//! Do the transpose or conjugate transpose solve. void applyTranspose (const MV& X_in, MV& Y_in, const Teuchos::ETransp mode) const { typedef Teuchos::ScalarTraits<Scalar> ST; using Teuchos::null; TEUCHOS_TEST_FOR_EXCEPTION (mode != Teuchos::TRANS && mode != Teuchos::CONJ_TRANS, std::logic_error, "Tpetra::CrsMatrixSolveOp::applyTranspose: mode is neither TRANS nor " "CONJ_TRANS. Should never get here! Please report this bug to the " "Tpetra developers."); const size_t numVectors = X_in.getNumVectors(); Teuchos::RCP<const Import<LocalOrdinal,GlobalOrdinal,Node> > importer = matrix_->getGraph ()->getImporter (); Teuchos::RCP<const Export<LocalOrdinal,GlobalOrdinal,Node> > exporter = matrix_->getGraph ()->getExporter (); Teuchos::RCP<const MV> X; // it is okay if X and Y reference the same data, because we can // perform a triangular solve in-situ. however, we require that // column access to each is strided. // set up import/export temporary multivectors if (importer != null) { if (importMV_ != null && importMV_->getNumVectors() != numVectors) { importMV_ = null; } if (importMV_ == null) { importMV_ = Teuchos::rcp( new MV(matrix_->getColMap(),numVectors) ); } } if (exporter != null) { if (exportMV_ != null && exportMV_->getNumVectors() != numVectors) { exportMV_ = null; } if (exportMV_ == null) { exportMV_ = Teuchos::rcp( new MV(matrix_->getRowMap(),numVectors) ); } } // solve(TRANS): DomainMap -> RangeMap // lclMatSolve_(TRANS): ColMap -> RowMap // importer: DomainMap -> ColMap // exporter: RowMap -> RangeMap // // solve = importer o lclMatSolve_ o exporter // Domainmap -> ColMap -> RowMap -> RangeMap // // If we have a non-trivial importer, we must import elements that // are permuted or are on other processes. if (importer != null) { importMV_->doImport(X_in,*importer,INSERT); X = importMV_; } else if (X_in.isConstantStride() == false) { // cannot handle non-constant stride right now // generate a copy of X_in X = Teuchos::rcp(new MV(X_in)); } else { // just temporary, so this non-owning RCP is okay X = Teuchos::rcpFromRef (X_in); } // If we have a non-trivial exporter, we must export elements that // are permuted or belong to other processes. We will compute // solution into the to-be-exported MV; get a view. if (exporter != null) { matrix_->template localSolve<Scalar, Scalar> (*X, *exportMV_, Teuchos::CONJ_TRANS); // Make sure target is zero: necessary because we are adding Y_in.putScalar(ST::zero()); Y_in.doExport(*importMV_, *importer, ADD); } // otherwise, solve into Y else { if (Y_in.isConstantStride() == false) { // generate a strided copy of Y MV Y(Y_in); matrix_->template localSolve<Scalar, Scalar> (*X, Y, Teuchos::CONJ_TRANS); Y_in = Y; } else { matrix_->template localSolve<Scalar, Scalar> (*X, Y_in, Teuchos::CONJ_TRANS); } } }
//! Do the non-transpose solve. void applyNonTranspose (const MV& X_in, MV& Y_in) const { using Teuchos::NO_TRANS; using Teuchos::null; typedef Teuchos::ScalarTraits<Scalar> ST; // Solve U X = Y or L X = Y // X belongs to domain map, while Y belongs to range map const size_t numVectors = X_in.getNumVectors(); Teuchos::RCP<const Import<LocalOrdinal,GlobalOrdinal,Node> > importer = matrix_->getGraph ()->getImporter (); Teuchos::RCP<const Export<LocalOrdinal,GlobalOrdinal,Node> > exporter = matrix_->getGraph ()->getExporter (); Teuchos::RCP<const MV> X; // it is okay if X and Y reference the same data, because we can // perform a triangular solve in-situ. however, we require that // column access to each is strided. // set up import/export temporary multivectors if (importer != null) { if (importMV_ != null && importMV_->getNumVectors () != numVectors) { importMV_ = null; } if (importMV_ == null) { importMV_ = Teuchos::rcp (new MV (matrix_->getColMap (), numVectors)); } } if (exporter != null) { if (exportMV_ != null && exportMV_->getNumVectors () != numVectors) { exportMV_ = null; } if (exportMV_ == null) { exportMV_ = Teuchos::rcp (new MV (matrix_->getRowMap (), numVectors)); } } // solve(NO_TRANS): RangeMap -> DomainMap // lclMatSolve_: RowMap -> ColMap // importer: DomainMap -> ColMap // exporter: RowMap -> RangeMap // // solve = reverse(exporter) o lclMatSolve_ o reverse(importer) // RangeMap -> RowMap -> ColMap -> DomainMap // // If we have a non-trivial exporter, we must import elements that // are permuted or are on other processors if (exporter != null) { exportMV_->doImport (X_in, *exporter, INSERT); X = exportMV_; } else if (! X_in.isConstantStride ()) { // cannot handle non-constant stride right now // generate a copy of X_in X = Teuchos::rcp (new MV (X_in)); } else { // just temporary, so this non-owning RCP is okay X = Teuchos::rcpFromRef (X_in); } // If we have a non-trivial importer, we must export elements that // are permuted or belong to other processes. We will compute // solution into the to-be-exported MV. if (importer != null) { matrix_->template localSolve<Scalar, Scalar> (*X, *importMV_, NO_TRANS); // Make sure target is zero: necessary because we are adding. Y_in.putScalar (ST::zero ()); Y_in.doExport (*importMV_, *importer, ADD); } // otherwise, solve into Y else { // can't solve into non-strided multivector if (! Y_in.isConstantStride ()) { // generate a strided copy of Y MV Y (Y_in); matrix_->template localSolve<Scalar, Scalar> (*X, Y, NO_TRANS); Tpetra::deep_copy (Y_in, Y); } else { matrix_->template localSolve<Scalar, Scalar> (*X, Y_in, NO_TRANS); } } }