// There may be unallocated holes in the middle chunks // that should be filled with dead objects to ensure parsability. void MutableNUMASpace::ensure_parsability() { for (int i = 0; i < lgrp_spaces()->length(); i++) { LGRPSpace *ls = lgrp_spaces()->at(i); MutableSpace *s = ls->space(); if (s->top() < top()) { // For all spaces preceding the one containing top() if (s->free_in_words() > 0) { intptr_t cur_top = (intptr_t)s->top(); size_t words_left_to_fill = pointer_delta(s->end(), s->top());; while (words_left_to_fill > 0) { size_t words_to_fill = MIN2(words_left_to_fill, CollectedHeap::filler_array_max_size()); assert(words_to_fill >= CollectedHeap::min_fill_size(), "Remaining size (" SIZE_FORMAT ") is too small to fill (based on " SIZE_FORMAT " and " SIZE_FORMAT ")", words_to_fill, words_left_to_fill, CollectedHeap::filler_array_max_size()); CollectedHeap::fill_with_object((HeapWord*)cur_top, words_to_fill); if (!os::numa_has_static_binding()) { size_t touched_words = words_to_fill; #ifndef ASSERT if (!ZapUnusedHeapArea) { touched_words = MIN2((size_t)align_object_size(typeArrayOopDesc::header_size(T_INT)), touched_words); } #endif MemRegion invalid; HeapWord *crossing_start = (HeapWord*)round_to(cur_top, os::vm_page_size()); HeapWord *crossing_end = (HeapWord*)round_to(cur_top + touched_words, os::vm_page_size()); if (crossing_start != crossing_end) { // If object header crossed a small page boundary we mark the area // as invalid rounding it to a page_size(). HeapWord *start = MAX2((HeapWord*)round_down(cur_top, page_size()), s->bottom()); HeapWord *end = MIN2((HeapWord*)round_to(cur_top + touched_words, page_size()), s->end()); invalid = MemRegion(start, end); } ls->add_invalid_region(invalid); } cur_top = cur_top + (words_to_fill * HeapWordSize); words_left_to_fill -= words_to_fill; } } } else { if (!os::numa_has_static_binding()) { #ifdef ASSERT MemRegion invalid(s->top(), s->end()); ls->add_invalid_region(invalid); #else if (ZapUnusedHeapArea) { MemRegion invalid(s->top(), s->end()); ls->add_invalid_region(invalid); } else { return; } #endif } else { return; } } } }
// There may be unallocated holes in the middle chunks // that should be filled with dead objects to ensure parseability. void MutableNUMASpace::ensure_parsability() { for (int i = 0; i < lgrp_spaces()->length(); i++) { LGRPSpace *ls = lgrp_spaces()->at(i); MutableSpace *s = ls->space(); if (s->top() < top()) { // For all spaces preceding the one containing top() if (s->free_in_words() > 0) { size_t area_touched_words = pointer_delta(s->end(), s->top()); CollectedHeap::fill_with_object(s->top(), area_touched_words); #ifndef ASSERT if (!ZapUnusedHeapArea) { area_touched_words = MIN2((size_t)align_object_size(typeArrayOopDesc::header_size(T_INT)), area_touched_words); } #endif if (!os::numa_has_static_binding()) { MemRegion invalid; HeapWord *crossing_start = (HeapWord*)round_to((intptr_t)s->top(), os::vm_page_size()); HeapWord *crossing_end = (HeapWord*)round_to((intptr_t)(s->top() + area_touched_words), os::vm_page_size()); if (crossing_start != crossing_end) { // If object header crossed a small page boundary we mark the area // as invalid rounding it to a page_size(). HeapWord *start = MAX2((HeapWord*)round_down((intptr_t)s->top(), page_size()), s->bottom()); HeapWord *end = MIN2((HeapWord*)round_to((intptr_t)(s->top() + area_touched_words), page_size()), s->end()); invalid = MemRegion(start, end); } ls->add_invalid_region(invalid); } } } else { if (!os::numa_has_static_binding()) { #ifdef ASSERT MemRegion invalid(s->top(), s->end()); ls->add_invalid_region(invalid); #else if (ZapUnusedHeapArea) { MemRegion invalid(s->top(), s->end()); ls->add_invalid_region(invalid); } else { return; } #endif } else { return; } } } }
HeapWord* top() const { return _sp->top(); }