M = A.i() - CI; Clean(M, 0.000000001); Print(M);
      M = B.i() - CI; Clean(M, 0.000000001); Print(M);
      M = AI-BI; Clean(M, 0.000000001); Print(M);
      M = AI-CI; Clean(M, 0.000000001); Print(M);

      M = A; AI << M; M = AI-A; Clean(M, 0.000000001); Print(M);
      C = B; BI << C; M = BI-B; Clean(M, 0.000000001); Print(M);
   }

   {
      Tracer et1("Stage 5");
      SymmetricMatrix A(4), B(4);
      A << 5
        << 1 << 4
        << 2 << 1 << 6
        << 1 << 0 << 1 << 7;
      B << 8
        << 1 << 5
        << 1 << 0 << 9
        << 2 << 1 << 0 << 6;
      LowerTriangularMatrix AB = Cholesky(A) * Cholesky(B);
      Matrix M = Cholesky(A) * B * Cholesky(A).t() - AB*AB.t();
      Clean(M, 0.000000001); Print(M);
      M = A * Cholesky(B); M = M * M.t() - A * B * A;
      Clean(M, 0.000000001); Print(M);
   }
   
   {
      Tracer et1("Stage 6");
      int N=49;
      int i;
      SymmetricBandMatrix S(N,1);
      Matrix B(N,N+1); B=0;
      for (i=1;i<=N;i++) { S(i,i)=1; B(i,i)=1; B(i,i+1)=-1; }
      for (i=1;i<N; i++) S(i,i+1)=-.5;
      DiagonalMatrix D(N+1); D = 1;
      B = B.t()*S.i()*B - (D-1.0/(N+1))*2.0;
      Clean(B, 0.000000001); Print(B);
   }

   {
      Tracer et1("Stage 7");
      // Copying and moving CroutMatrix
      Matrix A(7,7);
      A.Row(1) <<  3 <<  2 << -1 <<  4 << -3 <<  5 <<  9;
      A.Row(2) << -8 <<  7 <<  2 <<  0 <<  7 <<  0 << -1;
      A.Row(3) <<  2 << -2 <<  3 <<  1 <<  9 <<  0 <<  3;
      A.Row(4) << -1 <<  5 <<  2 <<  2 <<  5 << -1 <<  2;
      A.Row(5) <<  4 << -4 <<  1 <<  9 << -8 <<  7 <<  5;
      A.Row(6) <<  1 << -2 <<  5 << -1 << -2 <<  5 <<  1;
      A.Row(7) << -6 <<  3 << -1 <<  8 << -1 <<  2 <<  2;
      RowVector D(30); D = 0;
      Real x = determinant(A);
      CroutMatrix B = A;
      D(1) = determinant(B) / x - 1;
      Matrix C = A * Inverter1(B) - IdentityMatrix(7);
      Clean(C, 0.000000001); Print(C);
      // Test copy constructor (in Inverter2 and ordinary copy)
      CroutMatrix B1; B1 = B;
      D(2) = determinant(B1) / x - 1;
      C = A * Inverter2(B1) - IdentityMatrix(7);
      Clean(C, 0.000000001); Print(C);
      // Do it again with release
      B.release(); B1 = B;
      D(2) = B.nrows(); D(3) = B.ncols(); D(4) = B.size();
      D(5) = determinant(B1) / x - 1;
      B1.release();
      C = A * Inverter2(B1) - IdentityMatrix(7);
      D(6) = B1.nrows(); D(7) = B1.ncols(); D(8) = B1.size();
      Clean(C, 0.000000001); Print(C);
      // see if we get an implicit invert
      B1 = -A; 
      D(9) = determinant(B1) / x + 1; // odd number of rows - sign will change 
      C = -A * Inverter2(B1) - IdentityMatrix(7);
      Clean(C, 0.000000001); Print(C);
      // check for_return
      B = LU1(A); B1 = LU2(A); CroutMatrix B2 = LU3(A);
      C = A * B.i() - IdentityMatrix(7); Clean(C, 0.000000001); Print(C);
      D(10) = (B == B1 ? 0 : 1) + (B == B2 ? 0 : 1);
      // check lengths
      D(13) = B.size()-49;
      // check release(2)
      B1.release(2);
      B2 = B1; D(15) = B == B2 ? 0 : 1;
      CroutMatrix B3 = B1; D(16) = B == B3 ? 0 : 1;
      D(17) = B1.size();
      // some oddments
      B1 = B; B1 = B1.i(); C = A - B1.i(); Clean(C, 0.000000001); Print(C);
      B1 = B; B1.release(); B1 = B1; B2 = B1;
      D(19) = B == B1 ? 0 : 1; D(20) = B == B2 ? 0 : 1;
      B1.cleanup(); B2 = B1; D(21) = B1.size(); D(22) = B2.size();
      GenericMatrix GM = B; C = A.i() - GM.i(); Clean(C, 0.000000001); Print(C);
      B1 = GM; D(23) = B == B1 ? 0 : 1;
      B1 = A * 0; B2 = B1; D(24) = B2.is_singular() ? 0 : 1;
      // check release again - see if memory moves
      const Real* d = B.const_data();
      const int* i = B.const_data_indx();
      B1 = B;
      const Real* d1 = B1.const_data();
      const int* i1 = B1.const_data_indx();
      B1.release(); B2 = B1;
      const Real* d2 = B2.const_data();
      const int* i2 = B2.const_data_indx();
      D(25) = (d != d1 ? 0 : 1) + (d1 == d2 ? 0 : 1)
         + (i != i1 ? 0 : 1) + (i1 == i2 ? 0 : 1);
  
      Clean(D, 0.000000001); Print(D);
   }

   {
      Tracer et1("Stage 8");
      // Same for BandLUMatrix
      BandMatrix A(7,3,2);
      A.Row(1) <<  3 <<  2 << -1;
      A.Row(2) << -8 <<  7 <<  2 <<  0;
      A.Row(3) <<  2 << -2 <<  3 <<  1 <<  9;
      A.Row(4) << -1 <<  5 <<  2 <<  2 <<  5 << -1;
      A.Row(5)       << -4 <<  1 <<  9 << -8 <<  7 <<  5;
      A.Row(6)             <<  5 << -1 << -2 <<  5 <<  1;
      A.Row(7)                   <<  8 << -1 <<  2 <<  2;
      RowVector D(30); D = 0;
      Real x = determinant(A);
      BandLUMatrix B = A;
      D(1) = determinant(B) / x - 1;
      Matrix C = A * Inverter1(B) - IdentityMatrix(7);
      Clean(C, 0.000000001); Print(C);
      // Test copy constructor (in Inverter2 and ordinary copy)
      BandLUMatrix B1; B1 = B;
      D(2) = determinant(B1) / x - 1;
      C = A * Inverter2(B1) - IdentityMatrix(7);
      Clean(C, 0.000000001); Print(C);
      // Do it again with release
      B.release(); B1 = B;
      D(2) = B.nrows(); D(3) = B.ncols(); D(4) = B.size();
      D(5) = determinant(B1) / x - 1;
      B1.release();
      C = A * Inverter2(B1) - IdentityMatrix(7);
      D(6) = B1.nrows(); D(7) = B1.ncols(); D(8) = B1.size();
      Clean(C, 0.000000001); Print(C);
      // see if we get an implicit invert
      B1 = -A; 
      D(9) = determinant(B1) / x + 1; // odd number of rows - sign will change 
      C = -A * Inverter2(B1) - IdentityMatrix(7);
      Clean(C, 0.000000001); Print(C);
      // check for_return
      B = LU1(A); B1 = LU2(A); BandLUMatrix B2 = LU3(A);
      C = A * B.i() - IdentityMatrix(7); Clean(C, 0.000000001); Print(C);
      D(10) = (B == B1 ? 0 : 1) + (B == B2 ? 0 : 1);
      // check lengths
      D(11) = B.bandwidth().lower()-3;
      D(12) = B.bandwidth().upper()-2;
      D(13) = B.size()-42;
      D(14) = B.size2()-21;
      // check release(2)
      B1.release(2);
      B2 = B1; D(15) = B == B2 ? 0 : 1;
      BandLUMatrix B3 = B1; D(16) = B == B3 ? 0 : 1;
      D(17) = B1.size();
      // Compare with CroutMatrix
      CroutMatrix CM = A;
      C = CM.i() - B.i(); Clean(C, 0.000000001); Print(C);
      D(18) = determinant(CM) / x - 1;
      // some oddments
      B1 = B; CM = B1.i(); C = A - CM.i(); Clean(C, 0.000000001); Print(C);
      B1 = B; B1.release(); B1 = B1; B2 = B1;
      D(19) = B == B1 ? 0 : 1; D(20) = B == B2 ? 0 : 1;
      B1.cleanup(); B2 = B1; D(21) = B1.size(); D(22) = B2.size();
      GenericMatrix GM = B; C = A.i() - GM.i(); Clean(C, 0.000000001); Print(C);
      B1 = GM; D(23) = B == B1 ? 0 : 1;
      B1 = A * 0; B2 = B1; D(24) = B2.is_singular() ? 0 : 1;
      // check release again - see if memory moves
      const Real* d = B.const_data(); const Real* dd = B.const_data();
      const int* i = B.const_data_indx();
      B1 = B;
      const Real* d1 = B1.const_data(); const Real* dd1 = B1.const_data();
      const int* i1 = B1.const_data_indx();
      B1.release(); B2 = B1;
      const Real* d2 = B2.const_data(); const Real* dd2 = B2.const_data();
      const int* i2 = B2.const_data_indx();
      D(25) = (d != d1 ? 0 : 1) + (d1 == d2 ? 0 : 1)
         + (dd != dd1 ? 0 : 1) + (dd1 == dd2 ? 0 : 1)
         + (i != i1 ? 0 : 1) + (i1 == i2 ? 0 : 1);

      Clean(D, 0.000000001); Print(D);
   }

   {
      Tracer et1("Stage 9");
      // Modification of Cholesky decomposition

      int i, j;

      // Build test matrix
      Matrix X(100, 10);
      MultWithCarry mwc;   // Uniform random number generator
      for (i = 1; i <= 100; ++i) for (j = 1; j <= 10; ++j)
         X(i, j) = 2.0 * (mwc.Next() - 0.5);
      Matrix X1 = X;     // save copy

      // Form sums of squares and products matrix and Cholesky decompose
      SymmetricMatrix A; A << X.t() * X;
      UpperTriangularMatrix U1 = Cholesky(A).t();

      // Do QR decomposition of X and check we get same triangular matrix
      UpperTriangularMatrix U2;
      QRZ(X, U2);
      Matrix Diff = U1 - U2; Clean(Diff, 0.000000001); Print(Diff);

      // Try adding new row to X and updating triangular matrix 
      RowVector NewRow(10);
      for (j = 1; j <= 10; ++j) NewRow(j) = 2.0 * (mwc.Next() - 0.5);
      UpdateCholesky(U2, NewRow);
      X = X1 & NewRow; QRZ(X, U1);
      Diff = U1 - U2; Clean(Diff, 0.000000001); Print(Diff);

      // Try removing two rows and updating triangular matrix
      DowndateCholesky(U2, X1.Row(20));
      DowndateCholesky(U2, X1.Row(35));
      X = X1.Rows(1,19) & X1.Rows(21,34) & X1.Rows(36,100) & NewRow; QRZ(X, U1);
      Diff = U1 - U2; Clean(Diff, 0.000000001); Print(Diff);

      // Circular shifts

      CircularShift(X, 3,6);
      CircularShift(X, 5,5);
      CircularShift(X, 4,5);
      CircularShift(X, 1,6);
      CircularShift(X, 6,10);
   }
   
   {
      Tracer et1("Stage 10");
      // Try updating QRZ, QRZT decomposition
      TestUpdateQRZ tuqrz1(10, 100, 50, 25); tuqrz1.DoTest();
      tuqrz1.Reset(); tuqrz1.ClearRow(1); tuqrz1.DoTest();
      tuqrz1.Reset(); tuqrz1.ClearRow(1); tuqrz1.ClearRow(2); tuqrz1.DoTest();
      tuqrz1.Reset(); tuqrz1.ClearRow(5); tuqrz1.ClearRow(6); tuqrz1.DoTest();
      tuqrz1.Reset(); tuqrz1.ClearRow(10); tuqrz1.DoTest();
      TestUpdateQRZ tuqrz2(15, 100, 0, 0); tuqrz2.DoTest();
      tuqrz2.Reset(); tuqrz2.ClearRow(1); tuqrz2.DoTest();
      tuqrz2.Reset(); tuqrz2.ClearRow(1); tuqrz2.ClearRow(2); tuqrz2.DoTest();
      tuqrz2.Reset(); tuqrz2.ClearRow(5); tuqrz2.ClearRow(6); tuqrz2.DoTest();
      tuqrz2.Reset(); tuqrz2.ClearRow(15); tuqrz2.DoTest();
      TestUpdateQRZ tuqrz3(5, 0, 10, 0); tuqrz3.DoTest();
      
   }
   
//   cout << "\nEnd of Thirteenth test\n";
}
Esempio n. 12
0
void trymata()
{
//   cout << "\nTenth test of Matrix package\n";
   Tracer et("Tenth test of Matrix package");
   Tracer::PrintTrace();
   int i; int j;
   UpperTriangularMatrix U(8);
   for (i=1;i<=8;i++) for (j=i;j<=8;j++) U(i,j)=i+j*j+5;
   Matrix X(8,6);
   for (i=1;i<=8;i++) for (j=1;j<=6;j++) X(i,j)=i*j+1.0;
   Matrix Y = U.i()*X; Matrix MU=U;
   Y=Y-MU.i()*X; Clean(Y,0.00000001); Print(Y);
   Y = U.t().i()*X; Y=Y-MU.t().i()*X; Clean(Y,0.00000001); Print(Y);
   UpperTriangularMatrix UX(8);
   for (i=1;i<=8;i++) for (j=i;j<=8;j++) UX(i,j)=i+j+1;
   UX(4,4)=0; UX(4,5)=0;
   UpperTriangularMatrix UY = U.i() * UX;
   { X=UX; MU=U; Y=UY-MU.i()*X; Clean(Y,0.000000001); Print(Y); }
   LowerTriangularMatrix LY = U.t().i() * UX.t();
   { Y=LY-MU.i().t()*X.t(); Clean(Y,0.000000001); Print(Y); }
   DiagonalMatrix D(8); for (i=1;i<=8;i++) D(i,i)=i+1;
   { X=D.i()*MU; }
   { UY=U; UY=D.i()*UY; Y=UY-X; Clean(Y,0.00000001); Print(Y); }
   { UY=D.i()*U; Y=UY-X; Clean(Y,0.00000001); Print(Y); }
//   X=MU.t();
//   LY=D.i()*U.t(); Y=D*LY-X; Clean(Y,0.00000001); Print(Y);
//   LowerTriangularMatrix L=U.t();
//   LY=D.i()*L; Y=D*LY-X; Clean(Y,0.00000001); Print(Y);
   U.ReSize(8);
   for (i=1;i<=8;i++) for (j=i;j<=8;j++) U(i,j)=i+j*j+5;
   MU = U;
   MU = U.i() - MU.i(); Clean(MU,0.00000001); Print(MU);
   MU = U.t().i() - U.i().t(); Clean(MU,0.00000001); Print(MU);

   // test LINEQ
   {
      ColumnVector X1(4), X2(4);
      X1(1)=1; X1(2)=2; X1(3)=3; X1(4)=4;
      X2(1)=1; X2(2)=10; X2(3)=100; X2(4)=1000;


      Matrix A(4,4);
      A(1,1)=1; A(1,2)=3; A(1,3)=0; A(1,4)=0;
      A(2,1)=3; A(2,2)=2; A(2,3)=5; A(2,4)=0;
      A(3,1)=0; A(3,2)=5; A(3,3)=4; A(3,4)=1;
      A(4,1)=0; A(4,2)=0; A(4,3)=1; A(4,4)=3;
      process(A,X1,X2);

      BandMatrix B(4,1,1);  B.Inject(A);
      process(B,X1,X2);

      UpperTriangularMatrix U(4);
      U(1,1)=1; U(1,2)=2; U(1,3)=3; U(1,4)=4;
		U(2,2)=8; U(2,3)=7; U(2,4)=6;
			  U(3,3)=2; U(3,4)=7;
				    U(4,4)=1;
      process(U,X1,X2);

      // check rowwise load
      UpperTriangularMatrix U1(4);
      U1.Row(1) << 1 << 2 << 3 << 4;
      U1.Row(2)      << 8 << 7 << 6;
      U1.Row(3)           << 2 << 7;
      U1.Row(4)                << 1;

      U1 -= U;

      Print(U1);

      LowerTriangularMatrix L = U.t();
      process(L,X1,X2);
   }

   // test inversion of poorly conditioned matrix
   // a user complained this didn't work under OS9
   {
      Matrix M(4,4);

      M <<  8.613057e+00 <<  8.693985e+00 << -2.322050e-01  << 0.000000e+00
        <<  8.693985e+00 <<  8.793868e+00 << -2.346310e-01  << 0.000000e+00
        << -2.322050e-01 << -2.346310e-01 <<  6.264000e-03  << 0.000000e+00
        <<  0.000000e+00 <<  0.000000e+00 <<  0.000000e+00  << 3.282806e+03 ;
      Matrix MI = M.i();
      DiagonalMatrix I(4); I = 1;
      Matrix Diff = MI *  M - I;
      Clean(Diff,0.00000001); Print(Diff);
      // Alternatively do Cholesky
      SymmetricMatrix SM; SM << M;
      LowerTriangularMatrix LT = Cholesky(SM).i();
      MI = LT.t() * LT; Diff = MI *  M - I;
      Clean(Diff,0.00000001); Print(Diff);
   }

//   cout << "\nEnd of tenth test\n";
}
Esempio n. 13
0
void trymatc()
{
//   cout << "\nTwelfth test of Matrix package\n";
   Tracer et("Twelfth test of Matrix package");
   Tracer::PrintTrace();
   DiagonalMatrix D(15); D=1.5;
   Matrix A(15,15);
   int i,j;
   for (i=1;i<=15;i++) for (j=1;j<=15;j++) A(i,j)=i*i+j-150;
   { A = A + D; }
   ColumnVector B(15);
   for (i=1;i<=15;i++) B(i)=i+i*i-150.0;
   {
      Tracer et1("Stage 1");
      ColumnVector B1=B;
      B=(A*2.0).i() * B1;
      Matrix X = A*B-B1/2.0;
      Clean(X, 0.000000001); Print(X);
      A.ReSize(3,5);
      for (i=1; i<=3; i++) for (j=1; j<=5; j++) A(i,j) = i+100*j;

      B = A.AsColumn()+10000;
      RowVector R = (A+10000).AsColumn().t();
      Print( RowVector(R-B.t()) );
   }

   {
      Tracer et1("Stage 2");
      B = A.AsColumn()+10000;
      Matrix XR = (A+10000).AsMatrix(15,1).t();
      Print( RowVector(XR-B.t()) );
   }

   {
      Tracer et1("Stage 3");
      B = (A.AsMatrix(15,1)+A.AsColumn())/2.0+10000;
      Matrix MR = (A+10000).AsColumn().t();
      Print( RowVector(MR-B.t()) );

      B = (A.AsMatrix(15,1)+A.AsColumn())/2.0;
      MR = A.AsColumn().t();
      Print( RowVector(MR-B.t()) );
   }

   {
      Tracer et1("Stage 4");
      B = (A.AsMatrix(15,1)+A.AsColumn())/2.0;
      RowVector R = A.AsColumn().t();
      Print( RowVector(R-B.t()) );
   }

   {
      Tracer et1("Stage 5");
      RowVector R = (A.AsColumn()-5000).t();
      B = ((R.t()+10000) - A.AsColumn())-5000;
      Print( RowVector(B.t()) );
   }

   {
      Tracer et1("Stage 6");
      B = A.AsColumn(); ColumnVector B1 = (A+10000).AsColumn() - 10000;
      Print(ColumnVector(B1-B));
   }

   {
      Tracer et1("Stage 7");
      Matrix X = B.AsMatrix(3,5); Print(Matrix(X-A));
      for (i=1; i<=3; i++) for (j=1; j<=5; j++) B(5*(i-1)+j) -= i+100*j;
      Print(B);
   }

   {
      Tracer et1("Stage 8");
      A.ReSize(7,7); D.ReSize(7);
      for (i=1; i<=7; i++) for (j=1; j<=7; j++) A(i,j) = i*j*j;
      for (i=1; i<=7; i++) D(i,i) = i;
      UpperTriangularMatrix U; U << A;
      Matrix X = A; for (i=1; i<=7; i++) X(i,i) = i;
      A.Inject(D); Print(Matrix(X-A));
      X = U; U.Inject(D); A = U; for (i=1; i<=7; i++) X(i,i) = i;
      Print(Matrix(X-A));
   }

   {
      Tracer et1("Stage 9");
      A.ReSize(7,5);
      for (i=1; i<=7; i++) for (j=1; j<=5; j++) A(i,j) = i+100*j;
      Matrix Y = A; Y = Y - ((const Matrix&)A); Print(Y);
      Matrix X = A; // X.Release();
      Y = A; Y = ((const Matrix&)X) - A; Print(Y); Y = 0.0;
      Y = ((const Matrix&)X) - ((const Matrix&)A); Print(Y);
   }

   {
      Tracer et1("Stage 10");
      // some tests on submatrices
      UpperTriangularMatrix U(20);
      for (i=1; i<=20; i++) for (j=i; j<=20; j++) U(i,j)=100 * i + j;
      UpperTriangularMatrix V = U.SymSubMatrix(1,5);
      UpperTriangularMatrix U1 = U;
      U1.SubMatrix(4,8,5,9) /= 2;
      U1.SubMatrix(4,8,5,9) += 388 * V;
      U1.SubMatrix(4,8,5,9) *= 2;
      U1.SubMatrix(4,8,5,9) += V;
      U1 -= U; UpperTriangularMatrix U2 = U1;
      U1 << U1.SubMatrix(4,8,5,9);
      U2.SubMatrix(4,8,5,9) -= U1; Print(U2);
      U1 -= (777*V); Print(U1);

      U1 = U; U1.SubMatrix(4,8,5,9) -= U.SymSubMatrix(1,5);
      U1 -= U;  U2 = U1; U1 << U1.SubMatrix(4,8,5,9);
      U2.SubMatrix(4,8,5,9) -= U1; Print(U2);
      U1 += V; Print(U1);

      U1 = U;
      U1.SubMatrix(3,10,15,19) += 29;
      U1 -= U;
      Matrix X = U1.SubMatrix(3,10,15,19); X -= 29; Print(X);
      U1.SubMatrix(3,10,15,19) *= 0; Print(U1);

      LowerTriangularMatrix L = U.t();
      LowerTriangularMatrix M = L.SymSubMatrix(1,5);
      LowerTriangularMatrix L1 = L;
      L1.SubMatrix(5,9,4,8) /= 2;
      L1.SubMatrix(5,9,4,8) += 388 * M;
      L1.SubMatrix(5,9,4,8) *= 2;
      L1.SubMatrix(5,9,4,8) += M;
      L1 -= L; LowerTriangularMatrix L2 = L1;
      L1 << L1.SubMatrix(5,9,4,8);
      L2.SubMatrix(5,9,4,8) -= L1; Print(L2);
      L1 -= (777*M); Print(L1);

      L1 = L; L1.SubMatrix(5,9,4,8) -= L.SymSubMatrix(1,5);
      L1 -= L; L2 =L1; L1 << L1.SubMatrix(5,9,4,8);
      L2.SubMatrix(5,9,4,8) -= L1; Print(L2);
      L1 += M; Print(L1);

      L1 = L;
      L1.SubMatrix(15,19,3,10) -= 29;
      L1 -= L;
      X = L1.SubMatrix(15,19,3,10); X += 29; Print(X);
      L1.SubMatrix(15,19,3,10) *= 0; Print(L1);
   }

   {
      Tracer et1("Stage 11");
      // more tests on submatrices
      Matrix M(20,30);
      for (i=1; i<=20; i++) for (j=1; j<=30; j++) M(i,j)=100 * i + j;
      Matrix M1 = M;

      for (j=1; j<=30; j++)
         { ColumnVector CV = 3 * M1.Column(j); M.Column(j) += CV; }
      for (i=1; i<=20; i++)
         { RowVector RV = 5 * M1.Row(i); M.Row(i) -= RV; }

      M += M1; Print(M);
 
   }


//   cout << "\nEnd of twelfth test\n";
}
Esempio n. 14
0
void trymatc()
{
//   cout << "\nTwelfth test of Matrix package\n";
   Tracer et("Twelfth test of Matrix package");
   Tracer::PrintTrace();
   DiagonalMatrix D(15); D=1.5;
   Matrix A(15,15);
   int i,j;
   for (i=1;i<=15;i++) for (j=1;j<=15;j++) A(i,j)=i*i+j-150;
   { A = A + D; }
   ColumnVector B(15);
   for (i=1;i<=15;i++) B(i)=i+i*i-150.0;
   {
      Tracer et1("Stage 1");
      ColumnVector B1=B;
      B=(A*2.0).i() * B1;
      Matrix X = A*B-B1/2.0;
      Clean(X, 0.000000001); Print(X);
      A.ReSize(3,5);
      for (i=1; i<=3; i++) for (j=1; j<=5; j++) A(i,j) = i+100*j;

      B = A.AsColumn()+10000;
      RowVector R = (A+10000).AsColumn().t();
      Print( RowVector(R-B.t()) );
   }

   {
      Tracer et1("Stage 2");
      B = A.AsColumn()+10000;
      Matrix XR = (A+10000).AsMatrix(15,1).t();
      Print( RowVector(XR-B.t()) );
   }

   {
      Tracer et1("Stage 3");
      B = (A.AsMatrix(15,1)+A.AsColumn())/2.0+10000;
      Matrix MR = (A+10000).AsColumn().t();
      Print( RowVector(MR-B.t()) );

      B = (A.AsMatrix(15,1)+A.AsColumn())/2.0;
      MR = A.AsColumn().t();
      Print( RowVector(MR-B.t()) );
   }

   {
      Tracer et1("Stage 4");
      B = (A.AsMatrix(15,1)+A.AsColumn())/2.0;
      RowVector R = A.AsColumn().t();
      Print( RowVector(R-B.t()) );
   }

   {
      Tracer et1("Stage 5");
      RowVector R = (A.AsColumn()-5000).t();
      B = ((R.t()+10000) - A.AsColumn())-5000;
      Print( RowVector(B.t()) );
   }

   {
      Tracer et1("Stage 6");
      B = A.AsColumn(); ColumnVector B1 = (A+10000).AsColumn() - 10000;
      Print(ColumnVector(B1-B));
   }

   {
      Tracer et1("Stage 7");
      Matrix X = B.AsMatrix(3,5); Print(Matrix(X-A));
      for (i=1; i<=3; i++) for (j=1; j<=5; j++) B(5*(i-1)+j) -= i+100*j;
      Print(B);
   }

   {
      Tracer et1("Stage 8");
      A.ReSize(7,7); D.ReSize(7);
      for (i=1; i<=7; i++) for (j=1; j<=7; j++) A(i,j) = i*j*j;
      for (i=1; i<=7; i++) D(i,i) = i;
      UpperTriangularMatrix U; U << A;
      Matrix X = A; for (i=1; i<=7; i++) X(i,i) = i;
      A.Inject(D); Print(Matrix(X-A));
      X = U; U.Inject(D); A = U; for (i=1; i<=7; i++) X(i,i) = i;
      Print(Matrix(X-A));
   }

   {
      Tracer et1("Stage 9");
      A.ReSize(7,5);
      for (i=1; i<=7; i++) for (j=1; j<=5; j++) A(i,j) = i+100*j;
      Matrix Y = A; Y = Y - ((const Matrix&)A); Print(Y);
      Matrix X = A;
      Y = A; Y = ((const Matrix&)X) - A; Print(Y); Y = 0.0;
      Y = ((const Matrix&)X) - ((const Matrix&)A); Print(Y);
   }

   {
      Tracer et1("Stage 10");
      // some tests on submatrices
      UpperTriangularMatrix U(20);
      for (i=1; i<=20; i++) for (j=i; j<=20; j++) U(i,j)=100 * i + j;
      UpperTriangularMatrix V = U.SymSubMatrix(1,5);
      UpperTriangularMatrix U1 = U;
      U1.SubMatrix(4,8,5,9) /= 2;
      U1.SubMatrix(4,8,5,9) += 388 * V;
      U1.SubMatrix(4,8,5,9) *= 2;
      U1.SubMatrix(4,8,5,9) += V;
      U1 -= U; UpperTriangularMatrix U2 = U1;
      U1 << U1.SubMatrix(4,8,5,9);
      U2.SubMatrix(4,8,5,9) -= U1; Print(U2);
      U1 -= (777*V); Print(U1);

      U1 = U; U1.SubMatrix(4,8,5,9) -= U.SymSubMatrix(1,5);
      U1 -= U;  U2 = U1; U1 << U1.SubMatrix(4,8,5,9);
      U2.SubMatrix(4,8,5,9) -= U1; Print(U2);
      U1 += V; Print(U1);

      U1 = U;
      U1.SubMatrix(3,10,15,19) += 29;
      U1 -= U;
      Matrix X = U1.SubMatrix(3,10,15,19); X -= 29; Print(X);
      U1.SubMatrix(3,10,15,19) *= 0; Print(U1);

      LowerTriangularMatrix L = U.t();
      LowerTriangularMatrix M = L.SymSubMatrix(1,5);
      LowerTriangularMatrix L1 = L;
      L1.SubMatrix(5,9,4,8) /= 2;
      L1.SubMatrix(5,9,4,8) += 388 * M;
      L1.SubMatrix(5,9,4,8) *= 2;
      L1.SubMatrix(5,9,4,8) += M;
      L1 -= L; LowerTriangularMatrix L2 = L1;
      L1 << L1.SubMatrix(5,9,4,8);
      L2.SubMatrix(5,9,4,8) -= L1; Print(L2);
      L1 -= (777*M); Print(L1);

      L1 = L; L1.SubMatrix(5,9,4,8) -= L.SymSubMatrix(1,5);
      L1 -= L; L2 =L1; L1 << L1.SubMatrix(5,9,4,8);
      L2.SubMatrix(5,9,4,8) -= L1; Print(L2);
      L1 += M; Print(L1);

      L1 = L;
      L1.SubMatrix(15,19,3,10) -= 29;
      L1 -= L;
      X = L1.SubMatrix(15,19,3,10); X += 29; Print(X);
      L1.SubMatrix(15,19,3,10) *= 0; Print(L1);
   }

   {
      Tracer et1("Stage 11");
      // more tests on submatrices
      Matrix M(20,30);
      for (i=1; i<=20; i++) for (j=1; j<=30; j++) M(i,j)=100 * i + j;
      Matrix M1 = M;

      for (j=1; j<=30; j++)
         { ColumnVector CV = 3 * M1.Column(j); M.Column(j) += CV; }
      for (i=1; i<=20; i++)
         { RowVector RV = 5 * M1.Row(i); M.Row(i) -= RV; }

      M += M1; Print(M);
 
   }

   {
      Tracer et1("Stage 12");
      // more tests on Release
      Matrix M(20,30);
      for (i=1; i<=20; i++) for (j=1; j<=30; j++) M(i,j)=100 * i + j;
      Matrix M1 = M;
      M.Release();
      Matrix M2 = M;
      Matrix X = M;   Print(X);
      X = M1 - M2;    Print(X);

#ifndef DONT_DO_NRIC
      nricMatrix N = M1;
      nricMatrix N1 = N;
      N.Release();
      nricMatrix N2 = N;
      nricMatrix Y = N;   Print(Y);
      Y = N1 - N2;        Print(Y);
      
      N = M1 / 2; N1 = N * 2; N.Release(); N2 = N * 2; Y = N; Print(N);
      Y = (N1 - M1) | (N2 - M1); Print(Y);
#endif

   }
   
   {
      Tracer et("Stage 13");
      // test sum of squares of rows or columns
      MultWithCarry mwc;
      DiagonalMatrix DM; Matrix X;
      // rectangular matrix
      Matrix A(20, 15);
      FillWithValues(mwc, A);
      // sum of squares of rows
      DM << A * A.t();
      ColumnVector CV = A.sum_square_rows();
      X = CV - DM.AsColumn(); Clean(X, 0.000000001); Print(X);
      DM << A.t() * A;
      RowVector RV = A.sum_square_columns();
      X = RV - DM.AsRow(); Clean(X, 0.000000001); Print(X);
      X = RV - A.t().sum_square_rows().t(); Clean(X, 0.000000001); Print(X);
      X = CV - A.t().sum_square_columns().t(); Clean(X, 0.000000001); Print(X);
      // UpperTriangularMatrix
      A.ReSize(17,17); FillWithValues(mwc, A);
      UpperTriangularMatrix UT; UT << A;
      Matrix A1 = UT;
      X = UT.sum_square_rows() - A1.sum_square_rows(); Print(X);
      X = UT.sum_square_columns() - A1.sum_square_columns(); Print(X);
      // LowerTriangularMatrix
      LowerTriangularMatrix LT; LT << A;
      A1 = LT;
      X = LT.sum_square_rows() - A1.sum_square_rows(); Print(X);
      X = LT.sum_square_columns() - A1.sum_square_columns(); Print(X);
      // SymmetricMatrix
      SymmetricMatrix SM; SM << A;
      A1 = SM;
      X = SM.sum_square_rows() - A1.sum_square_rows(); Print(X);
      X = SM.sum_square_columns() - A1.sum_square_columns(); Print(X);
      // DiagonalMatrix
      DM << A;
      A1 = DM;
      X = DM.sum_square_rows() - A1.sum_square_rows(); Print(X);
      X = DM.sum_square_columns() - A1.sum_square_columns(); Print(X);
      // BandMatrix
      BandMatrix BM(17, 3, 5); BM.Inject(A);
      A1 = BM;
      X = BM.sum_square_rows() - A1.sum_square_rows(); Print(X);
      X = BM.sum_square_columns() - A1.sum_square_columns(); Print(X);
      // SymmetricBandMatrix
      SymmetricBandMatrix SBM(17, 4); SBM.Inject(A);
      A1 = SBM;
      X = SBM.sum_square_rows() - A1.sum_square_rows(); Print(X);
      X = SBM.sum_square_columns() - A1.sum_square_columns(); Print(X);
      // IdentityMatrix
      IdentityMatrix IM(29);
      X = IM.sum_square_rows() - 1; Print(X);
      X = IM.sum_square_columns() - 1; Print(X);
      // Matrix with zero rows
      A1.ReSize(0,10);
      X.ReSize(1,10); X = 0; X -= A1.sum_square_columns(); Print(X);
      X.ReSize(0,1); X -= A1.sum_square_rows(); Print(X);
      // Matrix with zero columns
      A1.ReSize(10,0);
      X.ReSize(10,1); X = 0; X -= A1.sum_square_rows(); Print(X);
      X.ReSize(1,0); X -= A1.sum_square_columns(); Print(X);
      
   }
   
   {
      Tracer et("Stage 14");
      // test extend orthonormal
      MultWithCarry mwc;
      Matrix A(20,5); FillWithValues(mwc, A);
      // Orthonormalise
      UpperTriangularMatrix R;
      Matrix A_old = A;
      QRZ(A,R);
      // Check decomposition
      Matrix X = A * R - A_old; Clean(X, 0.000000001); Print(X);
      // Check orthogonality
      X = A.t() * A - IdentityMatrix(5);
      Clean(X, 0.000000001); Print(X);
      // Try orthonality extend 
      SquareMatrix A1(20);
      A1.Columns(1,5) = A;
      extend_orthonormal(A1,5);
      // check columns unchanged
      X = A - A1.Columns(1,5); Print(X);
      // Check orthogonality
      X = A1.t() * A1 - IdentityMatrix(20);
      Clean(X, 0.000000001); Print(X); 
      X = A1 * A1.t() - IdentityMatrix(20);
      Clean(X, 0.000000001); Print(X);
      // Test with smaller number of columns 
      Matrix A2(20,15);
      A2.Columns(1,5) = A;
      extend_orthonormal(A2,5);
      // check columns unchanged
      X = A - A2.Columns(1,5); Print(X);
      // Check orthogonality
      X = A2.t() * A2 - IdentityMatrix(15);
      Clean(X, 0.000000001); Print(X);
      // check it works with no columns to start with
      A2.ReSize(100,100);
      extend_orthonormal(A2,0);
      // Check orthogonality
      X = A2.t() * A2 - IdentityMatrix(100);
      Clean(X, 0.000000001); Print(X);
      X = A2 * A2.t() - IdentityMatrix(100);
      Clean(X, 0.000000001); Print(X);
 
   }
   

//   cout << "\nEnd of twelfth test\n";
}
Esempio n. 15
0
void trymatd()
{
   Tracer et("Thirteenth test of Matrix package");
   Tracer::PrintTrace();
   Matrix X(5,20);
   int i,j;
   for (j=1;j<=20;j++) X(1,j) = j+1;
   for (i=2;i<=5;i++) for (j=1;j<=20; j++) X(i,j) = (long)X(i-1,j) * j % 1001;
   SymmetricMatrix S; S << X * X.t();
   Matrix SM = X * X.t() - S;
   Print(SM);
   LowerTriangularMatrix L = Cholesky(S);
   Matrix Diff = L*L.t()-S; Clean(Diff, 0.000000001);
   Print(Diff);
   {
      Tracer et1("Stage 1");
      LowerTriangularMatrix L1(5);
      Matrix Xt = X.t(); Matrix Xt2 = Xt;
      QRZT(X,L1);
      Diff = L - L1; Clean(Diff,0.000000001); Print(Diff);
      UpperTriangularMatrix Ut(5);
      QRZ(Xt,Ut);
      Diff = L - Ut.t(); Clean(Diff,0.000000001); Print(Diff);
      Matrix Y(3,20);
      for (j=1;j<=20;j++) Y(1,j) = 22-j;
      for (i=2;i<=3;i++) for (j=1;j<=20; j++)
         Y(i,j) = (long)Y(i-1,j) * j % 101;
      Matrix Yt = Y.t(); Matrix M,Mt; Matrix Y2=Y;
      QRZT(X,Y,M); QRZ(Xt,Yt,Mt);
      Diff = Xt - X.t(); Clean(Diff,0.000000001); Print(Diff);
      Diff = Yt - Y.t(); Clean(Diff,0.000000001); Print(Diff);
      Diff = Mt - M.t(); Clean(Diff,0.000000001); Print(Diff);
      Diff = Y2 * Xt2 * S.i() - M * L.i();
      Clean(Diff,0.000000001); Print(Diff);
   }

   ColumnVector C1(5);
   {
      Tracer et1("Stage 2");
      X.ReSize(5,5);
      for (j=1;j<=5;j++) X(1,j) = j+1;
      for (i=2;i<=5;i++) for (j=1;j<=5; j++)
         X(i,j) = (long)X(i-1,j) * j % 1001;
      for (i=1;i<=5;i++) C1(i) = i*i;
      CroutMatrix A = X;
      ColumnVector C2 = A.i() * C1; C1 = X.i()  * C1;
      X = C1 - C2; Clean(X,0.000000001); Print(X);
   }

   {
      Tracer et1("Stage 3");
      X.ReSize(7,7);
      for (j=1;j<=7;j++) X(1,j) = j+1;
      for (i=2;i<=7;i++) for (j=1;j<=7; j++)
         X(i,j) = (long)X(i-1,j) * j % 1001;
      C1.ReSize(7);
      for (i=1;i<=7;i++) C1(i) = i*i;
      RowVector R1 = C1.t();
      Diff = R1 * X.i() - ( X.t().i() * R1.t() ).t(); Clean(Diff,0.000000001);
      Print(Diff);
   }

   {
      Tracer et1("Stage 4");
      X.ReSize(5,5);
      for (j=1;j<=5;j++) X(1,j) = j+1;
      for (i=2;i<=5;i++) for (j=1;j<=5; j++)
         X(i,j) = (long)X(i-1,j) * j % 1001;
      C1.ReSize(5);
      for (i=1;i<=5;i++) C1(i) = i*i;
      CroutMatrix A1 = X*X;
      ColumnVector C2 = A1.i() * C1; C1 = X.i()  * C1; C1 = X.i()  * C1;
      X = C1 - C2; Clean(X,0.000000001); Print(X);
   }


   {
      Tracer et1("Stage 5");
      int n = 40;
      SymmetricBandMatrix B(n,2); B = 0.0;
      for (i=1; i<=n; i++)
      {
         B(i,i) = 6;
         if (i<=n-1) B(i,i+1) = -4;
         if (i<=n-2) B(i,i+2) = 1;
      }
      B(1,1) = 5; B(n,n) = 5;
      SymmetricMatrix A = B;
      ColumnVector X(n);
      X(1) = 429;
      for (i=2;i<=n;i++) X(i) = (long)X(i-1) * 31 % 1001;
      X = X / 100000L;
      // the matrix B is rather ill-conditioned so the difficulty is getting
      // good agreement (we have chosen X very small) may not be surprising;
      // maximum element size in B.i() is around 1400
      ColumnVector Y1 = A.i() * X;
      LowerTriangularMatrix C1 = Cholesky(A);
      ColumnVector Y2 = C1.t().i() * (C1.i() * X) - Y1;
      Clean(Y2, 0.000000001); Print(Y2);
      UpperTriangularMatrix CU = C1.t().i();
      LowerTriangularMatrix CL = C1.i();
      Y2 = CU * (CL * X) - Y1;
      Clean(Y2, 0.000000001); Print(Y2);
      Y2 = B.i() * X - Y1; Clean(Y2, 0.000000001); Print(Y2);

      LowerBandMatrix C2 = Cholesky(B);
      Matrix M = C2 - C1; Clean(M, 0.000000001); Print(M);
      ColumnVector Y3 = C2.t().i() * (C2.i() * X) - Y1;
      Clean(Y3, 0.000000001); Print(Y3);
      CU = C1.t().i();
      CL = C1.i();
      Y3 = CU * (CL * X) - Y1;
      Clean(Y3, 0.000000001); Print(Y3);

      Y3 = B.i() * X - Y1; Clean(Y3, 0.000000001); Print(Y3);

      SymmetricMatrix AI = A.i();
      Y2 = AI*X - Y1; Clean(Y2, 0.000000001); Print(Y2);
      SymmetricMatrix BI = B.i();
      BandMatrix C = B; Matrix CI = C.i();
      M = A.i() - CI; Clean(M, 0.000000001); Print(M);
      M = B.i() - CI; Clean(M, 0.000000001); Print(M);
      M = AI-BI; Clean(M, 0.000000001); Print(M);
      M = AI-CI; Clean(M, 0.000000001); Print(M);

      M = A; AI << M; M = AI-A; Clean(M, 0.000000001); Print(M);
      C = B; BI << C; M = BI-B; Clean(M, 0.000000001); Print(M);


   }

   {
      Tracer et1("Stage 5");
      SymmetricMatrix A(4), B(4);
      A << 5
        << 1 << 4
        << 2 << 1 << 6
        << 1 << 0 << 1 << 7;
      B << 8
        << 1 << 5
        << 1 << 0 << 9
        << 2 << 1 << 0 << 6;
      LowerTriangularMatrix AB = Cholesky(A) * Cholesky(B);
      Matrix M = Cholesky(A) * B * Cholesky(A).t() - AB*AB.t();
      Clean(M, 0.000000001); Print(M);
      M = A * Cholesky(B); M = M * M.t() - A * B * A;
      Clean(M, 0.000000001); Print(M);
   }
   {
      Tracer et1("Stage 6");
      int N=49;
      int i;
      SymmetricBandMatrix S(N,1);
      Matrix B(N,N+1); B=0;
      for (i=1;i<=N;i++) { S(i,i)=1; B(i,i)=1; B(i,i+1)=-1; }
      for (i=1;i<N; i++) S(i,i+1)=-.5;
      DiagonalMatrix D(N+1); D = 1;
      B = B.t()*S.i()*B - (D-1.0/(N+1))*2.0;
      Clean(B, 0.000000001); Print(B);
   }
   {
      Tracer et1("Stage 7");
      // See if you can pass a CroutMatrix to a function
      Matrix A(4,4);
      A.Row(1) <<  3 <<  2 << -1 <<  4;
      A.Row(2) << -8 <<  7 <<  2 <<  0;
      A.Row(3) <<  2 << -2 <<  3 <<  1;
      A.Row(4) << -1 <<  5 <<  2 <<  2;
      CroutMatrix B = A;
      Matrix C = A * Inverter(B) - IdentityMatrix(4);
      Clean(C, 0.000000001); Print(C);
   }


//   cout << "\nEnd of Thirteenth test\n";
}