Esempio n. 1
0
    /*static*/ ValuePtr Value::Create(const NDShape& sampleShape, const std::vector<std::vector<ElementType>>& sequences, const DeviceDescriptor& device, bool readOnly/* = false*/)
    {
        size_t sampleSize = sampleShape.TotalSize();
        NDMaskPtr deviceValueMask = CreateMask(sampleSize, sequences, device);
        size_t maxSequenceLength = (deviceValueMask == nullptr) ? sequences[0].size() : deviceValueMask->Shape()[0];

        size_t numSequences = sequences.size();
        NDShape valueDataShape = sampleShape.AppendShape({ maxSequenceLength, numSequences });
        NDArrayViewPtr valueData(new NDArrayView(AsDataType<ElementType>(), valueDataShape, DeviceDescriptor::CPUDevice()), [](ReferenceCount* ptr) { delete ptr; });
        ElementType* dataBuffer = valueData->WritableDataBuffer<ElementType>();
        for (size_t i = 0; i < numSequences; ++i)
            std::copy(sequences[i].data(), sequences[i].data() + sequences[i].size(), dataBuffer + (maxSequenceLength * i * sampleSize));

        NDArrayViewPtr deviceValueData;
        if (device == DeviceDescriptor::CPUDevice())
        {
            if (readOnly)
                deviceValueData = valueData->Alias(true);
            else
                deviceValueData = valueData;
        }
        else
        {
            deviceValueData = NDArrayViewPtr(new NDArrayView(AsDataType<ElementType>(), valueDataShape, device), [](ReferenceCount* ptr) { delete ptr; });
            deviceValueData->CopyFrom(*valueData);
            if (readOnly)
                deviceValueData = deviceValueData->Alias(true);
        }

        return ValuePtr(new Value(deviceValueData, deviceValueMask), [](ReferenceCount* ptr) { delete ptr; });
    }
    void DistributedLearnerBase::ConvertToOrdered(const std::unordered_map<Parameter, NDArrayViewPtr>& gradientValues, std::vector<std::pair<Parameter, NDArrayViewPtr>>& result, std::unordered_map<Parameter, NDArrayViewPtr>* convertedGradientValues)
    {
        result.reserve(gradientValues.size());
        result.clear();

        if (convertedGradientValues)
            convertedGradientValues->clear();

        for (auto g : gradientValues)
        {
            NDArrayViewPtr p = g.second;
            // convert sparse gradient to dense for accumulation
            if (m_convertSparseToDense && p->GetStorageFormat() != StorageFormat::Dense)
            {
                NDArrayViewPtr pDense = MakeSharedObject<NDArrayView>(0, p->GetDataType(), p->Shape(), p->Device());
                pDense->CopyFrom(*p);
                p = pDense;
            }
            auto pair = std::make_pair(g.first, p);
            result.push_back(pair);

            if (convertedGradientValues)
                convertedGradientValues->insert(pair);
        }

        std::sort(result.begin(), result.end(),
            [](const std::pair<Parameter, NDArrayViewPtr>& a, const std::pair<Parameter, NDArrayViewPtr>& b) { return a.first.Uid() < b.first.Uid(); });
    }
Esempio n. 3
0
void RunEvaluationOneHidden(FunctionPtr evalFunc, const DeviceDescriptor& device)
{
    const std::wstring inputNodeName = L"features";
    const std::wstring outputNodeName = L"out.z_output";

    Variable inputVar;
    if (!GetInputVariableByName(evalFunc, inputNodeName, inputVar))
    {
        fprintf(stderr, "Input variable %S is not available.\n", inputNodeName.c_str());
        throw("Input variable not found error.");
    }

    Variable outputVar;
    if (!GetOutputVaraiableByName(evalFunc, outputNodeName, outputVar))
    {
        fprintf(stderr, "Output variable %S is not available.\n", outputNodeName.c_str());
        throw("Output variable not found error.");
    }

    // Evaluate the network in several runs 
    size_t iterationCount = 4;   
    size_t numSamples = 3;
    for (size_t t = 0; t < iterationCount; ++t)
    {
        std::vector<float> inputData(inputVar.Shape().TotalSize() * numSamples);
        for (size_t i = 0; i < inputData.size(); ++i)
        {
            inputData[i] = static_cast<float>(i % 255);
        }

        NDShape inputShape = inputVar.Shape().AppendShape({1, numSamples});
        ValuePtr inputValue = MakeSharedObject<Value>(MakeSharedObject<NDArrayView>(inputShape, inputData, true));

        ValuePtr outputValue;
        std::unordered_map<Variable, ValuePtr> outputs = {{outputVar, outputValue}};
        evalFunc->Forward({{inputVar, inputValue}}, outputs, device);

        outputValue = outputs[outputVar];        
        NDShape outputShape = outputVar.Shape().AppendShape({1, numSamples});
        std::vector<float> outputData(outputShape.TotalSize());
        NDArrayViewPtr cpuArrayOutput = MakeSharedObject<NDArrayView>(outputShape, outputData, false);
        cpuArrayOutput->CopyFrom(*outputValue->Data());

        assert(outputData.size() == outputVar.Shape()[0] * numSamples);
        fprintf(stderr, "Evaluation result:\n");
        size_t dataIndex = 0;
        auto outputDim = outputVar.Shape()[0];
        for (size_t i = 0; i < numSamples; i++)
        {
            fprintf(stderr, "Iteration:%lu, Sample %lu:\n", t, i);
            fprintf(stderr, "Ouput:");
            for (size_t j = 0; j < outputDim; j++)
            {
                fprintf(stderr, "%f ", outputData[dataIndex++]);
            }
            fprintf(stderr, "\n");
        }
    }
}
Esempio n. 4
0
void CheckValue(const ValuePtr testValue, const size_t dimension, const vector<vector<size_t>>& expectedData, const vector<size_t>& seqLenList, const vector<bool>& seqStartFlags = {})
{
    // Check parameters
    BOOST_TEST(expectedData.size() == seqLenList.size(), "Parameter error: the sequence number in the exepected data and sequence list does not match.");
    for (size_t i = 0; i < expectedData.size(); i++)
    {
        if (expectedData[i].size() != seqLenList[i])
        {
            ReportFailure("Parameter erroe: the number of data for sequence %" PRIu64 " in the expected data does not match. Expected: %" PRIu64 ", actual: %" PRIu64 ".",
                i, seqLenList[i], expectedData[i].size());
        }
    }

    // Check shape
    NDShape shape = testValue->Shape();
    size_t valueRank = shape.Rank();
    if (valueRank < 2 || valueRank > 3 || shape[0] != dimension)
    {
        ReportFailure("The shape of the value does not match\n");
    }
    size_t numOfSequences = valueRank == 2 ? 1 : shape[2]; 
    if (numOfSequences != expectedData.size())
    {
        ReportFailure("The sequence number in the Value does not match. Expected: %" PRIu64 ", actual: %" PRIu64 ".", expectedData.size(), numOfSequences);
    }

    CheckMask(testValue, seqLenList, seqStartFlags);

    // Get data from Value
    vector<ElementType> outputData(shape.TotalSize());
    NDArrayViewPtr arrayOutput = MakeSharedObject<NDArrayView>(shape, outputData, false);
    arrayOutput->CopyFrom(*testValue->Data());

    size_t maxSeqLen = *max_element(seqLenList.begin(), seqLenList.end());
    size_t oIndex = 0;
    for (size_t seq = 0; seq < seqLenList.size(); seq++)
    {
        size_t seqLen = seqLenList[seq];
        for (size_t sample = 0; sample < seqLen; sample++)
        {
            for (size_t c = 0; c < dimension; c++, oIndex++)
            {
                if (outputData[oIndex] != 0)
                {
                    if (outputData[oIndex] != 1)
                    {
                        ReportFailure("OneHot vector contains value other than 0 and 1 at seqNo=%" PRIu64 " sampleNo=%" PRIu64 " position=%" PRIu64 "\n", seq, sample, c);
                    }
                    if (c != expectedData[seq][sample])
                    {
                        ReportFailure("OneHot Index does match at seqNo=%" PRIu64 ", sampleNo=%" PRIu64 ", expected: %" PRIu64 ", actual: %" PRIu64 "\n", seq, sample, expectedData[seq][sample], c);
                    }
                }
            }
        }
        // Skip mask data
        oIndex += (maxSeqLen - seqLen) * dimension;
    }
}
Esempio n. 5
0
void RunEvaluationClassifier(FunctionPtr evalFunc, const DeviceDescriptor& device)
{
    const std::wstring inputNodeName = L"features";

    Variable inputVar;
    if (!GetInputVariableByName(evalFunc, inputNodeName, inputVar))
    {
        fprintf(stderr, "Input variable %S is not available.\n", inputNodeName.c_str());
        throw("Input variable not found error.");
    }

    // Evaluate the network in several runs 
    size_t iterationCount = 4;
    unsigned int randSeed = 2;
    srand(randSeed);
    size_t numSamples = 3;
    std::vector<float> inputData(inputVar.Shape().TotalSize() * numSamples);
    for (size_t t = 0; t < iterationCount; ++t)
    {
        for (size_t i = 0; i < inputData.size(); ++i)
        {
            inputData[i] = ((float)rand()) / RAND_MAX;
        }

        // Create input data shape. Adding sequence length and numSamples as axes.
        // Todo: remove sequence length when only numSamples is supported.
        // Todo: add convenience APIs to simplify data preparation here.
        NDShape inputShape = inputVar.Shape().AppendShape({1, numSamples});
        ValuePtr inputValue = MakeSharedObject<Value>(MakeSharedObject<NDArrayView>(inputShape, inputData, true));

        // Define output.
        ValuePtr outputValue;
        auto outputVar = evalFunc->Output();
        std::unordered_map<Variable, ValuePtr> outputs = {{outputVar, outputValue}};

        // Evaluate the model
        evalFunc->Forward({{inputVar, inputValue}}, outputs, device);

        // Get output value
        outputValue = outputs[outputVar];

        // Todo: remove sequence length when only numSamples is supported.
        // Todo: add convenience APIs to simplify retrieval of output results.
        NDShape outputShape = outputVar.Shape().AppendShape({1, numSamples});
        std::vector<float> outputData(outputShape.TotalSize());
        NDArrayViewPtr cpuArrayOutput = MakeSharedObject<NDArrayView>(outputShape, outputData, false);
        cpuArrayOutput->CopyFrom(*outputValue->Data());

        assert(outputData.size() == outputVar.Shape()[0] * numSamples);
        fprintf(stderr, "Evaluation result:\n");
        size_t dataIndex = 0;
        auto outputDim = outputVar.Shape()[0];
        for (size_t i = 0; i < numSamples; i++)
        {
            fprintf(stderr, "Iteration:%lu, Sample %lu:\n", t, i);
            fprintf(stderr, "    ");
            dataIndex = i * outputDim;
            for (size_t j = 0; j < std::min((size_t)10, outputDim); j++)
            {
                fprintf(stderr, "%f ", outputData[dataIndex++]);
            }
            if (outputDim > 10)
            {
                fprintf(stderr, "...");
            }
            fprintf(stderr, "\n");
        }
    }
}
Esempio n. 6
0
void TestTimesAndPlus(size_t inputDim,
                      size_t outputDim,
                      size_t numSamples,
                      const DeviceDescriptor& device,
                      size_t numIterations,
                      bool usePreAllocatedOutputs,
                      bool outputOnSpecifiedDevice,
                      bool testSaveAndReLoad,
                      unsigned int seed = 1)
{
    Parameter timesParam(MakeSharedObject<NDArrayView>((ElementType)0.5, NDShape({ outputDim, inputDim }), device), L"timesParameters");
    Parameter plusParam(MakeSharedObject<NDArrayView>((ElementType)1.2, std::initializer_list<size_t>({ outputDim }), device), L"plusParameters");

    Variable inputVar({ inputDim }, AsDataType<ElementType>(), L"input");
    auto timesAndPlusFunc = Plus(plusParam, Times(timesParam, inputVar));

    if (testSaveAndReLoad)
        SaveAndReloadModel<ElementType>(timesAndPlusFunc, { &inputVar, &timesParam, &plusParam }, device);

    srand(seed);
    for (size_t iterIdx = 0; iterIdx < numIterations; ++iterIdx)
    {
        std::vector<ElementType> inputData(inputDim * numSamples);
        for (size_t i = 0; i < inputData.size(); ++i)
            inputData[i] = ((ElementType)rand()) / RAND_MAX;

        NDShape inputShape = inputVar.Shape().AppendShape({ 1, numSamples });
        ValuePtr inputValue = MakeSharedObject<Value>(MakeSharedObject<NDArrayView>(inputShape, inputData.data(), inputData.size(), DeviceDescriptor::CPUDevice(), true));

        NDShape outputShape = timesAndPlusFunc->Output().Shape().AppendShape({ 1, numSamples });
        std::vector<ElementType> outputData(outputShape.TotalSize());
        ValuePtr outputValue;
        if (usePreAllocatedOutputs)
        {
            auto outputAllocationDevice = outputOnSpecifiedDevice ? device : DeviceDescriptor::CPUDevice();
            if (outputAllocationDevice.Type() == DeviceKind::CPU)
                outputValue = MakeSharedObject<Value>(MakeSharedObject<NDArrayView>(outputShape, outputData.data(), outputData.size(), outputAllocationDevice, false));
            else
                outputValue = MakeSharedObject<Value>(MakeSharedObject<NDArrayView>(AsDataType<ElementType>(), outputShape, outputAllocationDevice));
        }

        std::unordered_map<Variable, ValuePtr> outputs = { { timesAndPlusFunc->Output(), outputValue } };
        auto backpropState = timesAndPlusFunc->Forward({ { inputVar, inputValue } }, outputs, device, { timesAndPlusFunc->Output() });

        if (!usePreAllocatedOutputs)
            outputValue = outputs[timesAndPlusFunc->Output()];

        // Perform backprop
        std::vector<ElementType> rootGradientsData(outputShape.TotalSize(), 1);
        ValuePtr rootGradientValue;
        if (device.Type() == DeviceKind::CPU)
            rootGradientValue = MakeSharedObject<Value>(MakeSharedObject<NDArrayView>(outputShape, rootGradientsData.data(), rootGradientsData.size(), device, true));
        else
        {
            NDArrayViewPtr cpuArrayView = MakeSharedObject<NDArrayView>(outputShape, rootGradientsData.data(), rootGradientsData.size(), DeviceDescriptor::CPUDevice(), true);
            NDArrayViewPtr gpuArrayView = MakeSharedObject<NDArrayView>(AsDataType<ElementType>(), outputShape, device);
            gpuArrayView->CopyFrom(*cpuArrayView);
            rootGradientValue = MakeSharedObject<Value>(gpuArrayView);
        }

        std::vector<ElementType> plusParameterGradientData(plusParam.Shape().TotalSize());
        std::vector<ElementType> timesParameterGradientData(timesParam.Shape().TotalSize());
        ValuePtr plusParameterGradientValue, timesParameterGradientValue;
        if (usePreAllocatedOutputs)
        {
            auto outputAllocationDevice = outputOnSpecifiedDevice ? device : DeviceDescriptor::CPUDevice();
            if (outputAllocationDevice.Type() == DeviceKind::CPU)
            {
                plusParameterGradientValue = MakeSharedObject<Value>(MakeSharedObject<NDArrayView>(plusParam.Shape(), plusParameterGradientData.data(), plusParameterGradientData.size(), outputAllocationDevice, false));
                timesParameterGradientValue = MakeSharedObject<Value>(MakeSharedObject<NDArrayView>(timesParam.Shape(), timesParameterGradientData.data(), timesParameterGradientData.size(), outputAllocationDevice, false));
            }
            else
            {
                plusParameterGradientValue = MakeSharedObject<Value>(MakeSharedObject<NDArrayView>(AsDataType<ElementType>(), plusParam.Shape(), outputAllocationDevice));
                timesParameterGradientValue = MakeSharedObject<Value>(MakeSharedObject<NDArrayView>(AsDataType<ElementType>(), timesParam.Shape(), outputAllocationDevice));
            }
        }

        std::unordered_map<Variable, ValuePtr> paramGradients = { { plusParam, plusParameterGradientValue }, { timesParam, timesParameterGradientValue } };
        timesAndPlusFunc->Backward(backpropState, { { timesAndPlusFunc->Output(), rootGradientValue } }, paramGradients);

        if (!usePreAllocatedOutputs)
        {
            plusParameterGradientValue = paramGradients[plusParam];
            timesParameterGradientValue = paramGradients[timesParam];
        }

        // Verify forward prop results
        if (!usePreAllocatedOutputs || (outputOnSpecifiedDevice && (device.Type() != DeviceKind::CPU)))
        {
            NDArrayViewPtr cpuArrayView = MakeSharedObject<NDArrayView>(outputShape, outputData.data(), outputData.size(), DeviceDescriptor::CPUDevice(), false);
            cpuArrayView->CopyFrom(*outputValue->Data());
        }

        std::vector<ElementType> expectedOutputValues(outputShape.TotalSize());
        for (size_t i = 0; i < numSamples; ++i)
        {
            ElementType expectedVal = (ElementType)1.2;
            for (size_t j = 0; j < inputDim; ++j)
                expectedVal += (ElementType)(inputData[i * inputDim + j] * 0.5);

            for (size_t j = 0; j < outputDim; ++j)
                expectedOutputValues[i * outputDim + j] = expectedVal;
        }

        FloatingPointVectorCompare(outputData, expectedOutputValues, "TestTimesAndPlus: Forward prop results do not match expected results");

        // Verify backward prop results
        if (device.Type() != DeviceKind::CPU)
        {
            NDArrayViewPtr cpuArrayView = MakeSharedObject<NDArrayView>(AsDataType<ElementType>(), plusParam.Shape(), DeviceDescriptor::CPUDevice());
            cpuArrayView->CopyFrom(*plusParameterGradientValue->Data());
            const ElementType* cpuArrayViewBuffer = cpuArrayView->DataBuffer<ElementType>();
            memcpy(plusParameterGradientData.data(), cpuArrayViewBuffer, plusParam.Shape().TotalSize() * sizeof(ElementType));

            cpuArrayView = MakeSharedObject<NDArrayView>(AsDataType<ElementType>(), timesParam.Shape(), DeviceDescriptor::CPUDevice());
            cpuArrayView->CopyFrom(*timesParameterGradientValue->Data());
            cpuArrayViewBuffer = cpuArrayView->DataBuffer<ElementType>();
            memcpy(timesParameterGradientData.data(), cpuArrayViewBuffer, timesParam.Shape().TotalSize() * sizeof(ElementType));
        }

        for (size_t i = 0; i < outputDim; ++i)
            if (plusParameterGradientData[i] != numSamples)
                throw std::runtime_error("TestTimesAndPlus: Backprop prop results do not match expected results for Plus params gradients");

        std::vector<ElementType> expectedTimesParamsGradientValues(timesParam.Shape().TotalSize());
        for (size_t i = 0; i < inputDim; ++i)
        {
            ElementType expectedVal = 0;
            for (size_t j = 0; j < numSamples; ++j)
                expectedVal += inputData[j * inputDim + i];

            for (size_t j = 0; j < outputDim; ++j)
                expectedTimesParamsGradientValues[i * outputDim + j] = expectedVal;
        }

        FloatingPointVectorCompare(timesParameterGradientData, expectedTimesParamsGradientValues, "TestTimesAndPlus: Backprop prop results do not match expected results for Times params gradients");
    }
}
Esempio n. 7
0
void TestNDArrayView(size_t numAxes, const DeviceDescriptor& device)
{
    srand(1);

    size_t maxDimSize = 15;
    NDShape viewShape(numAxes);
    for (size_t i = 0; i < numAxes; ++i)
        viewShape[i] = (rand() % maxDimSize) + 1;

    // Create a NDArrayView over a std::array
    std::array<ElementType, 1> arrayData = { 3 };
    auto arrayDataView = MakeSharedObject<NDArrayView>(NDShape({}), arrayData);
    if (arrayDataView->template DataBuffer<ElementType>() != arrayData.data())
        throw std::runtime_error("The DataBuffer of the NDArrayView does not match the original buffer it was created over");

    std::vector<ElementType> data(viewShape.TotalSize());
    ElementType scale = 19.0;
    ElementType offset = -4.0;
    for (size_t i = 0; i < viewShape.TotalSize(); ++i)
        data[i] = offset + ((((ElementType)rand()) / RAND_MAX) * scale);

    auto cpuDataView = MakeSharedObject<NDArrayView>(viewShape, data);
    if (cpuDataView->template DataBuffer<ElementType>() != data.data())
        throw std::runtime_error("The DataBuffer of the NDArrayView does not match the original buffer it was created over");

    NDArrayViewPtr dataView;
    if ((device.Type() == DeviceKind::CPU))
        dataView = cpuDataView;
    else
    {
        dataView = MakeSharedObject<NDArrayView>(AsDataType<ElementType>(), viewShape, device);
        dataView->CopyFrom(*cpuDataView);
    }

    if (dataView->Device() != device)
        throw std::runtime_error("Device of NDArrayView does not match 'device' it was created on");

    // Test clone
    auto clonedView = dataView->DeepClone(false);
    ElementType* first = nullptr;
    const ElementType* second = cpuDataView->template DataBuffer<ElementType>();
    NDArrayViewPtr temp1CpuDataView, temp2CpuDataView;
    if ((device.Type() == DeviceKind::CPU))
    {
        if (dataView->DataBuffer<ElementType>() != data.data())
            throw std::runtime_error("The DataBuffer of the NDArrayView does not match the original buffer it was created over");

        first = clonedView->WritableDataBuffer<ElementType>();
    }
    else
    {
        temp1CpuDataView = MakeSharedObject<NDArrayView>(AsDataType<ElementType>(), viewShape, DeviceDescriptor::CPUDevice());
        temp1CpuDataView->CopyFrom(*clonedView);

        first = temp1CpuDataView->WritableDataBuffer<ElementType>();
    }

    for (size_t i = 0; i < viewShape.TotalSize(); ++i)
    {
        if (first[i] != second[i])
            throw std::runtime_error("The contents of the clone do not match expected");
    }

    first[0] += 1;
    if ((device.Type() != DeviceKind::CPU))
        clonedView->CopyFrom(*temp1CpuDataView);

    if ((device.Type() == DeviceKind::CPU))
    {
        first = clonedView->WritableDataBuffer<ElementType>();
        second = dataView->DataBuffer<ElementType>();
    }
    else
    {
        temp1CpuDataView = MakeSharedObject<NDArrayView>(AsDataType<ElementType>(), viewShape, DeviceDescriptor::CPUDevice());
        temp1CpuDataView->CopyFrom(*clonedView);
        first = temp1CpuDataView->WritableDataBuffer<ElementType>();

        temp2CpuDataView = MakeSharedObject<NDArrayView>(AsDataType<ElementType>(), viewShape, DeviceDescriptor::CPUDevice());
        temp2CpuDataView->CopyFrom(*dataView);
        second = temp2CpuDataView->DataBuffer<ElementType>();
    }

    if (first[0] != (second[0] + 1))
        throw std::runtime_error("The clonedView's contents do not match expected");

    // Test alias
    auto aliasView = clonedView->Alias(true);
    const ElementType* aliasViewBuffer = aliasView->DataBuffer<ElementType>();
    const ElementType* clonedDataBuffer = clonedView->DataBuffer<ElementType>();
    if (aliasViewBuffer != clonedDataBuffer)
        throw std::runtime_error("The buffers underlying the alias view and the view it is an alias of are different!");

    clonedView->CopyFrom(*dataView);
    if (aliasViewBuffer != clonedDataBuffer)
        throw std::runtime_error("The buffers underlying the alias view and the view it is an alias of are different!");

    // Test readonliness
    auto errorMsg = "Was incorrectly able to get a writable buffer pointer from a readonly view";

    // Should not be able to get the WritableDataBuffer for a read-only view
    VerifyException([&aliasView]() {
        ElementType* aliasViewBuffer = aliasView->WritableDataBuffer<ElementType>();
        aliasViewBuffer;
    }, errorMsg);

    // Should not be able to copy into a read-only view
    VerifyException([&aliasView, &dataView]() {
        aliasView->CopyFrom(*dataView);
    }, errorMsg);
}
Esempio n. 8
0
void CheckValue(const ValuePtr testValue, const NDShape& sampleShape, const vector<vector<ElementType>>& expectedData, const vector<size_t>& seqLenList, const vector<bool>& seqStartFlags = {})
{
    size_t sampleSize = sampleShape.TotalSize();
    // Check parameters
    BOOST_TEST(expectedData.size() == seqLenList.size(), "Parameter error: the sequence number in the exepected data and sequence list does not match.");
    for (size_t i = 0; i < expectedData.size(); i++)
    {
        if (expectedData[i].size() != seqLenList[i] * sampleSize)
        {
            ReportFailure("Parameter erroe: the number of data for sequence %" PRIu64 " in the expected data does not match. Expected: %" PRIu64 ", actual: %" PRIu64 ".",
                          i, seqLenList[i] * sampleSize, expectedData[i].size());
        }
    }

    // Check shape 
    auto valueRank = testValue->Shape().Rank();
    auto sampleRank = sampleShape.Rank();
    auto shapeIsCorrect = !((valueRank < sampleRank + 1) || (valueRank > sampleRank + 2) || (sampleShape != testValue->Shape().SubShape(0, sampleRank)));

    BOOST_TEST(shapeIsCorrect, "The Value does not have the expected shape.");

    size_t numOfSequences;
    if (valueRank == sampleShape.Rank() + 1)
    {
        // no batch axis, only sequence axis
        numOfSequences = 1;
    }
    else
    {
        assert(valueRank == sampleShape.Rank() + 2);
        numOfSequences = testValue->Shape()[valueRank - 1];
    }

    if (numOfSequences != expectedData.size())
    {
        ReportFailure("The sequence number in the Value does not match. Expected: %" PRIu64 ", actual: %" PRIu64 ".", expectedData.size(), numOfSequences);
    }

    CheckMask(testValue, seqLenList, seqStartFlags);

    // Get data from Value 
    vector<ElementType> outputData(testValue->Shape().TotalSize());
    NDArrayViewPtr arrayOutput = MakeSharedObject<NDArrayView>(testValue->Shape(), outputData, false);
    arrayOutput->CopyFrom(*testValue->Data());

    size_t maxSeqLen = *max_element(seqLenList.begin(), seqLenList.end());
    size_t oIndex = 0;
    for (size_t seq = 0; seq < seqLenList.size(); seq++)
    {
        size_t seqLen = seqLenList[seq];
        for (size_t sIndex = 0; sIndex < seqLen * sampleSize; sIndex++, oIndex++)
        {
            if (expectedData[seq][sIndex] != outputData[oIndex])
            {
                ReportFailure("Data does match at position %" PRIu64 ", expected: %f, actual: %f\n", oIndex, expectedData[seq][sIndex], outputData[oIndex]);
            }
        }
        // Skip mask data
        oIndex += (maxSeqLen - seqLen) * sampleSize;
    }
}