void testProblem() { double T = 273.15 + 352.0; vcs_timing_print_lvl = 0; // Create the phases std::auto_ptr<ThermoPhase> LiSi_solid(newPhase("Li7Si3_ls.xml", "Li7Si3_and_Interstitials(S)")); std::auto_ptr<ThermoPhase> Li_liq(newPhase("Li_Liquid.xml", "Li(L)")); FixedChemPotSSTP LiFixed("Li", -2.3E7); MargulesVPSSTP salt("LiKCl_liquid.xml", "MoltenSalt_electrolyte"); // set states vector_fp x(salt.nSpecies(), 0); x[0] = 0.7; x[1] = 1.0 - x[0]; salt.setState_TPX(T, OneAtm, &x[0]); LiSi_solid->setState_TP(T, OneAtm); int ee = static_cast<int>(LiSi_solid->nElements()); printf("Number of elements = %d\n", ee); LiFixed.setState_TP(T, OneAtm); double um[20]; LiFixed.getChemPotentials(um); printf(" chem pot = %g\n", um[0]); double volts = 1.635; // has some Fe in it // test suite double dg_corr = - volts * Faraday; printf("dg_corr = %g\n", dg_corr); Li_liq->getChemPotentials(um); double um_li_chempot = um[0] + dg_corr; printf("um_li_chempot = %g\n", um_li_chempot); LiFixed.setChemicalPotential(um_li_chempot); MultiPhase mmm; mmm.addPhase(&salt, 10.); mmm.addPhase(LiSi_solid.get(), 1.); mmm.addPhase(&LiFixed, 100.); int printLvl = 3; int estimateEquil = 0; mmm.equilibrate("TP", "vcs", 1e-9, 50000, 100, estimateEquil, printLvl); std::cout << mmm << std::endl; appdelete(); }
void ThermoPhase::equilibrate(const std::string& XY, const std::string& solver, double rtol, int max_steps, int max_iter, int estimate_equil, int log_level) { if (solver == "auto" || solver == "element_potential") { vector_fp initial_state; saveState(initial_state); debuglog("Trying ChemEquil solver\n", log_level); try { ChemEquil E; E.options.maxIterations = max_steps; E.options.relTolerance = rtol; bool use_element_potentials = (estimate_equil == 0); int ret = E.equilibrate(*this, XY.c_str(), use_element_potentials, log_level-1); if (ret < 0) { throw CanteraError("ThermoPhase::equilibrate", "ChemEquil solver failed. Return code: {}", ret); } setElementPotentials(E.elementPotentials()); debuglog("ChemEquil solver succeeded\n", log_level); return; } catch (std::exception& err) { debuglog("ChemEquil solver failed.\n", log_level); debuglog(err.what(), log_level); restoreState(initial_state); if (solver == "auto") { } else { throw; } } } if (solver == "auto" || solver == "vcs" || solver == "gibbs") { MultiPhase M; M.addPhase(this, 1.0); M.init(); M.equilibrate(XY, solver, rtol, max_steps, max_iter, estimate_equil, log_level); return; } if (solver != "auto") { throw CanteraError("ThermoPhase::equilibrate", "Invalid solver specified: '{}'", solver); } }
TEST_F(OverconstrainedEquil, DISABLED_BasisOptimize2) { setup("O H C N Ar"); MultiPhase mphase; mphase.addPhase(gas.get(), 10.0); mphase.init(); int usedZeroedSpecies = 0; std::vector<size_t> orderVectorSpecies; std::vector<size_t> orderVectorElements; bool doFormMatrix = true; vector_fp formRxnMatrix; size_t nc = BasisOptimize(&usedZeroedSpecies, doFormMatrix, &mphase, orderVectorSpecies, orderVectorElements, formRxnMatrix); ASSERT_EQ(1, (int) nc); }
/* * Set a single-phase chemical solution to chemical equilibrium. * This is a convenience function that uses one or the other of * the two chemical equilibrium solvers. * * @param s The object to set to an equilibrium state * * @param XY An integer specifying the two properties to be held * constant. * * @param estimateEquil integer indicating whether the solver * should estimate its own initial condition. * If 0, the initial mole fraction vector * in the %ThermoPhase object is used as the * initial condition. * If 1, the initial mole fraction vector * is used if the element abundances are * satisfied. * if -1, the initial mole fraction vector * is thrown out, and an estimate is * formulated. * * @param printLvl Determines the amount of printing that * gets sent to stdout from the vcs package * (Note, you may have to compile with debug * flags to get some printing). * * @param solver The equilibrium solver to use. If solver = 0, * the ChemEquil solver will be used, and if * solver = 1, the vcs_MultiPhaseEquil solver will * be used (slower than ChemEquil, * but more stable). If solver < 0 (default, then * ChemEquil will be tried first, and if it fails * vcs_MultiPhaseEquil will be tried. * * @param maxsteps The maximum number of steps to take to find * the solution. * * @param maxiter For the MultiPhaseEquil solver only, this is * the maximum number of outer temperature or * pressure iterations to take when T and/or P is * not held fixed. * * @param loglevel Controls amount of diagnostic output. loglevel * = 0 suppresses diagnostics, and increasingly-verbose * messages are written as loglevel increases. The * messages are written to a file in HTML format for viewing * in a web browser. @see HTML_logs */ int vcs_equilibrate(thermo_t& s, const char* XY, int estimateEquil, int printLvl, int solver, doublereal rtol, int maxsteps, int maxiter, int loglevel) { MultiPhase* m = 0; int retn = 1; int retnSub = 0; beginLogGroup("equilibrate", loglevel); // retry: addLogEntry("Single-phase equilibrate function"); { beginLogGroup("arguments"); addLogEntry("phase",s.id()); addLogEntry("XY",XY); addLogEntry("solver",solver); addLogEntry("rtol",rtol); addLogEntry("maxsteps",maxsteps); addLogEntry("maxiter",maxiter); addLogEntry("loglevel",loglevel); endLogGroup("arguments"); } if (solver == 2) { m = new MultiPhase; try { /* * Set the kmoles of the phase to 1.0, arbitrarily. * It actually doesn't matter. */ m->addPhase(&s, 1.0); m->init(); retn = vcs_equilibrate(*m, XY, estimateEquil, printLvl, solver, rtol, maxsteps, maxiter, loglevel); if (retn == 1) { addLogEntry("MultiPhaseEquil solver succeeded."); } else { addLogEntry("MultiPhaseEquil solver returned an error code: ", retn); } delete m; } catch (CanteraError& err) { err.save(); addLogEntry("MultiPhaseEquil solver failed."); delete m; throw err; } } else if (solver == 1) { m = new MultiPhase; try { m->addPhase(&s, 1.0); m->init(); (void) equilibrate(*m, XY, rtol, maxsteps, maxiter, loglevel-1); if (loglevel > 0) { addLogEntry("MultiPhaseEquil solver succeeded."); } delete m; retn = 1; } catch (CanteraError& err) { err.save(); if (loglevel > 0) { addLogEntry("MultiPhaseEquil solver failed."); } delete m; throw err; } } else if (solver == 0) { ChemEquil* e = new ChemEquil; try { e->options.maxIterations = maxsteps; e->options.relTolerance = rtol; bool useThermoPhaseElementPotentials = false; if (estimateEquil == 0) { useThermoPhaseElementPotentials = true; } retnSub = e->equilibrate(s, XY, useThermoPhaseElementPotentials, loglevel-1); if (retnSub < 0) { if (loglevel > 0) { addLogEntry("ChemEquil solver failed."); } delete e; throw CanteraError("equilibrate", "ChemEquil equilibrium solver failed"); } retn = 1; s.setElementPotentials(e->elementPotentials()); delete e; if (loglevel > 0) { addLogEntry("ChemEquil solver succeeded."); } } catch (CanteraError& err) { err.save(); if (loglevel > 0) { addLogEntry("ChemEquil solver failed."); } delete e; throw err; } } else { throw CanteraError("vcs_equilibrate", "unknown solver"); } /* * We are here only for a success */ endLogGroup("equilibrate"); return retn; }
int main(int argc, char** argv) { #if defined(_MSC_VER) && _MSC_VER < 1900 _set_output_format(_TWO_DIGIT_EXPONENT); #endif suppress_deprecation_warnings(); int numSucc = 0; int numFail = 0; int printLvl = 1; string inputFile = "HMW_NaCl.xml"; VCS_SOLVE::disableTiming(); /* * Process the command line arguments */ if (argc > 1) { string tok; for (int j = 1; j < argc; j++) { tok = string(argv[j]); if (tok[0] == '-') { int nopt = static_cast<int>(tok.size()); for (int n = 1; n < nopt; n++) { if (!strcmp(tok.c_str() + 1, "help_cmdfile")) { } else if (tok[n] == 'h') { printUsage(); exit(1); } else if (tok[n] == 'd') { printLvl = 2; int lvl = 2; if (j < (argc - 1)) { string tokla = string(argv[j+1]); if (strlen(tokla.c_str()) > 0) { lvl = atoi(tokla.c_str()); n = nopt - 1; j += 1; if (lvl >= 0) { printLvl = lvl; } } } } else { printUsage(); exit(1); } } } else if (inputFile == "HMW_NaCl.xml") { inputFile = tok; } else { printUsage(); exit(1); } } } try { int estimateEquil = -1; double T = 298.15; double pres = OneAtm; // Initialize the individual phases HMWSoln hmw(inputFile, ""); size_t kk = hmw.nSpecies(); vector_fp Xmol(kk, 0.0); size_t iH2OL = hmw.speciesIndex("H2O(L)"); Xmol[iH2OL] = 1.0; hmw.setState_TPX(T, pres, Xmol.data()); ThermoPhase* gas = newPhase("gas.xml"); kk = gas->nSpecies(); Xmol.resize(kk, 0.0); for (size_t i = 0; i < kk; i++) { Xmol[i] = 0.0; } size_t iN2 = gas->speciesIndex("N2"); Xmol[iN2] = 1.0; gas->setState_TPX(T, pres, Xmol.data()); StoichSubstance ss("NaCl_Solid.xml", ""); ss.setState_TP(T, pres); // Construct the multiphase object MultiPhase* mp = new MultiPhase(); mp->addPhase(&hmw, 2.0); mp->addPhase(gas, 4.0); mp->addPhase(&ss, 5.0); try { mp->equilibrate("TP", "vcs", 1e-9, 50000, 100, estimateEquil, printLvl); cout << *mp; numSucc++; } catch (CanteraError& err) { cout << *mp; std::cerr << err.what() << std::endl; cerr << "ERROR: MultiEquil equilibration step failed at " << " T = " << T << " Pres = " << pres << endl; cout << "ERROR: MultiEqiul equilibration step failed at " << " T = " << T << " Pres = " << pres << endl; exit(-1); } cout << "NUMBER OF SUCCESSES = " << numSucc << endl; cout << "NUMBER OF FAILURES = " << numFail << endl; return numFail; } catch (CanteraError& err) { std::cerr << err.what() << std::endl; cerr << "ERROR: program terminating due to unforeseen circumstances." << endl; return -1; } }
int vcs_equilibrate(thermo_t& s, const char* XY, int estimateEquil, int printLvl, int solver, doublereal rtol, int maxsteps, int maxiter, int loglevel) { warn_deprecated("vcs_equilibrate", "Use ThermoPhase::equilibrate instead. " "To be removed after Cantera 2.2."); MultiPhase* m = 0; int retn = 1; if (solver == 2) { m = new MultiPhase; try { /* * Set the kmoles of the phase to 1.0, arbitrarily. * It actually doesn't matter. */ m->addPhase(&s, 1.0); m->init(); retn = vcs_equilibrate(*m, XY, estimateEquil, printLvl, solver, rtol, maxsteps, maxiter, loglevel); delete m; } catch (CanteraError& err) { err.save(); delete m; throw err; } } else if (solver == 1) { m = new MultiPhase; try { m->addPhase(&s, 1.0); m->init(); (void) equilibrate(*m, XY, rtol, maxsteps, maxiter, loglevel-1); delete m; retn = 1; } catch (CanteraError& err) { err.save(); delete m; throw err; } } else if (solver == 0) { ChemEquil* e = new ChemEquil; try { e->options.maxIterations = maxsteps; e->options.relTolerance = rtol; bool useThermoPhaseElementPotentials = false; if (estimateEquil == 0) { useThermoPhaseElementPotentials = true; } int retnSub = e->equilibrate(s, XY, useThermoPhaseElementPotentials, loglevel-1); if (retnSub < 0) { delete e; throw CanteraError("equilibrate", "ChemEquil equilibrium solver failed"); } retn = 1; s.setElementPotentials(e->elementPotentials()); delete e; } catch (CanteraError& err) { err.save(); delete e; throw err; } } else { throw CanteraError("vcs_equilibrate", "unknown solver"); } /* * We are here only for a success */ return retn; }
/* * Set a single-phase chemical solution to chemical equilibrium. * This is a convenience function that uses one or the other of * the two chemical equilibrium solvers. * * @param s The object to set to an equilibrium state * * @param XY An integer specifying the two properties to be held * constant. * * @param solver The equilibrium solver to use. If solver = 0, * the ChemEquil solver will be used, and if solver = 1, the * MultiPhaseEquil solver will be used (slower than ChemEquil, * but more stable). If solver < 0 (default, then ChemEquil will * be tried first, and if it fails MultiPhaseEquil will be tried. * * @param maxsteps The maximum number of steps to take to find * the solution. * * @param maxiter For the MultiPhaseEquil solver only, this is * the maximum number of outer temperature or pressure iterations * to take when T and/or P is not held fixed. * * @param loglevel Controls amount of diagnostic output. loglevel * = 0 suppresses diagnostics, and increasingly-verbose messages * are written as loglevel increases. The messages are written to * a file in HTML format for viewing in a web browser. * @see HTML_logs * * @ingroup equil */ int equilibrate(thermo_t& s, const char* XY, int solver, doublereal rtol, int maxsteps, int maxiter, int loglevel) { MultiPhase* m = 0; ChemEquil* e = 0; bool redo = true; int retn = -1; int nAttempts = 0; int retnSub = 0; if (loglevel > 0) { beginLogGroup("equilibrate", loglevel); addLogEntry("Single-phase equilibrate function"); { beginLogGroup("arguments"); addLogEntry("phase",s.id()); addLogEntry("XY",XY); addLogEntry("solver",solver); addLogEntry("rtol",rtol); addLogEntry("maxsteps",maxsteps); addLogEntry("maxiter",maxiter); addLogEntry("loglevel",loglevel); endLogGroup("arguments"); } } while (redo) { if (solver >= 2) { #ifdef WITH_VCSNONIDEAL int printLvlSub = 0; int estimateEquil = 0; m = new MultiPhase; try { m->addPhase(&s, 1.0); m->init(); nAttempts++; vcs_equilibrate(*m, XY, estimateEquil, printLvlSub, solver, rtol, maxsteps, maxiter, loglevel-1); redo = false; if (loglevel > 0) addLogEntry("VCSnonideal solver succeeded."); delete m; retn = nAttempts; } catch (CanteraError &err) { if (loglevel > 0) addLogEntry("VCSnonideal solver failed."); delete m; if (nAttempts < 2) { if (loglevel > 0) addLogEntry("Trying single phase ChemEquil solver."); solver = -1; } else { if (loglevel > 0) endLogGroup("equilibrate"); throw err; } } #else throw CanteraError("equilibrate", "VCSNonIdeal solver called, but not compiled"); #endif } else if (solver == 1) { m = new MultiPhase; try { m->addPhase(&s, 1.0); m->init(); nAttempts++; (void) equilibrate(*m, XY, rtol, maxsteps, maxiter, loglevel-1); redo = false; if (loglevel > 0) addLogEntry("MultiPhaseEquil solver succeeded."); delete m; retn = nAttempts; } catch (CanteraError &err) { if (loglevel > 0) addLogEntry("MultiPhaseEquil solver failed."); delete m; if (nAttempts < 2) { if (loglevel > 0) addLogEntry("Trying single phase ChemEquil solver."); solver = -1; } else { if (loglevel > 0) endLogGroup("equilibrate"); throw err; } } } else { // solver <= 0 /* * Call the element potential solver */ e = new ChemEquil; try { e->options.maxIterations = maxsteps; e->options.relTolerance = rtol; nAttempts++; bool useThermoPhaseElementPotentials = true; retnSub = e->equilibrate(s,XY, useThermoPhaseElementPotentials, loglevel-1); if (retnSub < 0) { if (loglevel > 0) addLogEntry("ChemEquil solver failed."); if (nAttempts < 2) { if (loglevel > 0) addLogEntry("Trying MultiPhaseEquil solver."); solver = 1; } else { throw CanteraError("equilibrate", "Both equilibrium solvers failed"); } } retn = nAttempts; s.setElementPotentials(e->elementPotentials()); redo = false; delete e; if (loglevel > 0) addLogEntry("ChemEquil solver succeeded."); } catch (CanteraError &err) { delete e; if (loglevel > 0) addLogEntry("ChemEquil solver failed."); // If ChemEquil fails, try the MultiPhase solver if (solver < 0) { if (loglevel > 0) addLogEntry("Trying MultiPhaseEquil solver."); solver = 1; } else { redo = false; if (loglevel > 0) endLogGroup("equilibrate"); throw err; } } } } // while (redo) /* * We are here only for a success */ if (loglevel > 0) endLogGroup("equilibrate"); return retn; }
int equilibrate(thermo_t& s, const char* XY, int solver, doublereal rtol, int maxsteps, int maxiter, int loglevel) { bool redo = true; int retn = -1; int nAttempts = 0; int retnSub = 0; if (loglevel > 0) { beginLogGroup("equilibrate", loglevel); addLogEntry("Single-phase equilibrate function"); { beginLogGroup("arguments"); addLogEntry("phase",s.id()); addLogEntry("XY",XY); addLogEntry("solver",solver); addLogEntry("rtol",rtol); addLogEntry("maxsteps",maxsteps); addLogEntry("maxiter",maxiter); addLogEntry("loglevel",loglevel); endLogGroup("arguments"); } } while (redo) { if (solver >= 2) { int printLvlSub = 0; int estimateEquil = 0; try { MultiPhase m; m.addPhase(&s, 1.0); m.init(); nAttempts++; vcs_equilibrate(m, XY, estimateEquil, printLvlSub, solver, rtol, maxsteps, maxiter, loglevel-1); redo = false; if (loglevel > 0) { addLogEntry("VCSnonideal solver succeeded."); } retn = nAttempts; } catch (CanteraError& err) { err.save(); if (loglevel > 0) { addLogEntry("VCSnonideal solver failed."); } if (nAttempts < 2) { if (loglevel > 0) { addLogEntry("Trying single phase ChemEquil solver."); } solver = -1; } else { if (loglevel > 0) { endLogGroup("equilibrate"); } throw err; } } } else if (solver == 1) { try { MultiPhase m; m.addPhase(&s, 1.0); m.init(); nAttempts++; equilibrate(m, XY, rtol, maxsteps, maxiter, loglevel-1); redo = false; if (loglevel > 0) { addLogEntry("MultiPhaseEquil solver succeeded."); } retn = nAttempts; } catch (CanteraError& err) { err.save(); if (loglevel > 0) { addLogEntry("MultiPhaseEquil solver failed."); } if (nAttempts < 2) { if (loglevel > 0) { addLogEntry("Trying single phase ChemEquil solver."); } solver = -1; } else { if (loglevel > 0) { endLogGroup("equilibrate"); } throw err; } } } else { // solver <= 0 /* * Call the element potential solver */ try { ChemEquil e; e.options.maxIterations = maxsteps; e.options.relTolerance = rtol; nAttempts++; bool useThermoPhaseElementPotentials = true; retnSub = e.equilibrate(s, XY, useThermoPhaseElementPotentials, loglevel-1); if (retnSub < 0) { if (loglevel > 0) { addLogEntry("ChemEquil solver failed."); } if (nAttempts < 2) { if (loglevel > 0) { addLogEntry("Trying MultiPhaseEquil solver."); } solver = 1; } else { throw CanteraError("equilibrate", "Both equilibrium solvers failed"); } } retn = nAttempts; s.setElementPotentials(e.elementPotentials()); redo = false; if (loglevel > 0) { addLogEntry("ChemEquil solver succeeded."); } } catch (CanteraError& err) { err.save(); if (loglevel > 0) { addLogEntry("ChemEquil solver failed."); } // If ChemEquil fails, try the MultiPhase solver if (solver < 0) { if (loglevel > 0) { addLogEntry("Trying MultiPhaseEquil solver."); } solver = 1; } else { redo = false; if (loglevel > 0) { endLogGroup("equilibrate"); } throw err; } } } } // while (redo) /* * We are here only for a success */ if (loglevel > 0) { endLogGroup("equilibrate"); } return retn; }