void MeshWithoutIndexDataTests::testCloneMesh()
{
    String originalName = "toClone.mesh";
    createMeshWithMaterial(originalName);
    MeshPtr mesh = mMeshMgr->getByName(originalName);

    String fileName = "clone.mesh";
    MeshPtr clone = mesh->clone(fileName);
    CPPUNIT_ASSERT(mesh->getNumSubMeshes() == 4);

    MeshSerializer meshWriter;
    meshWriter.exportMesh(mesh.get(), fileName);

    mMeshMgr->remove( fileName );

    ResourceGroupManager::getSingleton().addResourceLocation(".", "FileSystem");
    MeshPtr loadedMesh = mMeshMgr->load(fileName, "General");

    remove(fileName.c_str());

    CPPUNIT_ASSERT(loadedMesh->getNumSubMeshes() == 4);

    mMeshMgr->remove( fileName );
}
Esempio n. 2
0
//---------------------------------------------------------------------
void PlayPen_testPoseAnimationWithoutNormals::setupContent()
{
	mSceneMgr->setAmbientLight(ColourValue(0.5, 0.5, 0.5));
	Vector3 dir(-1, -1, 0.5);
	dir.normalise();
	Light* l = mSceneMgr->createLight("light1");
	l->setType(Light::LT_DIRECTIONAL);
	l->setDirection(dir);

	MeshPtr mesh = MeshManager::getSingleton().load("cube.mesh", 
		ResourceGroupManager::DEFAULT_RESOURCE_GROUP_NAME);
		
	String newName = "testposenonormals.mesh";
	mesh = mesh->clone(newName);


	SubMesh* sm = mesh->getSubMesh(0);
	// Re-organise geometry since this mesh has no animation and all 
	// vertex elements are packed into one buffer
	VertexDeclaration* newDecl = 
		sm->vertexData->vertexDeclaration->getAutoOrganisedDeclaration(false, true, false);
	sm->vertexData->reorganiseBuffers(newDecl);

	// create 2 poses
	Pose* pose = mesh->createPose(1, "pose1");
	// Pose1 moves vertices 0, 1, 2 and 3 upward 
	Vector3 offset1(0, 50, 0);
	pose->addVertex(0, offset1);
	pose->addVertex(1, offset1);
	pose->addVertex(2, offset1);
	pose->addVertex(3, offset1);

	pose = mesh->createPose(1, "pose2");
	// Pose2 moves vertices 3, 4, and 5 to the right
	// Note 3 gets affected by both
	Vector3 offset2(100, 0, 0);
	pose->addVertex(3, offset2);
	pose->addVertex(4, offset2);
	pose->addVertex(5, offset2);


	Animation* anim = mesh->createAnimation("poseanim", 20.0f);
	VertexAnimationTrack* vt = anim->createVertexTrack(1, sm->vertexData, VAT_POSE);
	
	// Frame 0 - no effect 
	VertexPoseKeyFrame* kf = vt->createVertexPoseKeyFrame(0);

	// Frame 1 - bring in pose 1 (index 0)
	kf = vt->createVertexPoseKeyFrame(3);
	kf->addPoseReference(0, 1.0f);

	// Frame 2 - remove all 
	kf = vt->createVertexPoseKeyFrame(6);

	// Frame 3 - bring in pose 2 (index 1)
	kf = vt->createVertexPoseKeyFrame(9);
	kf->addPoseReference(1, 1.0f);

	// Frame 4 - remove all
	kf = vt->createVertexPoseKeyFrame(12);


	// Frame 5 - bring in pose 1 at 50%, pose 2 at 100% 
	kf = vt->createVertexPoseKeyFrame(15);
	kf->addPoseReference(0, 0.5f);
	kf->addPoseReference(1, 1.0f);

	// Frame 6 - bring in pose 1 at 100%, pose 2 at 50% 
	kf = vt->createVertexPoseKeyFrame(18);
	kf->addPoseReference(0, 1.0f);
	kf->addPoseReference(1, 0.5f);

	// Frame 7 - reset
	kf = vt->createVertexPoseKeyFrame(20);

	// Export the mesh
	DataStreamPtr stream = Root::getSingleton().createFileStream(newName, ResourceGroupManager::DEFAULT_RESOURCE_GROUP_NAME, true);
	MeshSerializer ser;
	ser.exportMesh(mesh.get(), stream);
	stream->close();

	// Unload old mesh to force reload
	MeshManager::getSingleton().remove(mesh->getHandle());
	mesh->unload();
	mesh.setNull();

	Entity*  e;
	AnimationState* animState;
	// software pose
	e = mSceneMgr->createEntity("test2", newName);
	mSceneMgr->getRootSceneNode()->createChildSceneNode(Vector3(150,0,0))->attachObject(e);
	animState = e->getAnimationState("poseanim");
	animState->setEnabled(true);
	animState->setWeight(1.0f);
	mAnimStateList.push_back(animState);
	
	// test hardware pose
	e = mSceneMgr->createEntity("test", newName);
	mSceneMgr->getRootSceneNode()->createChildSceneNode()->attachObject(e);
	e->setMaterialName("Examples/HardwarePoseAnimation");
	animState = e->getAnimationState("poseanim");
	animState->setEnabled(true);
	animState->setWeight(1.0f);
	mAnimStateList.push_back(animState);
	

	mCamera->setNearClipDistance(0.5);

	Plane plane;
	plane.normal = Vector3::UNIT_Y;
	plane.d = 200;
	MeshManager::getSingleton().createPlane("Myplane",
		ResourceGroupManager::DEFAULT_RESOURCE_GROUP_NAME, plane,
		1500,1500,10,10,true,1,5,5,Vector3::UNIT_Z);
	Entity* pPlaneEnt = mSceneMgr->createEntity( "plane", "Myplane" );
	pPlaneEnt->setMaterialName("2 - Default");
	pPlaneEnt->setCastShadows(false);
	mSceneMgr->getRootSceneNode()->createChildSceneNode()->attachObject(pPlaneEnt);

	mCamera->setPosition(0,-200,-300);
	mCamera->lookAt(0,0,0);

}
Esempio n. 3
0
//---------------------------------------------------------------------
void PlayPen_testMorphAnimationWithoutNormals::setupContent()
{
	bool testStencil = false;

	if (testStencil)
		mSceneMgr->setShadowTechnique(SHADOWTYPE_STENCIL_MODULATIVE);

	mSceneMgr->setAmbientLight(ColourValue(0.5, 0.5, 0.5));
	Vector3 dir(-1, -1, 0.5);
	dir.normalise();
	Light* l = mSceneMgr->createLight("light1");
	l->setType(Light::LT_DIRECTIONAL);
	l->setDirection(dir);


	MeshPtr mesh = MeshManager::getSingleton().load("sphere.mesh", 
		ResourceGroupManager::DEFAULT_RESOURCE_GROUP_NAME);

	String morphName = "testmorphnonormals.mesh";
	mesh = mesh->clone(morphName);

	SubMesh* sm = mesh->getSubMesh(0);
	// Re-organise geometry since this mesh has no animation and all 
	// vertex elements are packed into one buffer
	VertexDeclaration* newDecl = 
		sm->vertexData->vertexDeclaration->getAutoOrganisedDeclaration(false, true, false);
	sm->vertexData->reorganiseBuffers(newDecl);
	if (testStencil)
		sm->vertexData->prepareForShadowVolume(); // need to re-prep since reorganised
	// get the position buffer (which should now be separate);
	const VertexElement* posElem = 
		sm->vertexData->vertexDeclaration->findElementBySemantic(VES_POSITION);
	HardwareVertexBufferSharedPtr origbuf = 
		sm->vertexData->vertexBufferBinding->getBuffer(
		posElem->getSource());

	// Create a new position & normal buffer with updated values
	HardwareVertexBufferSharedPtr newbuf = 
		HardwareBufferManager::getSingleton().createVertexBuffer(
		VertexElement::getTypeSize(VET_FLOAT3),
		sm->vertexData->vertexCount, 
		HardwareBuffer::HBU_STATIC, true);
	float* pSrc = static_cast<float*>(origbuf->lock(HardwareBuffer::HBL_READ_ONLY));
	float* pDst = static_cast<float*>(newbuf->lock(HardwareBuffer::HBL_DISCARD));

	// Make the sphere turn into a cube
	// Do this just by clamping each of the directions (we shrink it)
	float cubeDimension = 0.3f * mesh->getBoundingSphereRadius();
	for (size_t v = 0; v < sm->vertexData->vertexCount; ++v)
	{
		// x/y/z position
		Vector3 pos;
		for (int d = 0; d < 3; ++d)
		{
			if (*pSrc >= 0)
			{
				pos.ptr()[d] = std::min(cubeDimension, *pSrc++);
			}
			else 
			{
				pos.ptr()[d] = std::max(-cubeDimension, *pSrc++);			
			}
			*pDst++ = pos.ptr()[d];
		}

	}

	origbuf->unlock();
	newbuf->unlock();

	// create a morph animation
	Animation* anim = mesh->createAnimation("testAnim", 10.0f);
	VertexAnimationTrack* vt = anim->createVertexTrack(1, sm->vertexData, VAT_MORPH);
	// re-use start positions for frame 0
	VertexMorphKeyFrame* kf = vt->createVertexMorphKeyFrame(0);
	kf->setVertexBuffer(origbuf);

	// Use translated buffer for mid frame
	kf = vt->createVertexMorphKeyFrame(4.0f);
	kf->setVertexBuffer(newbuf);

	// Pause there
	kf = vt->createVertexMorphKeyFrame(6.0f);
	kf->setVertexBuffer(newbuf);

	// re-use start positions for final frame
	kf = vt->createVertexMorphKeyFrame(10.0f);
	kf->setVertexBuffer(origbuf);

	// Export the mesh
	DataStreamPtr stream = Root::getSingleton().createFileStream(morphName, ResourceGroupManager::DEFAULT_RESOURCE_GROUP_NAME, true);
	MeshSerializer ser;
	ser.exportMesh(mesh.get(), stream);
	stream->close();

	// Unload old mesh to force reload
	MeshManager::getSingleton().remove(mesh->getHandle());
	mesh->unload();
	mesh.setNull();

	Entity* e = mSceneMgr->createEntity("test", morphName);
	mSceneMgr->getRootSceneNode()->createChildSceneNode()->attachObject(e);
	AnimationState* animState = e->getAnimationState("testAnim");
	animState->setEnabled(true);
	animState->setWeight(1.0f);
	mAnimStateList.push_back(animState);

	e = mSceneMgr->createEntity("test2", morphName);
	mSceneMgr->getRootSceneNode()->createChildSceneNode(Vector3(200,0,0))->attachObject(e);
	// test hardware morph
	e->setMaterialName("Examples/HardwareMorphAnimation");
	animState = e->getAnimationState("testAnim");
	animState->setEnabled(true);
	animState->setWeight(1.0f);
	mAnimStateList.push_back(animState);

	mCamera->setNearClipDistance(0.5);
	mCamera->setPosition(0,100,-400);
	mCamera->lookAt(Vector3::ZERO);
	//mSceneMgr->setShowDebugShadows(true);

	Plane plane;
	plane.normal = Vector3::UNIT_Y;
	plane.d = 200;
	MeshManager::getSingleton().createPlane("Myplane",
		ResourceGroupManager::DEFAULT_RESOURCE_GROUP_NAME, plane,
		1500,1500,10,10,true,1,5,5,Vector3::UNIT_Z);
	Entity* pPlaneEnt = mSceneMgr->createEntity( "plane", "Myplane" );
	pPlaneEnt->setMaterialName("2 - Default");
	pPlaneEnt->setCastShadows(false);
	mSceneMgr->getRootSceneNode()->createChildSceneNode()->attachObject(pPlaneEnt);

}
Esempio n. 4
0
FlexBody::FlexBody(SceneManager *manager, node_t *nds, int numnds, char* meshname, char* uname, int ref, int nx, int ny, Vector3 offset, Quaternion rot, char* setdef, MaterialFunctionMapper *mfm, Skin *usedSkin, bool enableShadows, MaterialReplacer *mr) : snode(0), faulty(false), mr(mr)
{
	nodes=nds;
	numnodes=numnds;
	cref=ref; nodes[cref].iIsSkin=true;
	cx=nx; nodes[cx].iIsSkin=true;
	cy=ny; nodes[cy].iIsSkin=true;
	coffset=offset;
	cameramode=-2; // all cameras
	enabled=true;

	haveshadows=(manager->getShadowTechnique()==SHADOWTYPE_STENCIL_MODULATIVE || manager->getShadowTechnique()==SHADOWTYPE_STENCIL_ADDITIVE);
	havetangents=false;
	haveblend=true;

	freenodeset=0;
	//parsing set definition
	char* pos=setdef;
	char* end=pos;
	char endwas='G';
	while (endwas!=0)
	{
		unsigned int val1, val2;
		end=pos;
		while (*end!='-' && *end!=',' && *end!=0) end++;
		endwas=*end;
		*end=0;
		val1=strtoul(pos, 0, 10);
		if (endwas=='-')
		{
			pos=end+1;
			end=pos;
			while (*end!=',' && *end!=0) end++;
			endwas=*end;
			*end=0;
			val2=strtoul(pos, 0, 10);
			addinterval(val1, val2);
		}
		else addinterval(val1, val1);
		pos=end+1;
	}

	/*
	// too verbose, removed
	for (int i=0; i<freenodeset; i++)
		LOG("FLEXBODY node interval "+TOSTRING(i)+": "+TOSTRING(nodeset[i].from)+"-"+TOSTRING(nodeset[i].to));
	*/

	Vector3 normal = Vector3::UNIT_Y;
	Vector3 position = Vector3::ZERO;
	Quaternion orientation = Quaternion::ZERO;
	if(ref >= 0)
	{
		normal=(nodes[ny].smoothpos-nodes[ref].smoothpos).crossProduct(nodes[nx].smoothpos-nodes[ref].smoothpos);
		normal.normalise();
		//position
		position=nodes[ref].smoothpos+offset.x*(nodes[nx].smoothpos-nodes[ref].smoothpos)+offset.y*(nodes[ny].smoothpos-nodes[ref].smoothpos);
		position=(position+normal*offset.z);
		//orientation
		Vector3 refx=nodes[nx].smoothpos-nodes[ref].smoothpos;
		refx.normalise();
		Vector3 refy=refx.crossProduct(normal);
		orientation=Quaternion(refx, normal, refy)*rot;
	} else
	{
		// special case!
		normal = Vector3::UNIT_Y;
		position=nodes[0].smoothpos+offset;
		orientation = rot;
	}

	// load unique mesh (load original mesh and clone it with unique name)

	// find group that contains the mesh
	String groupname="";
	try
	{
		groupname = ResourceGroupManager::getSingleton().findGroupContainingResource(meshname);
	}catch(...)
	{
	}
	if(groupname == "")
	{
		LOG("FLEXBODY mesh not found: "+String(meshname));
		faulty=true;
		return;
	}
	// build new unique mesh name
	char uname_mesh[256];
	memset(uname_mesh, 0, 254);
	strcpy(uname_mesh, uname);
	strcat(uname_mesh, "_mesh");
	MeshPtr mesh = Ogre::MeshManager::getSingleton().load(meshname, groupname);
	MeshPtr newmesh = mesh->clone(uname_mesh);
	
	// now find possible LODs
 	String basename, ext;
	StringUtil::splitBaseFilename(String(meshname), basename, ext);
	for(int i=0; i<4;i++)
	{
		String fn = basename + "_" + TOSTRING(i) + ".mesh";
		bool exists = ResourceGroupManager::getSingleton().resourceExistsInAnyGroup(fn);
		if(!exists) continue;

		float distance = 3;
		if(i == 1) distance = 20;
		if(i == 2) distance = 50;
		if(i == 3) distance = 200;
		newmesh->createManualLodLevel(distance, fn);
	}

	Entity *ent = manager->createEntity(uname, uname_mesh);
	MaterialFunctionMapper::replaceSimpleMeshMaterials(ent, ColourValue(0.5, 0.5, 1));
	if(mfm) mfm->replaceMeshMaterials(ent);
	if(mr) mr->replaceMeshMaterials(ent);
	if(usedSkin) usedSkin->replaceMeshMaterials(ent);
	//LOG("FLEXBODY unique mesh created: "+String(meshname)+" -> "+String(uname_mesh));

	msh=ent->getMesh();

	//determine if we have texture coordinates everywhere
	havetexture=true;
	if (msh->sharedVertexData && msh->sharedVertexData->vertexDeclaration->findElementBySemantic(VES_TEXTURE_COORDINATES)==0) havetexture=false;
	for (int i=0; i<msh->getNumSubMeshes(); i++) if (!msh->getSubMesh(i)->useSharedVertices && msh->getSubMesh(i)->vertexData->vertexDeclaration->findElementBySemantic(VES_TEXTURE_COORDINATES)==0) havetexture=false;
	if (!havetexture) LOG("FLEXBODY Warning: at least one part of this mesh does not have texture coordinates, switching off texturing!");
	if (!havetexture) {havetangents=false;haveblend=false;}; //we can't do this

	//detect the anomalous case where a mesh is exported without normal vectors
	bool havenormal=true;
	if (msh->sharedVertexData && msh->sharedVertexData->vertexDeclaration->findElementBySemantic(VES_NORMAL)==0) havenormal=false;
	for (int i=0; i<msh->getNumSubMeshes(); i++) if (!msh->getSubMesh(i)->useSharedVertices && msh->getSubMesh(i)->vertexData->vertexDeclaration->findElementBySemantic(VES_NORMAL)==0) havenormal=false;
	if (!havenormal) LOG("FLEXBODY Error: at least one part of this mesh does not have normal vectors, export your mesh with normal vectors! THIS WILL CRASH IN 3.2.1...");

	//create optimal VertexDeclaration
	VertexDeclaration* optimalVD=HardwareBufferManager::getSingleton().createVertexDeclaration();
	optimalVD->addElement(0, 0, VET_FLOAT3, VES_POSITION);
	optimalVD->addElement(1, 0, VET_FLOAT3, VES_NORMAL);
	if (haveblend) optimalVD->addElement(2, 0, VET_COLOUR_ARGB, VES_DIFFUSE);
	if (havetexture) optimalVD->addElement(3, 0, VET_FLOAT2, VES_TEXTURE_COORDINATES);
	if (havetangents) optimalVD->addElement(4, 0, VET_FLOAT3, VES_TANGENT);
	optimalVD->sort();
	optimalVD->closeGapsInSource();

	BufferUsageList optimalBufferUsages;
	for (size_t u = 0; u <= optimalVD->getMaxSource(); ++u) optimalBufferUsages.push_back(HardwareBuffer::HBU_DYNAMIC_WRITE_ONLY_DISCARDABLE);

	//print mesh information
	//LOG("FLEXBODY Printing input mesh informations:");
	//printMeshInfo(ent->getMesh().getPointer());

	//adding color buffers, well get the reference later
	if (haveblend)
	{
		if (msh->sharedVertexData)
		{
			if (msh->sharedVertexData->vertexDeclaration->findElementBySemantic(VES_DIFFUSE)==0)
			{
				//add buffer
				int index=msh->sharedVertexData->vertexDeclaration->getMaxSource()+1;
				msh->sharedVertexData->vertexDeclaration->addElement(index, 0, VET_COLOUR_ARGB, VES_DIFFUSE);
				msh->sharedVertexData->vertexDeclaration->sort();
				index=msh->sharedVertexData->vertexDeclaration->findElementBySemantic(VES_DIFFUSE)->getSource();
				HardwareVertexBufferSharedPtr vbuf=HardwareBufferManager::getSingleton().createVertexBuffer(VertexElement::getTypeSize(VET_COLOUR_ARGB), msh->sharedVertexData->vertexCount, HardwareBuffer::HBU_DYNAMIC_WRITE_ONLY_DISCARDABLE);
				msh->sharedVertexData->vertexBufferBinding->setBinding(index, vbuf);
			}
		}
		for (int i=0; i<msh->getNumSubMeshes(); i++) if (!msh->getSubMesh(i)->useSharedVertices)
		{
			if (msh->getSubMesh(i)->vertexData->vertexDeclaration->findElementBySemantic(VES_DIFFUSE)==0)
			{
				//add buffer
				int index=msh->getSubMesh(i)->vertexData->vertexDeclaration->getMaxSource()+1;
				msh->getSubMesh(i)->vertexData->vertexDeclaration->addElement(index, 0, VET_COLOUR_ARGB, VES_DIFFUSE);
				msh->getSubMesh(i)->vertexData->vertexDeclaration->sort();
				index=msh->getSubMesh(i)->vertexData->vertexDeclaration->findElementBySemantic(VES_DIFFUSE)->getSource();
				HardwareVertexBufferSharedPtr vbuf=HardwareBufferManager::getSingleton().createVertexBuffer(VertexElement::getTypeSize(VET_COLOUR_ARGB), msh->getSubMesh(i)->vertexData->vertexCount, HardwareBuffer::HBU_DYNAMIC_WRITE_ONLY_DISCARDABLE);
				msh->getSubMesh(i)->vertexData->vertexBufferBinding->setBinding(index, vbuf);
			}
		}
	}

	//tangents for envmapping
	if (havetangents)
	{
		LOG("FLEXBODY preparing for tangents");
		unsigned short srcTex, destTex;
		bool existing = msh->suggestTangentVectorBuildParams(VES_TANGENT, srcTex, destTex);
		if (!existing) msh->buildTangentVectors(VES_TANGENT, srcTex, destTex);
	}

	//reorg
	//LOG("FLEXBODY reorganizing buffers");
	if (msh->sharedVertexData)
	{
		msh->sharedVertexData->reorganiseBuffers(optimalVD, optimalBufferUsages);
		msh->sharedVertexData->removeUnusedBuffers();
		msh->sharedVertexData->closeGapsInBindings();
	}
    Mesh::SubMeshIterator smIt = msh->getSubMeshIterator();
	unsigned short idx = 0;
	while (smIt.hasMoreElements())
	{
		SubMesh* sm = smIt.getNext();
		if (!sm->useSharedVertices)
		{
			sm->vertexData->reorganiseBuffers(optimalVD, optimalBufferUsages);
			sm->vertexData->removeUnusedBuffers();
			sm->vertexData->closeGapsInBindings();
		}
	}

	//print mesh information
	//LOG("FLEXBODY Printing modififed mesh informations:");
	//printMeshInfo(ent->getMesh().getPointer());

	//get the buffers
	//getMeshInformation(ent->getMesh().getPointer(),vertex_count,vertices,index_count,indices, position, orientation, Vector3(1,1,1));

	//getting vertex counts
	vertex_count=0;
	hasshared=false;
	numsubmeshbuf=0;
	if (msh->sharedVertexData) 
	{
		vertex_count+=msh->sharedVertexData->vertexCount;
		hasshared=true;
	}
	for (int i=0; i<msh->getNumSubMeshes(); i++) 
		if (!msh->getSubMesh(i)->useSharedVertices) 
		{
			vertex_count+=msh->getSubMesh(i)->vertexData->vertexCount;
			numsubmeshbuf++;
		}

	LOG("FLEXBODY Vertices in mesh "+String(meshname)+": "+ TOSTRING(vertex_count));
	//LOG("Triangles in mesh: %u",index_count / 3);

	//getting buffers bindings and data
	if (numsubmeshbuf>0)
	{
		submeshnums=(int*)malloc(sizeof(int)*numsubmeshbuf);
		subnodecounts=(int*)malloc(sizeof(int)*numsubmeshbuf);
		//C++ is just dumb! 
		//How can they manage to break such a fundamental programming mechanisms?
		//They invented the un-initializable and un-attribuable objects you can't allocate dynamically!
		//I'm sure they have a fancy way to do that but they won't pry my precious malloc() from my cold, dead hands! goddamit!
		//subpbufs=(HardwareVertexBufferSharedPtr*)malloc(sizeof(HardwareVertexBufferSharedPtr)*numsubmeshbuf);
		//subpbufs[0]=HardwareVertexBufferSharedPtr(); //crash!
		//subnbufs=(HardwareVertexBufferSharedPtr*)malloc(sizeof(HardwareVertexBufferSharedPtr)*numsubmeshbuf);
		//subnbufs[0]=HardwareVertexBufferSharedPtr(); //crash!
		if (numsubmeshbuf>=16) 	LOG("FLEXBODY You have more than 16 submeshes! Blame Bjarne for this crash.");
	}
	vertices=(Vector3*)malloc(sizeof(Vector3)*vertex_count);
	dstpos=(Vector3*)malloc(sizeof(Vector3)*vertex_count);
	srcnormals=(Vector3*)malloc(sizeof(Vector3)*vertex_count);
	dstnormals=(Vector3*)malloc(sizeof(Vector3)*vertex_count);
	if (haveblend) 
	{
		srccolors=(ARGB*)malloc(sizeof(ARGB)*vertex_count);
		for (int i=0; i<(int)vertex_count; i++) srccolors[i]=0x00000000;
	}
	Vector3* vpt=vertices;
	Vector3* npt=srcnormals;
	int cursubmesh=0;
	if (msh->sharedVertexData) 
	{
		sharedcount=(int)msh->sharedVertexData->vertexCount;
		//vertices
		int source=msh->sharedVertexData->vertexDeclaration->findElementBySemantic(VES_POSITION)->getSource();
		sharedpbuf=msh->sharedVertexData->vertexBufferBinding->getBuffer(source);
		sharedpbuf->readData(0, msh->sharedVertexData->vertexCount*sizeof(Vector3), (void*)vpt);
		vpt+=msh->sharedVertexData->vertexCount;
		//normals
		source=msh->sharedVertexData->vertexDeclaration->findElementBySemantic(VES_NORMAL)->getSource();
		sharednbuf=msh->sharedVertexData->vertexBufferBinding->getBuffer(source);
		sharednbuf->readData(0, msh->sharedVertexData->vertexCount*sizeof(Vector3), (void*)npt);
		npt+=msh->sharedVertexData->vertexCount;
		//colors
		if (haveblend)
		{
			source=msh->sharedVertexData->vertexDeclaration->findElementBySemantic(VES_DIFFUSE)->getSource();
			sharedcbuf=msh->sharedVertexData->vertexBufferBinding->getBuffer(source);
			sharedcbuf->writeData(0, msh->sharedVertexData->vertexCount*sizeof(ARGB), (void*)srccolors);
		}
	}
	for (int i=0; i<msh->getNumSubMeshes(); i++) if (!msh->getSubMesh(i)->useSharedVertices) 
	{
		submeshnums[cursubmesh]=i;
		subnodecounts[cursubmesh]=(int)msh->getSubMesh(i)->vertexData->vertexCount;
		//vertices
		int source=msh->getSubMesh(i)->vertexData->vertexDeclaration->findElementBySemantic(VES_POSITION)->getSource();
		subpbufs[cursubmesh]=msh->getSubMesh(i)->vertexData->vertexBufferBinding->getBuffer(source);
		subpbufs[cursubmesh]->readData(0, msh->getSubMesh(i)->vertexData->vertexCount*sizeof(Vector3), (void*)vpt);
		vpt+=msh->getSubMesh(i)->vertexData->vertexCount;
		//normals
		source=msh->getSubMesh(i)->vertexData->vertexDeclaration->findElementBySemantic(VES_NORMAL)->getSource();
		subnbufs[cursubmesh]=msh->getSubMesh(i)->vertexData->vertexBufferBinding->getBuffer(source);
		subnbufs[cursubmesh]->readData(0, msh->getSubMesh(i)->vertexData->vertexCount*sizeof(Vector3), (void*)npt);
		npt+=msh->getSubMesh(i)->vertexData->vertexCount;
		//colors
		if (haveblend)
		{
			source=msh->getSubMesh(i)->vertexData->vertexDeclaration->findElementBySemantic(VES_DIFFUSE)->getSource();
			subcbufs[cursubmesh]=msh->getSubMesh(i)->vertexData->vertexBufferBinding->getBuffer(source);
			subcbufs[cursubmesh]->writeData(0, msh->getSubMesh(i)->vertexData->vertexCount*sizeof(ARGB), (void*)srccolors);
		}
		cursubmesh++;
	}

	//transform
	for (int i=0; i<(int)vertex_count; i++)
	{
		vertices[i]=(orientation*vertices[i])+position;
	}

	locs=(Locator_t*)malloc(sizeof(Locator_t)*vertex_count);
	for (int i=0; i<(int)vertex_count; i++)
	{
		//search nearest node as the local origin
		float mindist=100000.0;
		int minnode=-1;
		for (int k=0; k<numnodes; k++)
		{
			if (!isinset(k)) continue;
			//if (nodes[k].iswheel) continue;
			float dist=(vertices[i]-nodes[k].smoothpos).length();
			if (dist<mindist) {mindist=dist;minnode=k;};
		}
		if (minnode==-1) LOG("FLEXBODY ERROR on mesh "+String(meshname)+": REF node not found");
		locs[i].ref=minnode;
		nodes[minnode].iIsSkin=true;

//	LOG("FLEXBODY distance to "+TOSTRING(minnode)+" "+TOSTRING(mindist));

		//search the second nearest node as the X vector
		mindist=100000.0;
		minnode=-1;
		for (int k=0; k<numnodes; k++)
		{
			if (!isinset(k)) continue;
			//if (nodes[k].iswheel) continue;
			if (k==locs[i].ref) continue;
			float dist=(vertices[i]-nodes[k].smoothpos).length();
			if (dist<mindist) {mindist=dist;minnode=k;};
		}
		if (minnode==-1) LOG("FLEXBODY ERROR on mesh "+String(meshname)+": VX node not found");
		locs[i].nx=minnode;
		nodes[minnode].iIsSkin=true;

		//search another close, orthogonal node as the Y vector
		mindist=100000.0;
		minnode=-1;
		Vector3 vx=nodes[locs[i].nx].smoothpos-nodes[locs[i].ref].smoothpos;
		vx.normalise();
		for (int k=0; k<numnodes; k++)
		{
			if (!isinset(k)) continue;
			//if (nodes[k].iswheel) continue;
			if (k==locs[i].ref) continue;
			if (k==locs[i].nx) continue;
			Vector3 vt=nodes[k].smoothpos-nodes[locs[i].ref].smoothpos;
			vt.normalise();
			float cost=vx.dotProduct(vt);
			if (cost>0.707 || cost<-0.707) continue; //rejection, fails the orthogonality criterion (+-45 degree)
			float dist=(vertices[i]-nodes[k].smoothpos).length();
			if (dist<mindist) {mindist=dist;minnode=k;};
		}
		if (minnode==-1) LOG("FLEXBODY ERROR on mesh "+String(meshname)+": VY node not found");
		locs[i].ny=minnode;
		nodes[minnode].iIsSkin=true;
/*
		//search the final close, orthogonal node as the Z vector
		mindist=100000.0;
		minnode=-1;
		Vector3 vy=nodes[locs[i].ny].smoothpos-nodes[locs[i].ref].smoothpos;
		vy.normalise();
		for (int k=0; k<numnodes; k++)
		{
			if (nodes[k].iswheel) continue;
			if (k==locs[i].ref) continue;
			if (k==locs[i].nx) continue;
			if (k==locs[i].ny) continue;
			Vector3 vt=nodes[k].smoothpos-nodes[locs[i].ref].smoothpos;
			vt.normalise();
			float cost=vx.dotProduct(vt);
			if (cost>0.707 || cost<-0.707) continue; //rejection, fails the orthogonality criterion (+-45 degree)
			cost=vy.dotProduct(vt);
			if (cost>0.707 || cost<-0.707) continue; //rejection, fails the orthogonality criterion (+-45 degree)
			float dist=(vertices[i]-nodes[k].smoothpos).length();
			if (dist<mindist) {mindist=dist;minnode=k;};
		}
		if (minnode==-1) LOG("FLEXBODY ERROR on mesh "+String(meshname)+": VZ node not found");
		locs[i].nz=minnode;

		//rright, check orientation
		Vector3 xyn=vx.crossProduct(vy);
		if (xyn.dotProduct(nodes[locs[i].nz].smoothpos-nodes[locs[i].ref].smoothpos)<0)
		{
			//the base is messed up
			int t=locs[i].nz;
			locs[i].nz=locs[i].ny;
			locs[i].ny=t;
		}
*/
		Vector3 vz=(nodes[locs[i].nx].smoothpos-nodes[locs[i].ref].smoothpos).crossProduct(nodes[locs[i].ny].smoothpos-nodes[locs[i].ref].smoothpos);
		vz.normalise();
		Matrix3 mat;
		mat.SetColumn(0, nodes[locs[i].nx].smoothpos-nodes[locs[i].ref].smoothpos);
		mat.SetColumn(1, nodes[locs[i].ny].smoothpos-nodes[locs[i].ref].smoothpos);
//		mat.SetColumn(2, nodes[locs[i].nz].smoothpos-nodes[locs[i].ref].smoothpos);
		mat.SetColumn(2, vz);
		mat=mat.Inverse();

		//compute coordinates in the newly formed euclidian basis
		locs[i].coords=mat*(vertices[i]-nodes[locs[i].ref].smoothpos);

		//thats it!
	}

	//shadow
	if (haveshadows)
	{
		LOG("FLEXBODY preparing for shadow volume");
		msh->prepareForShadowVolume(); //we do this always so we have only one datastructure format to manage
		msh->buildEdgeList();
	}

	//adjusting bounds
	AxisAlignedBox aab=msh->getBounds();
	Vector3 v=aab.getMinimum();
	float mi=v.x;
	if (v.y<mi) mi=v.y;
	if (v.z<mi) mi=v.z;
	mi=fabs(mi);
	v=aab.getMaximum();
	float ma=v.x;
	if (ma<v.y) ma=v.y;
	if (ma<v.z) ma=v.z;
	ma=fabs(ma);
	if (mi>ma) ma=mi;
	aab.setMinimum(Vector3(-ma,-ma,-ma));
	aab.setMaximum(Vector3(ma,ma,ma));
	msh->_setBounds(aab, true);

	LOG("FLEXBODY show mesh");
	//okay, show the mesh now
	snode=manager->getRootSceneNode()->createChildSceneNode();
	snode->attachObject(ent);
	snode->setPosition(position);
	//ent->setCastShadows(enableShadows);

#if 0
	// XXX TODO: fix 1.7 LODs
	if(enable_truck_lod)
	{
		String lodstr = "FLEXBODY LODs: ";
		for(int i=0;i<msh->getNumLodLevels();i++)
		{
			if(i) lodstr += ", ";
			lodstr += TOSTRING(Real(sqrt(msh->getLodLevel(i).fromDepthSquared))) + "m";

			if(msh->getLodLevel(i).edgeData)
			{
				lodstr += "(" + TOSTRING(msh->getLodLevel(i).edgeData->triangles.size()) + " triangles)";
			} else
			{
				if(msh->getEdgeList(i))
					lodstr += "(" + TOSTRING(msh->getEdgeList(i)->triangles.size()) +" triangles)";
			}
		}
		LOG(lodstr);
	}
#endif //0


	for (int i=0; i<(int)vertex_count; i++)
	{
		Vector3 vz=(nodes[locs[i].nx].smoothpos-nodes[locs[i].ref].smoothpos).crossProduct(nodes[locs[i].ny].smoothpos-nodes[locs[i].ref].smoothpos);
		vz.normalise();
		Matrix3 mat;
		mat.SetColumn(0, nodes[locs[i].nx].smoothpos-nodes[locs[i].ref].smoothpos);
		mat.SetColumn(1, nodes[locs[i].ny].smoothpos-nodes[locs[i].ref].smoothpos);
//		mat.SetColumn(2, nodes[locs[i].nz].smoothpos-nodes[locs[i].ref].smoothpos);
		mat.SetColumn(2, vz);
		mat=mat.Inverse();

		//compute coordinates in the euclidian basis
		srcnormals[i]=mat*(orientation*srcnormals[i]);
	}


	LOG("FLEXBODY ready");

}