Esempio n. 1
0
ManualObject *Debugging::createPathgridPoints(const ESM::Pathgrid *pathgrid)
{
    ManualObject *result = mSceneMgr->createManualObject();
    const float height = POINT_MESH_BASE * sqrtf(2);

    result->begin(PATHGRID_POINT_MATERIAL, RenderOperation::OT_TRIANGLE_STRIP);

    bool first = true;
    uint32 startIndex = 0;
    for(ESM::Pathgrid::PointList::const_iterator it = pathgrid->mPoints.begin();
        it != pathgrid->mPoints.end();
        it++, startIndex += 6)
    {
        Vector3 pointPos(it->mX, it->mY, it->mZ);

        if (!first)
        {
            // degenerate triangle from previous octahedron
            result->index(startIndex - 4); // 2nd point of previous octahedron
            result->index(startIndex); // start point of current octahedron
        }

        result->position(pointPos + Vector3(0, 0, height)); // 0
        result->position(pointPos + Vector3(-POINT_MESH_BASE, -POINT_MESH_BASE, 0)); // 1
        result->position(pointPos + Vector3(POINT_MESH_BASE, -POINT_MESH_BASE, 0)); // 2
        result->position(pointPos + Vector3(POINT_MESH_BASE, POINT_MESH_BASE, 0)); // 3
        result->position(pointPos + Vector3(-POINT_MESH_BASE, POINT_MESH_BASE, 0)); // 4
        result->position(pointPos + Vector3(0, 0, -height)); // 5

        result->index(startIndex + 0);
        result->index(startIndex + 1);
        result->index(startIndex + 2);
        result->index(startIndex + 5);
        result->index(startIndex + 3);
        result->index(startIndex + 4);
        // degenerates
        result->index(startIndex + 4);
        result->index(startIndex + 5);
        result->index(startIndex + 5);
        // end degenerates
        result->index(startIndex + 1);
        result->index(startIndex + 4);
        result->index(startIndex + 0);
        result->index(startIndex + 3);
        result->index(startIndex + 2);

        first = false;
    }

    result->end();

    result->setVisibilityFlags (RV_Debug);

    return result;
}
Esempio n. 2
0
void HelloOgre::createManual(){
	Ogre::SceneManager* mSceneMgr= OgreApp::I()->getSceneManager();
#if 1
	ManualObject* manual = mSceneMgr->createManualObject("manual");
	// specify the material (by name) and rendering type
	manual->begin("BaseWhiteNoLighting", RenderOperation::OT_LINE_LIST);
//	manual->begin("BaseWhiteNoLighting", RenderOperation::OT_TRIANGLE_STRIP);
	// define start and end point
	manual->position(-100, -100, -100 );
	manual->position(100, 100, 100 );
	manual->colour( 1.0f, 1.0f, 1.0f, 1.0f );
	// tell Ogre, your definition has finished
	manual->end();
	// add ManualObject to the RootSceneNode (so it will be visible)
	mSceneMgr->getRootSceneNode()->attachObject(manual);
#endif

#if 1
// Create a manual object for 2D
	manual = mSceneMgr->createManualObject("manual2");
	 
	// Use identity view/projection matrices
	manual->setUseIdentityProjection(true);
	manual->setUseIdentityView(true);
	 
	manual->begin("BaseWhiteNoLighting", RenderOperation::OT_LINE_STRIP);
	 
	manual->position(-0.2, -0.2, 0.0);
	manual->position( 0.2, -0.2, 0.0);
	manual->position( 0.2,  0.2, 0.0);
	manual->position(-0.2,  0.2, 0.0);
	 
	manual->index(0);
	manual->index(1);
	manual->index(2);
	manual->index(3);
	manual->index(0);
	 
	manual->end();
	 
	// Use infinite AAB to always stay visible
	AxisAlignedBox aabInf;
	aabInf.setInfinite();
	manual->setBoundingBox(aabInf);
	 
	// Render just before overlays
	manual->setRenderQueueGroup(RENDER_QUEUE_OVERLAY - 1);
	 
	// Attach to scene
	mSceneMgr->getRootSceneNode()->createChildSceneNode()->attachObject(manual);
#endif
}
Esempio n. 3
0
//  Sky Dome
//-------------------------------------------------------------------------------------
void CScene::CreateSkyDome(String sMater, Vector3 sc, float yaw)
{
	ManualObject* m = app->mSceneMgr->createManualObject();
	m->begin(sMater, RenderOperation::OT_TRIANGLE_LIST);

	//  divisions- quality
	int ia = 32*2, ib = 24,iB = 24 +1/*below_*/, i=0;
	//int ia = 4, ib = 4, i=0;
	//  angles, max
	float a,b;  const float B = PI_d/2.f, A = 2.f*PI_d;
	float bb = B/ib, aa = A/ia;  // add
	ia += 1;

	//  up/dn y  )
	for (b = 0.f; b <= B+bb/*1*/*iB; b += bb)
	{
		float cb = sinf(b), sb = cosf(b);
		float y = sb;

		//  circle xz  o
		for (a = 0.f; a <= A; a += aa, ++i)
		{
			float x = cosf(a)*cb, z = sinf(a)*cb;
			m->position(x,y,z);

			m->textureCoord(a/A, b/B);

			if (a > 0.f && b > 0.f)  // rect 2tri
			{
				m->index(i-1);  m->index(i);     m->index(i-ia);
				m->index(i-1);  m->index(i-ia);  m->index(i-ia-1);
			}
		}
	}
	m->end();
	AxisAlignedBox aab;  aab.setInfinite();
	m->setBoundingBox(aab);  // always visible
	m->setRenderQueueGroup(RQG_Sky);
	m->setCastShadows(false);
	#ifdef SR_EDITOR
	m->setVisibilityFlags(RV_Sky);  // hide on minimap
	#endif

	app->ndSky = app->mSceneMgr->getRootSceneNode()->createChildSceneNode();
	app->ndSky->attachObject(m);
	app->ndSky->setScale(sc);
	Quaternion q;  q.FromAngleAxis(Degree(-yaw), Vector3::UNIT_Y);
	app->ndSky->setOrientation(q);
}
Esempio n. 4
0
Ogre::SceneNode* Terminal::createTexturedRect(std::string object_name, std::string texture_name, float left, float top, float right, float bottom)
{
    MaterialPtr material = MaterialManager::getSingleton().create(object_name,Ogre::ResourceGroupManager::DEFAULT_RESOURCE_GROUP_NAME);
    material->getTechnique(0)->getPass(0)->createTextureUnitState(texture_name);
    material->getTechnique(0)->getPass(0)->setDepthCheckEnabled(false);
    material->getTechnique(0)->getPass(0)->setDepthWriteEnabled(true);
    material->getTechnique(0)->getPass(0)->setLightingEnabled(false);

//    Ogre::Rectangle2D* rect = new Ogre::Rectangle2D(true);
    ManualObject* manual = Entropy::getSingletonPtr()->mSceneMgr->createManualObject(object_name);
    manual->setUseIdentityProjection(true);
    manual->setUseIdentityView(true);

    manual->begin(object_name, RenderOperation::OT_TRIANGLE_STRIP);

    manual->position(left, bottom, 0.0);
    manual->position(left, top, 0.0);
    manual->position(right, bottom, 0.0);
    manual->position(right,  top, 0.0);

    manual->index(0);
    manual->index(1);
    manual->index(2);
    manual->index(3);

    manual->end();

//    rect->setCorners(left,top,right,bottom);
//    rect->setMaterial(object_name);

    manual->setRenderQueueGroup(RENDER_QUEUE_OVERLAY);

    Ogre::AxisAlignedBox aabInf;
    aabInf.setInfinite();
    manual->setBoundingBox(aabInf);

    Ogre::SceneNode* rect_node = Entropy::getSingletonPtr()->mSceneMgr->getRootSceneNode()->createChildSceneNode(object_name);
    rect_node->attachObject(manual);


//    rect->setVisible(false);



//    rect_node->setPosition(0,0,0);

    return rect_node;
}
Esempio n. 5
0
void App::CreateRacingLine()
{
	//void ROADPATCH::AddRacinglineScenenode(SCENENODE * node, ROADPATCH * nextpatch,	
	ManualObject* m = mSceneMgr->createManualObject();
	m->begin("track/Racingline", RenderOperation::OT_TRIANGLE_LIST);
	int ii = 0;

	const std::list <ROADSTRIP>& roads = pGame->track.GetRoadList();
	for (std::list <ROADSTRIP>::const_iterator it = roads.begin(); it != roads.end(); ++it)
	{
		const std::list <ROADPATCH>& pats = (*it).GetPatchList();
		for (std::list <ROADPATCH>::const_iterator i = pats.begin(); i != pats.end(); ++i)
		{
			const VERTEXARRAY* a = &((*i).racingline_vertexarray);
			if (!a)  continue;

			int verts = a->vertices.size();
			if (verts == 0)  continue;
			int faces = a->faces.size();

			for (int v = 0; v < verts; v += 3)
				m->position(a->vertices[v+0], a->vertices[v+2], -a->vertices[v+1]);

			for (int f = 0; f < faces; ++f)
				m->index(ii + a->faces[f]);

			ii += verts/3;
		}
	}
	m->setCastShadows(false);	
	m->end();
	hud->ndLine = mSceneMgr->getRootSceneNode()->createChildSceneNode();
	hud->ndLine->attachObject(m);
	//ndLine->setVisible(pSet->racingline);
}
Esempio n. 6
0
//  utility - create VDrift model in Ogre
//-------------------------------------------------------------------------------------------------------
ManualObject* App::CreateModel(SceneManager* sceneMgr, const String& mat,
	class VERTEXARRAY* a, Vector3 vPofs, bool flip, bool track, const String& name)
{
	int verts = a->vertices.size();
	if (verts == 0)  return NULL;
	int tcs   = a->texcoords[0].size(); //-
	int norms = a->normals.size();
	int faces = a->faces.size();
	// norms = verts, verts % 3 == 0

	ManualObject* m;
	if (name == "")
		m = sceneMgr->createManualObject();
	else
		m = sceneMgr->createManualObject(name);
	m->begin(mat, RenderOperation::OT_TRIANGLE_LIST);

	int t = 0;
	if (track)
	{	for (int v = 0; v < verts; v += 3)
		{
			m->position(a->vertices[v+0], a->vertices[v+2], -a->vertices[v+1]);
			if (norms)
			m->normal(	a->normals [v+0], a->normals [v+2], -a->normals [v+1]);
			if (t < tcs)
			{	m->textureCoord(a->texcoords[0][t], a->texcoords[0][t+1]);  t += 2;	}
		}
		for (int f = 0; f < faces; ++f)
			m->index(a->faces[f]);
	}else
	if (flip)
	{	for (int v = 0; v < verts; v += 3)
		{
			m->position(a->vertices[v], a->vertices[v+1], a->vertices[v+2]);
			if (norms)
			m->normal(  a->normals [v], a->normals [v+1], a->normals [v+2]);
			if (t < tcs)
			{	m->textureCoord(a->texcoords[0][t], a->texcoords[0][t+1]);  t += 2;	}
		}
		for (int f = 0; f < faces; f += 3)
		{	m->index(a->faces[f+2]);  m->index(a->faces[f+1]);  m->index(a->faces[f]);	}
	}else
	{	for (int v = 0; v < verts; v += 3)
		{
			m->position(-a->vertices[v+1]+vPofs.x, -a->vertices[v+2]+vPofs.y, a->vertices[v]+vPofs.z);
			if (norms)
			m->normal(	-a->normals [v+1], -a->normals [v+2], a->normals [v]);
			if (t < tcs)
			{	m->textureCoord(a->texcoords[0][t], a->texcoords[0][t+1]);  t += 2;	}
		}
		for (int f = 0; f < faces; f += 3)
		{	m->index(a->faces[f+2]);  m->index(a->faces[f+1]);  m->index(a->faces[f]);	}
	}
	m->end();
	return m;
}
Esempio n. 7
0
    //---------------------------------------------------------------------
    void
    PFile::addGroup( const Group &group, ManualObject &mo
                    ,const String &sub_name, const String &material_base_name
                    ,const Ogre::Bone *bone ) const
    {
        size_t material_index( 0 );
        if( group.has_texture )
        {
            material_index = group.texture_index + 1;
        }
        String material_name( material_base_name + "/" + Ogre::StringConverter::toString( material_index ) );
        const uint16 bone_handle( bone->getHandle() );
        const Ogre::Vector3 bone_position( getPosition( bone ) );

        size_t index( 0 );
        size_t vertex_count( group.num_polygons * 3 );
        size_t index_count( vertex_count );
        size_t polygon_end_index( group.polygon_start_index + group.num_polygons );
        mo.begin( sub_name, material_name, vertex_count, index_count );
        for( size_t p( group.polygon_start_index ); p < polygon_end_index; ++p )
        {
            const PolygonDefinition& polygon( m_polygon_definitions[p] );
            for( int i(3); i--; )
            {
                uint32 v( group.vertex_start_index
                         +polygon.vertex[i] )
                      ,n( 0 + polygon.normal[i] )
                      ,t( group.texture_coordinate_start_index
                         +polygon.vertex[i] );
                Ogre::Vector3 pos( m_vertices[ v ] );
                mo.position((STATIC_ROTATION *  (pos / HRCFile::kDownScaler)) + bone_position);
                mo.colour( m_vertex_colors[ v ] );
                mo.normal( STATIC_ROTATION * m_normals[ n ] );
                if( group.has_texture )
                {
                    mo.textureCoord(m_texture_coordinates[t]);
                }
                mo.bone( index, bone_handle );
                mo.index( index++ );
            }
        }
        mo.end();
    }
    Entity* MeshBuilder::generateWithManualObject(SceneManager *sceneManager, const String &name, const String &material)
    {
            ManualObject* manual = sceneManager->createManualObject();
            manual->begin(material, RenderOperation::OT_TRIANGLE_LIST);
        
            for (VecVertex::const_iterator iter = mVertices.begin(); iter != mVertices.end(); ++iter)
            {
                manual->position(Vector3(iter->x, iter->y, iter->z));
                manual->normal(Vector3(iter->nX, iter->nY, iter->nZ));
            }
            for (VecIndices::const_iterator iter = mIndices.begin(); iter != mIndices.end(); ++iter)
            {
                manual->index(*iter);
            }

            manual->end();
            StringUtil::StrStreamType meshName;
            meshName << name << "ManualObject";
            MeshManager::getSingleton().remove(meshName.str());
            manual->convertToMesh(meshName.str());
            return sceneManager->createEntity(name, meshName.str());
    }
Esempio n. 9
0
void App::CreateRoadBezier()
{
	ManualObject* m = mSceneMgr->createManualObject();
	//m->begin("pipeGlass", RenderOperation::OT_TRIANGLE_LIST);
	m->begin("roadAsphalt", RenderOperation::OT_TRIANGLE_LIST);
	int ii=0;

	#ifdef SR_EDITOR
	const std::list <ROADSTRIP>& roads = track->GetRoadList();
	#else
	const std::list <ROADSTRIP>& roads = pGame->track.GetRoadList();
	#endif
	for (std::list <ROADSTRIP>::const_iterator it = roads.begin(); it != roads.end(); ++it)
	{
		#define VDR_LEN  // to get whole track length
		#ifdef VDR_LEN
		MATHVECTOR<float,3> vec0;  float length = 0.f;
		#endif
		const std::list <ROADPATCH>& pats = (*it).GetPatchList();
		for (std::list <ROADPATCH>::const_iterator i = pats.begin(); i != pats.end(); ++i)
		{
			float p[16][3];  int a=0;
			for (int y=0; y<4; ++y)
			for (int x=0; x<4; ++x)
			{
				const MATHVECTOR<float,3>& vec = (*i).GetPatch().GetPoint(x,y);
				p[a][0] = vec[2];  p[a][1] = vec[1] + 0.2f/*ofs up*/;  p[a][2] = -vec[0];  a++;
				
				#ifdef VDR_LEN
				if (x==1 && y==1 /*&& it == roads.begin()*/)  //main only-
				{
					if (i != pats.begin())  // sum distance
						length += (vec0-vec).Magnitude();
					vec0 = vec;
					//LogO(fToStr(length,2,6));
				}
				#endif
			}
			a=0;

			// normal
			Vector3 pos (p[a  ][0], p[a  ][1], p[a  ][2]);
			Vector3 posX(p[a+3][0], p[a+3][1], p[a+3][2]);   posX-=pos;  posX.normalise();
			Vector3 posY(p[a+12][0],p[a+12][1],p[a+12][2]);  posY-=pos;  posY.normalise();
			Vector3 norm = posX.crossProduct(posY);  norm.normalise();/**/

			for (int y=0; y<4; ++y)
			for (int x=0; x<4; ++x)
			{
				Vector3 pos(p[a][0], p[a][1], p[a][2]);  a++;
				m->position(pos);
				m->normal(norm);/**/
				m->textureCoord(y/3.f,x/3.f);
				if (x<3 && y<3)
				{
					int a = ii+x+y*4;
					m->index(a);	m->index(a+1);	m->index(a+4);
					m->index(a+5);	m->index(a+4);	m->index(a+1);
				}
			}
			ii += 16;
		}
		#ifdef VDR_LEN
		LogO("VDR TRK: " + pSet->gui.track +" LEN: "+fToStr(length,2,6));
		#endif
	}
	m->end();
	AxisAlignedBox aabInf;	aabInf.setInfinite();
	m->setBoundingBox(aabInf);  // always visible
	mSceneMgr->getRootSceneNode()->createChildSceneNode()->attachObject(m);
}
Esempio n. 10
0
ManualObject* CHud::CreateVdrMinimap()
{
	asp = float(app->mWindow->getWidth())/float(app->mWindow->getHeight());

	//  get track sizes
	minX=FLT_MAX; maxX=FLT_MIN;  minY=FLT_MAX; maxY=FLT_MIN;

	const std::list <ROADSTRIP>& roads = app->pGame->track.GetRoadList();
	for (std::list <ROADSTRIP>::const_iterator it = roads.begin(); it != roads.end(); ++it)
	{
		const std::list <ROADPATCH>& pats = (*it).GetPatchList();
		for (std::list <ROADPATCH>::const_iterator i = pats.begin(); i != pats.end(); ++i)
		{
			for (int iy=0; iy<4; ++iy)
			for (int ix=0; ix<4; ++ix)
			{
				const MATHVECTOR<float,3>& vec = (*i).GetPatch().GetPoint(ix,iy);

				Real x = vec[0], y = vec[2];
				if (x < minX)  minX = x;	if (x > maxX)  maxX = x;
				if (y < minY)  minY = y;	if (y > maxY)  maxY = y;
			}
		}
	}

	float fMapSizeX = maxX - minX, fMapSizeY = maxY - minY;  // map size
	float size = std::max(fMapSizeX, fMapSizeY);
	scX = 1.f / size;  scY = 1.f / size;

	ManualObject* m = app->mSceneMgr->createManualObject();
	m->begin("hud/Minimap", RenderOperation::OT_TRIANGLE_LIST);
	int ii = 0;

	for (std::list <ROADSTRIP>::const_iterator it = roads.begin(); it != roads.end(); ++it)
	{
		const std::list <ROADPATCH>& pats = (*it).GetPatchList();
		for (std::list <ROADPATCH>::const_iterator i = pats.begin(); i != pats.end(); ++i)
		{
			float p[16][3];  int a=0;
			for (int y=0; y<4; ++y)
			for (int x=0; x<4; ++x)
			{
				const MATHVECTOR<float,3>& vec = (*i).GetPatch().GetPoint(x,y);
				p[a][0] = vec[0];  p[a][1] = vec[2];  p[a][2] = vec[1];  a++;
			}
			a = 0;

			// normal
			Vector3 pos (p[a  ][2], -p[a  ][0], p[a  ][1]);
			Vector3 posX(p[a+3][2], -p[a+3][0], p[a+3][1]);   posX-=pos;  posX.normalise();
			Vector3 posY(p[a+12][2],-p[a+12][0],p[a+12][1]);  posY-=pos;  posY.normalise();
			Vector3 norm = posX.crossProduct(posY);  norm.normalise();/**/

			for (int y=0; y<4; ++y)
			for (int x=0; x<4; ++x)
			{
				Vector3 pos( (p[a][0] - minX)*scX*2-1,	// pos x,y = -1..1
							-(p[a][1] - minY)*scY*2+1, 0);  a++;
				m->position(pos);
				m->normal(norm);/**/

				Real c = std::min(1.f, std::max(0.3f, 1.f - 2.4f * powf( fabs(norm.y)
					/*norm.absDotProduct(vLi)*/, 0.7f) ));
				m->colour(ColourValue(c,c,c,1));

				m->textureCoord(x/3.f,y/3.f);
				if (x<3 && y<3)
				{
					int a = ii+x+y*4;
					m->index(a+0);	m->index(a+1);	m->index(a+4);
					m->index(a+1);	m->index(a+4);	m->index(a+5);
				}
			}
			ii += 16;
		}
	}
	m->end();
	m->setUseIdentityProjection(true);  m->setUseIdentityView(true);  // on hud
	m->setCastShadows(false);
	AxisAlignedBox aab;  aab.setInfinite();  m->setBoundingBox(aab);  // draw always
	m->setRenderingDistance(100000.f);
	m->setRenderQueueGroup(RQG_Hud2);  m->setVisibilityFlags(RV_Hud);
	return m;
}