/* ************************************************************************** */
TEST(JointLimitFactorPose2Vector, optimization_2) {
  // over down limit

  // settings
  noiseModel::Gaussian::shared_ptr cost_model = noiseModel::Isotropic::Sigma(5, 0.001);
  noiseModel::Gaussian::shared_ptr prior_model = noiseModel::Isotropic::Sigma(5, 1000);
  Key qkey = Symbol('x', 0);
  Vector5 dlimit = (Vector5() << 0, 0, 0, -5.0, -10.0).finished();
  Vector5 ulimit = (Vector5() << 0, 0, 0, 5, 10.0).finished();
  Vector5 thresh = (Vector5() << 0, 0, 0, 2.0, 2.0).finished();

  Pose2Vector conf(Pose2(1, -2, 3), Vector2(-10.0, -10.0));

  NonlinearFactorGraph graph;
  graph.add(JointLimitFactorPose2Vector(qkey, cost_model, dlimit, ulimit, thresh));
  graph.add(PriorFactor<Pose2Vector>(qkey, conf, prior_model));
  Values init_values;
  init_values.insert(qkey, conf);

  GaussNewtonParams parameters;
  parameters.setVerbosity("ERROR");
  parameters.setAbsoluteErrorTol(1e-12);
  GaussNewtonOptimizer optimizer(graph, init_values, parameters);
  optimizer.optimize();
  Values results = optimizer.values();

  Vector conf_limit = (Vector(2) << -3.0, -8.0).finished();
  EXPECT(assert_equal(conf_limit, results.at<Pose2Vector>(qkey).configuration(), 1e-6));
}
Esempio n. 2
0
/* ************************************************************************* */
NonlinearFactorGraph planarSLAMGraph() {
  NonlinearFactorGraph graph;

  // Prior on pose x1 at the origin.
  Pose2 prior(0.0, 0.0, 0.0);
  auto priorNoise = noiseModel::Diagonal::Sigmas(Vector3(0.3, 0.3, 0.1));
  graph.add(PriorFactor<Pose2>(x1, prior, priorNoise));

  // Two odometry factors
  Pose2 odometry(2.0, 0.0, 0.0);
  auto odometryNoise = noiseModel::Diagonal::Sigmas(Vector3(0.2, 0.2, 0.1));
  graph.add(BetweenFactor<Pose2>(x1, x2, odometry, odometryNoise));
  graph.add(BetweenFactor<Pose2>(x2, x3, odometry, odometryNoise));

  // Add Range-Bearing measurements to two different landmarks
  auto measurementNoise = noiseModel::Diagonal::Sigmas(Vector2(0.1, 0.2));
  Rot2 bearing11 = Rot2::fromDegrees(45), bearing21 = Rot2::fromDegrees(90),
       bearing32 = Rot2::fromDegrees(90);
  double range11 = std::sqrt(4.0 + 4.0), range21 = 2.0, range32 = 2.0;
  graph.add(BearingRangeFactor<Pose2, Point2>(x1, l1, bearing11, range11, measurementNoise));
  graph.add(BearingRangeFactor<Pose2, Point2>(x2, l1, bearing21, range21, measurementNoise));
  graph.add(BearingRangeFactor<Pose2, Point2>(x3, l2, bearing32, range32, measurementNoise));

  return graph;
}
Esempio n. 3
0
/* ************************************************************************* */
TEST( StereoFactor, singlePoint)
{
  NonlinearFactorGraph graph;

  graph.add(NonlinearEquality<Pose3>(X(1), camera1));

  StereoPoint2 measurement(320, 320.0-50, 240);
  // arguments: measurement, sigma, cam#, measurement #, K, baseline (m)
  graph.add(GenericStereoFactor<Pose3, Point3>(measurement, model, X(1), L(1), K));

  // Create a configuration corresponding to the ground truth
  Values values;
  values.insert(X(1), camera1); // add camera at z=6.25m looking towards origin

  Point3 l1(0, 0, 0);
  values.insert(L(1), l1);   // add point at origin;

  GaussNewtonOptimizer optimizer(graph, values);

  // We expect the initial to be zero because config is the ground truth
  DOUBLES_EQUAL(0.0, optimizer.error(), 1e-9);

  // Iterate once, and the config should not have changed
  optimizer.iterate();
  DOUBLES_EQUAL(0.0, optimizer.error(), 1e-9);

  // Complete solution
  optimizer.optimize();

  DOUBLES_EQUAL(0.0, optimizer.error(), 1e-6);
}
/* ************************************************************************* */
TEST ( NonlinearEquality, allow_error_optimize_with_factors ) {

	// create a hard constraint
  Symbol key1('x',1);
	Pose2 feasible1(1.0, 2.0, 3.0);

	// initialize away from the ideal
	Values init;
	Pose2 initPose(0.0, 2.0, 3.0);
	init.insert(key1, initPose);

	double error_gain = 500.0;
	PoseNLE nle(key1, feasible1, error_gain);

	// create a soft prior that conflicts
	PosePrior prior(key1, initPose, noiseModel::Isotropic::Sigma(3, 0.1));

	// add to a graph
	NonlinearFactorGraph graph;
	graph.add(nle);
	graph.add(prior);

	// optimize
	Ordering ordering;
	ordering.push_back(key1);
  Values actual = LevenbergMarquardtOptimizer(graph, init, ordering).optimize();

	// verify
	Values expected;
	expected.insert(key1, feasible1);
	EXPECT(assert_equal(expected, actual));
}
Esempio n. 5
0
int main(int argc, char** argv) {

  // 1. Create a factor graph container and add factors to it
  NonlinearFactorGraph graph;

  // 2a. Add a prior on the first pose, setting it to the origin
  // A prior factor consists of a mean and a noise model (covariance matrix)
  Pose2 prior(0.0, 0.0, 0.0); // prior at origin
  noiseModel::Diagonal::shared_ptr priorNoise = noiseModel::Diagonal::Sigmas(Vector_(3, 0.3, 0.3, 0.1));
  graph.add(PriorFactor<Pose2>(1, prior, priorNoise));

  // 2b. Add odometry factors
  // For simplicity, we will use the same noise model for each odometry factor
  noiseModel::Diagonal::shared_ptr odometryNoise = noiseModel::Diagonal::Sigmas(Vector_(3, 0.2, 0.2, 0.1));
  // Create odometry (Between) factors between consecutive poses
  graph.add(BetweenFactor<Pose2>(1, 2, Pose2(2.0, 0.0, M_PI_2),    odometryNoise));
  graph.add(BetweenFactor<Pose2>(2, 3, Pose2(2.0, 0.0, M_PI_2), odometryNoise));
  graph.add(BetweenFactor<Pose2>(3, 4, Pose2(2.0, 0.0, M_PI_2), odometryNoise));
  graph.add(BetweenFactor<Pose2>(4, 5, Pose2(2.0, 0.0, M_PI_2), odometryNoise));

  // 2c. Add the loop closure constraint
  // This factor encodes the fact that we have returned to the same pose. In real systems,
  // these constraints may be identified in many ways, such as appearance-based techniques
  // with camera images.
  // We will use another Between Factor to enforce this constraint, with the distance set to zero,
  noiseModel::Diagonal::shared_ptr model = noiseModel::Diagonal::Sigmas(Vector_(3, 0.2, 0.2, 0.1));
  graph.add(BetweenFactor<Pose2>(5, 1, Pose2(0.0, 0.0, 0.0), model));
  graph.print("\nFactor Graph:\n"); // print


  // 3. Create the data structure to hold the initialEstimate estimate to the solution
  // For illustrative purposes, these have been deliberately set to incorrect values
  Values initialEstimate;
  initialEstimate.insert(1, Pose2(0.5, 0.0, 0.2));
  initialEstimate.insert(2, Pose2(2.3, 0.1, 1.1));
  initialEstimate.insert(3, Pose2(2.1, 1.9, 2.8));
  initialEstimate.insert(4, Pose2(-.3, 2.5, 4.2));
  initialEstimate.insert(5, Pose2(0.1,-0.7, 5.8));
  initialEstimate.print("\nInitial Estimate:\n"); // print

  // 4. Single Step Optimization using Levenberg-Marquardt
  LevenbergMarquardtParams parameters;
  parameters.verbosity = NonlinearOptimizerParams::ERROR;
  parameters.verbosityLM = LevenbergMarquardtParams::LAMBDA;
  parameters.linearSolverType = SuccessiveLinearizationParams::CONJUGATE_GRADIENT;

  {
    parameters.iterativeParams = boost::make_shared<SubgraphSolverParameters>();
    LevenbergMarquardtOptimizer optimizer(graph, initialEstimate, parameters);
    Values result = optimizer.optimize();
    result.print("Final Result:\n");
    cout << "subgraph solver final error = " << graph.error(result) << endl;
  }

  return 0;
}
Esempio n. 6
0
/* ************************************************************************* */
TEST( dataSet, readG2oTukey)
{
  const string g2oFile = findExampleDataFile("pose2example");
  NonlinearFactorGraph::shared_ptr actualGraph;
  Values::shared_ptr actualValues;
  bool is3D = false;
  boost::tie(actualGraph, actualValues) = readG2o(g2oFile, is3D, KernelFunctionTypeTUKEY);

  noiseModel::Diagonal::shared_ptr baseModel = noiseModel::Diagonal::Precisions((Vector(3) << 44.721360, 44.721360, 30.901699));
  SharedNoiseModel model = noiseModel::Robust::Create(noiseModel::mEstimator::Tukey::Create(4.6851), baseModel);

  NonlinearFactorGraph expectedGraph;
  expectedGraph.add(BetweenFactor<Pose2>(0, 1, Pose2(1.030390, 0.011350, -0.081596), model));
  expectedGraph.add(BetweenFactor<Pose2>(1, 2, Pose2(1.013900, -0.058639, -0.220291), model));
  expectedGraph.add(BetweenFactor<Pose2>(2, 3, Pose2(1.027650, -0.007456, -0.043627), model));
  expectedGraph.add(BetweenFactor<Pose2>(3, 4, Pose2(-0.012016, 1.004360, 1.560229), model));
  expectedGraph.add(BetweenFactor<Pose2>(4, 5, Pose2(1.016030, 0.014565, -0.030930), model));
  expectedGraph.add(BetweenFactor<Pose2>(5, 6, Pose2(1.023890, 0.006808, -0.007452), model));
  expectedGraph.add(BetweenFactor<Pose2>(6, 7, Pose2(0.957734, 0.003159, 0.082836), model));
  expectedGraph.add(BetweenFactor<Pose2>(7, 8, Pose2(-1.023820, -0.013668, -3.084560), model));
  expectedGraph.add(BetweenFactor<Pose2>(8, 9, Pose2(1.023440, 0.013984, -0.127624), model));
  expectedGraph.add(BetweenFactor<Pose2>(9,10, Pose2(1.003350, 0.022250, -0.195918), model));
  expectedGraph.add(BetweenFactor<Pose2>(5, 9, Pose2(0.033943, 0.032439, 3.073637), model));
  expectedGraph.add(BetweenFactor<Pose2>(3,10, Pose2(0.044020, 0.988477, -1.553511), model));
  EXPECT(assert_equal(expectedGraph,*actualGraph,1e-5));
}
//*************************************************************************
TEST (EssentialMatrixFactor2, minimization) {
    // Here we want to optimize for E and inverse depths at the same time

    // We start with a factor graph and add constraints to it
    // Noise sigma is 1cm, assuming metric measurements
    NonlinearFactorGraph graph;
    for (size_t i = 0; i < 5; i++)
        graph.add(EssentialMatrixFactor2(100, i, pA(i), pB(i), model2));

    // Check error at ground truth
    Values truth;
    truth.insert(100, trueE);
    for (size_t i = 0; i < 5; i++) {
        Point3 P1 = data.tracks[i].p;
        truth.insert(i, double(baseline / P1.z()));
    }
    EXPECT_DOUBLES_EQUAL(0, graph.error(truth), 1e-8);

    // Optimize
    LevenbergMarquardtParams parameters;
    // parameters.setVerbosity("ERROR");
    LevenbergMarquardtOptimizer optimizer(graph, truth, parameters);
    Values result = optimizer.optimize();

    // Check result
    EssentialMatrix actual = result.at<EssentialMatrix>(100);
    EXPECT(assert_equal(trueE, actual, 1e-1));
    for (size_t i = 0; i < 5; i++)
        EXPECT_DOUBLES_EQUAL(truth.at<double>(i), result.at<double>(i), 1e-1);

    // Check error at result
    EXPECT_DOUBLES_EQUAL(0, graph.error(result), 1e-4);
}
/* ************************************************************************** */
TEST(GaussianPriorWorkspacePoseArm, optimization) {

  noiseModel::Gaussian::shared_ptr cost_model = noiseModel::Isotropic::Sigma(6, 0.1);

  Vector a = (Vector(2) << 1, 1).finished();
  Vector alpha = (Vector(2) << 0, 0).finished();
  Vector d = (Vector(2) << 0, 0).finished();
  ArmModel arm = ArmModel(Arm(2, a, alpha, d), BodySphereVector());
  Pose3 des = Pose3(Rot3(), Point3(2, 0, 0));

  Key qkey = Symbol('x', 0);
  Vector q = (Vector(2) << 0, 0).finished();
  Vector qinit = (Vector(2) << M_PI/2, M_PI/2).finished();

  NonlinearFactorGraph graph;
  graph.add(GaussianPriorWorkspacePoseArm(qkey, arm, 1, des, cost_model));
  Values init_values;
  init_values.insert(qkey, qinit);

  LevenbergMarquardtParams parameters;
  parameters.setVerbosity("ERROR");
  parameters.setAbsoluteErrorTol(1e-12);
  LevenbergMarquardtOptimizer optimizer(graph, init_values, parameters);
  optimizer.optimize();
  Values results = optimizer.values();

  EXPECT_DOUBLES_EQUAL(0, graph.error(results), 1e-3);
  EXPECT(assert_equal(q, results.at<Vector>(qkey), 1e-3));
}
Esempio n. 9
0
/* ************************************************************************** */
TEST(GoalFactorArm, optimization_1) {

  // use optimization to solve inverse kinematics
  noiseModel::Gaussian::shared_ptr cost_model = noiseModel::Isotropic::Sigma(3, 0.1);

  // 2 link simple example
  Vector a = (Vector(2) << 1, 1).finished();
  Vector alpha = (Vector(2) << 0, 0).finished();
  Vector d = (Vector(2) << 0, 0).finished();
  Arm arm(2, a, alpha, d);
  Point3 goal(1.414213562373095, 1.414213562373095, 0);

  Key qkey = Symbol('x', 0);
  Vector q = (Vector(2) << M_PI/4.0, 0).finished();
  Vector qinit = (Vector(2) << 0, 0).finished();

  NonlinearFactorGraph graph;
  graph.add(GoalFactorArm(qkey, cost_model, arm, goal));
  Values init_values;
  init_values.insert(qkey, qinit);

  LevenbergMarquardtParams parameters;
  parameters.setVerbosity("ERROR");
  parameters.setAbsoluteErrorTol(1e-12);
  LevenbergMarquardtOptimizer optimizer(graph, init_values, parameters);
  optimizer.optimize();
  Values results = optimizer.values();

  EXPECT_DOUBLES_EQUAL(0, graph.error(results), 1e-3);
  EXPECT(assert_equal(q, results.at<Vector>(qkey), 1e-3));
}
Esempio n. 10
0
int main(const int argc, const char *argv[]) {

  // Read graph from file
  string g2oFile;
  if (argc < 2)
    g2oFile = findExampleDataFile("noisyToyGraph.txt");
  else
    g2oFile = argv[1];

  NonlinearFactorGraph::shared_ptr graph;
  Values::shared_ptr initial;
  boost::tie(graph, initial) = readG2o(g2oFile);

  // Add prior on the pose having index (key) = 0
  NonlinearFactorGraph graphWithPrior = *graph;
  noiseModel::Diagonal::shared_ptr priorModel = //
      noiseModel::Diagonal::Variances((Vector(3) << 1e-6, 1e-6, 1e-8));
  graphWithPrior.add(PriorFactor<Pose2>(0, Pose2(), priorModel));
  graphWithPrior.print();

  std::cout << "Computing LAGO estimate" << std::endl;
  Values estimateLago = lago::initialize(graphWithPrior);
  std::cout << "done!" << std::endl;

  if (argc < 3) {
    estimateLago.print("estimateLago");
  } else {
    const string outputFile = argv[2];
    std::cout << "Writing results to file: " << outputFile << std::endl;
    writeG2o(*graph, estimateLago, outputFile);
    std::cout << "done! " << std::endl;
  }

  return 0;
}
//*************************************************************************
TEST (EssentialMatrixFactor2, extraMinimization) {
    // Additional test with camera moving in positive X direction

    // We start with a factor graph and add constraints to it
    // Noise sigma is 1, assuming pixel measurements
    NonlinearFactorGraph graph;
    for (size_t i = 0; i < data.number_tracks(); i++)
        graph.add(EssentialMatrixFactor2(100, i, pA(i), pB(i), model2, K));

    // Check error at ground truth
    Values truth;
    truth.insert(100, trueE);
    for (size_t i = 0; i < data.number_tracks(); i++) {
        Point3 P1 = data.tracks[i].p;
        truth.insert(i, double(baseline / P1.z()));
    }
    EXPECT_DOUBLES_EQUAL(0, graph.error(truth), 1e-8);

    // Optimize
    LevenbergMarquardtParams parameters;
    // parameters.setVerbosity("ERROR");
    LevenbergMarquardtOptimizer optimizer(graph, truth, parameters);
    Values result = optimizer.optimize();

    // Check result
    EssentialMatrix actual = result.at<EssentialMatrix>(100);
    EXPECT(assert_equal(trueE, actual, 1e-1));
    for (size_t i = 0; i < data.number_tracks(); i++)
        EXPECT_DOUBLES_EQUAL(truth.at<double>(i), result.at<double>(i), 1e-1);

    // Check error at result
    EXPECT_DOUBLES_EQUAL(0, graph.error(result), 1e-4);
}
/* ************************************************************************* */
TEST ( NonlinearEquality, allow_error_optimize ) {
  Symbol key1('x',1);
	Pose2 feasible1(1.0, 2.0, 3.0);
	double error_gain = 500.0;
	PoseNLE nle(key1, feasible1, error_gain);

	// add to a graph
	NonlinearFactorGraph graph;
	graph.add(nle);

	// initialize away from the ideal
	Pose2 initPose(0.0, 2.0, 3.0);
	Values init;
	init.insert(key1, initPose);

	// optimize
	Ordering ordering;
	ordering.push_back(key1);
	Values result = LevenbergMarquardtOptimizer(graph, init, ordering).optimize();

	// verify
	Values expected;
	expected.insert(key1, feasible1);
	EXPECT(assert_equal(expected, result));
}
//*************************************************************************
TEST (EssentialMatrixFactor3, minimization) {

    // As before, we start with a factor graph and add constraints to it
    NonlinearFactorGraph graph;
    for (size_t i = 0; i < 5; i++)
        // but now we specify the rotation bRc
        graph.add(EssentialMatrixFactor3(100, i, pA(i), pB(i), cRb, model2));

    // Check error at ground truth
    Values truth;
    truth.insert(100, bodyE);
    for (size_t i = 0; i < 5; i++) {
        Point3 P1 = data.tracks[i].p;
        truth.insert(i, double(baseline / P1.z()));
    }
    EXPECT_DOUBLES_EQUAL(0, graph.error(truth), 1e-8);

    // Optimize
    LevenbergMarquardtParams parameters;
    // parameters.setVerbosity("ERROR");
    LevenbergMarquardtOptimizer optimizer(graph, truth, parameters);
    Values result = optimizer.optimize();

    // Check result
    EssentialMatrix actual = result.at<EssentialMatrix>(100);
    EXPECT(assert_equal(bodyE, actual, 1e-1));
    for (size_t i = 0; i < 5; i++)
        EXPECT_DOUBLES_EQUAL(truth.at<double>(i), result.at<double>(i), 1e-1);

    // Check error at result
    EXPECT_DOUBLES_EQUAL(0, graph.error(result), 1e-4);
}
int main(int argc, char** argv) {

    // 1. Create a factor graph container and add factors to it
    NonlinearFactorGraph graph;

    // 2a. Add odometry factors
    // For simplicity, we will use the same noise model for each odometry factor
    noiseModel::Diagonal::shared_ptr odometryNoise = noiseModel::Diagonal::Sigmas(Vector3(0.2, 0.2, 0.1));
    // Create odometry (Between) factors between consecutive poses
    graph.add(BetweenFactor<Pose2>(1, 2, Pose2(2.0, 0.0, 0.0), odometryNoise));
    graph.add(BetweenFactor<Pose2>(2, 3, Pose2(2.0, 0.0, 0.0), odometryNoise));

    // 2b. Add "GPS-like" measurements
    // We will use our custom UnaryFactor for this.
    noiseModel::Diagonal::shared_ptr unaryNoise = noiseModel::Diagonal::Sigmas(Vector2(0.1, 0.1)); // 10cm std on x,y
    graph.add(boost::make_shared<UnaryFactor>(1, 0.0, 0.0, unaryNoise));
    graph.add(boost::make_shared<UnaryFactor>(2, 2.0, 0.0, unaryNoise));
    graph.add(boost::make_shared<UnaryFactor>(3, 4.0, 0.0, unaryNoise));
    graph.print("\nFactor Graph:\n"); // print

    // 3. Create the data structure to hold the initialEstimate estimate to the solution
    // For illustrative purposes, these have been deliberately set to incorrect values
    Values initialEstimate;
    initialEstimate.insert(1, Pose2(0.5, 0.0, 0.2));
    initialEstimate.insert(2, Pose2(2.3, 0.1, -0.2));
    initialEstimate.insert(3, Pose2(4.1, 0.1, 0.1));
    initialEstimate.print("\nInitial Estimate:\n"); // print

    // 4. Optimize using Levenberg-Marquardt optimization. The optimizer
    // accepts an optional set of configuration parameters, controlling
    // things like convergence criteria, the type of linear system solver
    // to use, and the amount of information displayed during optimization.
    // Here we will use the default set of parameters.  See the
    // documentation for the full set of parameters.
    LevenbergMarquardtOptimizer optimizer(graph, initialEstimate);
    Values result = optimizer.optimize();
    result.print("Final Result:\n");

    // 5. Calculate and print marginal covariances for all variables
    Marginals marginals(graph, result);
    cout << "x1 covariance:\n" << marginals.marginalCovariance(1) << endl;
    cout << "x2 covariance:\n" << marginals.marginalCovariance(2) << endl;
    cout << "x3 covariance:\n" << marginals.marginalCovariance(3) << endl;

    return 0;
}
/* ********************************************************************* */
TEST (testNonlinearEqualityConstraint, map_warp ) {
	// get a graph
  NonlinearFactorGraph graph;

	// keys
  Symbol x1('x',1), x2('x',2);
  Symbol l1('l',1), l2('l',2);

	// constant constraint on x1
	Point2 pose1(1.0, 1.0);
	graph.add(eq2D::UnaryEqualityConstraint(pose1, x1));

	SharedDiagonal sigma = noiseModel::Isotropic::Sigma(1,0.1);

	// measurement from x1 to l1
	Point2 z1(0.0, 5.0);
	graph.add(simulated2D::Measurement(z1, sigma, x1, l1));

	// measurement from x2 to l2
	Point2 z2(-4.0, 0.0);
	graph.add(simulated2D::Measurement(z2, sigma, x2, l2));

	// equality constraint between l1 and l2
	graph.add(eq2D::PointEqualityConstraint(l1, l2));

	// create an initial estimate
	Values initialEstimate;
	initialEstimate.insert(x1, Point2( 1.0, 1.0));
	initialEstimate.insert(l1, Point2( 1.0, 6.0));
	initialEstimate.insert(l2, Point2(-4.0, 0.0)); // starting with a separate reference frame
	initialEstimate.insert(x2, Point2( 0.0, 0.0)); // other pose starts at origin

	// optimize
	Values actual = LevenbergMarquardtOptimizer(graph, initialEstimate).optimize();

	Values expected;
	expected.insert(x1, Point2(1.0, 1.0));
	expected.insert(l1, Point2(1.0, 6.0));
	expected.insert(l2, Point2(1.0, 6.0));
	expected.insert(x2, Point2(5.0, 6.0));
	CHECK(assert_equal(expected, actual, tol));
}
Esempio n. 16
0
int main(int argc, char** argv) {

  // Create an empty nonlinear factor graph
  NonlinearFactorGraph graph;

  // Add a prior on the first pose, setting it to the origin
  // A prior factor consists of a mean and a noise model (covariance matrix)
  Pose2 priorMean(0.0, 0.0, 0.0); // prior at origin
  noiseModel::Diagonal::shared_ptr priorNoise = noiseModel::Diagonal::Sigmas(Vector3(0.3, 0.3, 0.1));
  graph.add(PriorFactor<Pose2>(1, priorMean, priorNoise));

  // Add odometry factors
  Pose2 odometry(2.0, 0.0, 0.0);
  // For simplicity, we will use the same noise model for each odometry factor
  noiseModel::Diagonal::shared_ptr odometryNoise = noiseModel::Diagonal::Sigmas(Vector3(0.2, 0.2, 0.1));
  // Create odometry (Between) factors between consecutive poses
  graph.add(BetweenFactor<Pose2>(1, 2, odometry, odometryNoise));
  graph.add(BetweenFactor<Pose2>(2, 3, odometry, odometryNoise));
  graph.print("\nFactor Graph:\n"); // print

  // Create the data structure to hold the initialEstimate estimate to the solution
  // For illustrative purposes, these have been deliberately set to incorrect values
  Values initial;
  initial.insert(1, Pose2(0.5, 0.0, 0.2));
  initial.insert(2, Pose2(2.3, 0.1, -0.2));
  initial.insert(3, Pose2(4.1, 0.1, 0.1));
  initial.print("\nInitial Estimate:\n"); // print

  // optimize using Levenberg-Marquardt optimization
  Values result = LevenbergMarquardtOptimizer(graph, initial).optimize();
  result.print("Final Result:\n");

  // Calculate and print marginal covariances for all variables
  cout.precision(2);
  Marginals marginals(graph, result);
  cout << "x1 covariance:\n" << marginals.marginalCovariance(1) << endl;
  cout << "x2 covariance:\n" << marginals.marginalCovariance(2) << endl;
  cout << "x3 covariance:\n" << marginals.marginalCovariance(3) << endl;

  return 0;
}
/* ************************************************************************* */
TEST(NonlinearOptimizer, MoreOptimization) {

  NonlinearFactorGraph fg;
  fg.add(PriorFactor<Pose2>(0, Pose2(0,0,0), noiseModel::Isotropic::Sigma(3,1)));
  fg.add(BetweenFactor<Pose2>(0, 1, Pose2(1,0,M_PI/2), noiseModel::Isotropic::Sigma(3,1)));
  fg.add(BetweenFactor<Pose2>(1, 2, Pose2(1,0,M_PI/2), noiseModel::Isotropic::Sigma(3,1)));

  Values init;
  init.insert(0, Pose2(3,4,-M_PI));
  init.insert(1, Pose2(10,2,-M_PI));
  init.insert(2, Pose2(11,7,-M_PI));

  Values expected;
  expected.insert(0, Pose2(0,0,0));
  expected.insert(1, Pose2(1,0,M_PI/2));
  expected.insert(2, Pose2(1,1,M_PI));

  // Try LM and Dogleg
  EXPECT(assert_equal(expected, LevenbergMarquardtOptimizer(fg, init).optimize()));
  EXPECT(assert_equal(expected, DoglegOptimizer(fg, init).optimize()));
}
Esempio n. 18
0
/* ************************************************************************* */
TEST( dataSet, readG2o3D)
{
  const string g2oFile = findExampleDataFile("pose3example");
  NonlinearFactorGraph::shared_ptr actualGraph;
  Values::shared_ptr actualValues;
  bool is3D = true;
  boost::tie(actualGraph, actualValues) = readG2o(g2oFile, is3D);

  Values expectedValues;
  Rot3 R0 = Rot3::quaternion(1.000000, 0.000000, 0.000000, 0.000000 );
  Point3 p0 = Point3(0.000000, 0.000000, 0.000000);
  expectedValues.insert(0, Pose3(R0, p0));

  Rot3 R1 = Rot3::quaternion(0.854230, 0.190253, 0.283162, -0.392318 );
  Point3 p1 = Point3(1.001367, 0.015390, 0.004948);
  expectedValues.insert(1, Pose3(R1, p1));

  Rot3 R2 = Rot3::quaternion(0.421446, -0.351729, -0.597838, 0.584174 );
  Point3 p2 = Point3(1.993500, 0.023275, 0.003793);
  expectedValues.insert(2, Pose3(R2, p2));

  Rot3 R3 = Rot3::quaternion(0.067024, 0.331798, -0.200659, 0.919323);
  Point3 p3 = Point3(2.004291, 1.024305, 0.018047);
  expectedValues.insert(3, Pose3(R3, p3));

  Rot3 R4 = Rot3::quaternion(0.765488, -0.035697, -0.462490, 0.445933);
  Point3 p4 = Point3(0.999908, 1.055073, 0.020212);
  expectedValues.insert(4, Pose3(R4, p4));

  EXPECT(assert_equal(expectedValues,*actualValues,1e-5));

  noiseModel::Diagonal::shared_ptr model = noiseModel::Diagonal::Precisions((Vector(6) << 10000.0,10000.0,10000.0,10000.0,10000.0,10000.0));
  NonlinearFactorGraph expectedGraph;

  Point3 p01 = Point3(1.001367, 0.015390, 0.004948);
  Rot3 R01 = Rot3::quaternion(0.854230, 0.190253, 0.283162, -0.392318 );
  expectedGraph.add(BetweenFactor<Pose3>(0, 1, Pose3(R01,p01), model));

  Point3 p12 = Point3(0.523923, 0.776654, 0.326659);
  Rot3 R12 = Rot3::quaternion(0.105373 , 0.311512, 0.656877, -0.678505 );
  expectedGraph.add(BetweenFactor<Pose3>(1, 2, Pose3(R12,p12), model));

  Point3 p23 = Point3(0.910927, 0.055169, -0.411761);
  Rot3 R23 = Rot3::quaternion(0.568551 , 0.595795, -0.561677, 0.079353 );
  expectedGraph.add(BetweenFactor<Pose3>(2, 3, Pose3(R23,p23), model));

  Point3 p34 = Point3(0.775288, 0.228798, -0.596923);
  Rot3 R34 = Rot3::quaternion(0.542221 , -0.592077, 0.303380, -0.513226 );
  expectedGraph.add(BetweenFactor<Pose3>(3, 4, Pose3(R34,p34), model));

  Point3 p14 = Point3(-0.577841, 0.628016, -0.543592);
  Rot3 R14 = Rot3::quaternion(0.327419 , -0.125250, -0.534379, 0.769122  );
  expectedGraph.add(BetweenFactor<Pose3>(1, 4, Pose3(R14,p14), model));

  Point3 p30 = Point3(-0.623267, 0.086928, 0.773222);
  Rot3 R30 = Rot3::quaternion(0.083672 ,  0.104639, 0.627755, 0.766795  );
  expectedGraph.add(BetweenFactor<Pose3>(3, 0, Pose3(R30,p30), model));

  EXPECT(assert_equal(expectedGraph,*actualGraph,1e-5));
}
/* ********************************************************************* */
TEST (testNonlinearEqualityConstraint, two_pose ) {
	/*
	 * Determining a ground truth linear system
	 * with two poses seeing one landmark, with each pose
	 * constrained to a particular value
	 */

  NonlinearFactorGraph graph;

  Symbol x1('x',1), x2('x',2);
  Symbol l1('l',1), l2('l',2);
	Point2 pt_x1(1.0, 1.0),
		   pt_x2(5.0, 6.0);
	graph.add(eq2D::UnaryEqualityConstraint(pt_x1, x1));
	graph.add(eq2D::UnaryEqualityConstraint(pt_x2, x2));

	Point2 z1(0.0, 5.0);
	SharedNoiseModel sigma(noiseModel::Isotropic::Sigma(2, 0.1));
	graph.add(simulated2D::Measurement(z1, sigma, x1,l1));

	Point2 z2(-4.0, 0.0);
	graph.add(simulated2D::Measurement(z2, sigma, x2,l2));

	graph.add(eq2D::PointEqualityConstraint(l1, l2));

	Values initialEstimate;
	initialEstimate.insert(x1, pt_x1);
	initialEstimate.insert(x2, Point2());
	initialEstimate.insert(l1, Point2(1.0, 6.0)); // ground truth
	initialEstimate.insert(l2, Point2(-4.0, 0.0)); // starting with a separate reference frame

	Values actual = LevenbergMarquardtOptimizer(graph, initialEstimate).optimize();

	Values expected;
	expected.insert(x1, pt_x1);
	expected.insert(l1, Point2(1.0, 6.0));
	expected.insert(l2, Point2(1.0, 6.0));
	expected.insert(x2, Point2(5.0, 6.0));
	CHECK(assert_equal(expected, actual, 1e-5));
}
/* ************************************************************************* */
TEST( NonlinearOptimizer, Factorization )
{
	Values config;
	config.insert(X(1), Pose2(0.,0.,0.));
	config.insert(X(2), Pose2(1.5,0.,0.));

	NonlinearFactorGraph graph;
	graph.add(PriorFactor<Pose2>(X(1), Pose2(0.,0.,0.), noiseModel::Isotropic::Sigma(3, 1e-10)));
	graph.add(BetweenFactor<Pose2>(X(1),X(2), Pose2(1.,0.,0.), noiseModel::Isotropic::Sigma(3, 1)));

	Ordering ordering;
	ordering.push_back(X(1));
	ordering.push_back(X(2));

	LevenbergMarquardtOptimizer optimizer(graph, config, ordering);
	optimizer.iterate();

	Values expected;
	expected.insert(X(1), Pose2(0.,0.,0.));
	expected.insert(X(2), Pose2(1.,0.,0.));
	CHECK(assert_equal(expected, optimizer.values(), 1e-5));
}
Esempio n. 21
0
//*************************************************************************
TEST (RotateFactor, minimization) {
  // Let's try to recover the correct iRc by minimizing
  NonlinearFactorGraph graph;
  Model model = noiseModel::Isotropic::Sigma(3, 0.01);
  graph.add(RotateFactor(1, i1Ri2, c1Zc2, model));
  graph.add(RotateFactor(1, i2Ri3, c2Zc3, model));
  graph.add(RotateFactor(1, i3Ri4, c3Zc4, model));

  // Check error at ground truth
  Values truth;
  truth.insert(1, iRc);
  EXPECT_DOUBLES_EQUAL(0, graph.error(truth), 1e-8);

  // Check error at initial estimate
  Values initial;
  double degree = M_PI / 180;
  Rot3 initialE = iRc.retract(degree * (Vector(3) << 20, -20, 20));
  initial.insert(1, initialE);

#if defined(GTSAM_ROT3_EXPMAP) || defined(GTSAM_USE_QUATERNIONS)
  EXPECT_DOUBLES_EQUAL(3545.40, graph.error(initial), 1);
#else
  EXPECT_DOUBLES_EQUAL(3349, graph.error(initial), 1);
#endif

  // Optimize
  LevenbergMarquardtParams parameters;
  //parameters.setVerbosity("ERROR");
  LevenbergMarquardtOptimizer optimizer(graph, initial, parameters);
  Values result = optimizer.optimize();

  // Check result
  Rot3 actual = result.at<Rot3>(1);
  EXPECT(assert_equal(iRc, actual,1e-1));

  // Check error at result
  EXPECT_DOUBLES_EQUAL(0, graph.error(result), 1e-4);
}
Esempio n. 22
0
/* ************************************************************************* */
TEST( inference, marginals2)
{
  NonlinearFactorGraph fg;
  SharedDiagonal poseModel(noiseModel::Isotropic::Sigma(3, 0.1));
  SharedDiagonal pointModel(noiseModel::Isotropic::Sigma(2, 0.1));

  fg.add(PriorFactor<Pose2>(X(0), Pose2(), poseModel));
  fg.add(BetweenFactor<Pose2>(X(0), X(1), Pose2(1.0,0.0,0.0), poseModel));
  fg.add(BetweenFactor<Pose2>(X(1), X(2), Pose2(1.0,0.0,0.0), poseModel));
  fg.add(BearingRangeFactor<Pose2, Point2>(X(0), L(0), Rot2(), 1.0, pointModel));
  fg.add(BearingRangeFactor<Pose2, Point2>(X(1), L(0), Rot2(), 1.0, pointModel));
  fg.add(BearingRangeFactor<Pose2, Point2>(X(2), L(0), Rot2(), 1.0, pointModel));

  Values init;
  init.insert(X(0), Pose2(0.0,0.0,0.0));
  init.insert(X(1), Pose2(1.0,0.0,0.0));
  init.insert(X(2), Pose2(2.0,0.0,0.0));
  init.insert(L(0), Point2(1.0,1.0));

  Ordering ordering(*fg.orderingCOLAMD(init));
  FactorGraph<GaussianFactor>::shared_ptr gfg(fg.linearize(init, ordering));
  GaussianMultifrontalSolver solver(*gfg);
  solver.marginalFactor(ordering[L(0)]);
}
//*************************************************************************
TEST (EssentialMatrixFactor, minimization) {
    // Here we want to optimize directly on essential matrix constraints
    // Yi Ma's algorithm (Ma01ijcv) is a bit cumbersome to implement,
    // but GTSAM does the equivalent anyway, provided we give the right
    // factors. In this case, the factors are the constraints.

    // We start with a factor graph and add constraints to it
    // Noise sigma is 1cm, assuming metric measurements
    NonlinearFactorGraph graph;
    for (size_t i = 0; i < 5; i++)
        graph.add(EssentialMatrixFactor(1, pA(i), pB(i), model1));

    // Check error at ground truth
    Values truth;
    truth.insert(1, trueE);
    EXPECT_DOUBLES_EQUAL(0, graph.error(truth), 1e-8);

    // Check error at initial estimate
    Values initial;
    EssentialMatrix initialE = trueE.retract(
                                   (Vector(5) << 0.1, -0.1, 0.1, 0.1, -0.1).finished());
    initial.insert(1, initialE);
#if defined(GTSAM_ROT3_EXPMAP) || defined(GTSAM_USE_QUATERNIONS)
    EXPECT_DOUBLES_EQUAL(643.26, graph.error(initial), 1e-2);
#else
    EXPECT_DOUBLES_EQUAL(639.84, graph.error(initial), 1e-2);
#endif

    // Optimize
    LevenbergMarquardtParams parameters;
    LevenbergMarquardtOptimizer optimizer(graph, initial, parameters);
    Values result = optimizer.optimize();

    // Check result
    EssentialMatrix actual = result.at<EssentialMatrix>(1);
    EXPECT(assert_equal(trueE, actual, 1e-1));

    // Check error at result
    EXPECT_DOUBLES_EQUAL(0, graph.error(result), 1e-4);

    // Check errors individually
    for (size_t i = 0; i < 5; i++)
        EXPECT_DOUBLES_EQUAL(0, actual.error(vA(i), vB(i)), 1e-6);

}
Esempio n. 24
0
/* ************************************************************************* */
TEST( dataSet, readG2o)
{
  const string g2oFile = findExampleDataFile("pose2example");
  NonlinearFactorGraph::shared_ptr actualGraph;
  Values::shared_ptr actualValues;
  boost::tie(actualGraph, actualValues) = readG2o(g2oFile);

  Values expectedValues;
  expectedValues.insert(0, Pose2(0.000000, 0.000000, 0.000000));
  expectedValues.insert(1, Pose2(1.030390, 0.011350, -0.081596));
  expectedValues.insert(2, Pose2(2.036137, -0.129733, -0.301887));
  expectedValues.insert(3, Pose2(3.015097, -0.442395, -0.345514));
  expectedValues.insert(4, Pose2(3.343949, 0.506678, 1.214715));
  expectedValues.insert(5, Pose2(3.684491, 1.464049, 1.183785));
  expectedValues.insert(6, Pose2(4.064626, 2.414783, 1.176333));
  expectedValues.insert(7, Pose2(4.429778, 3.300180, 1.259169));
  expectedValues.insert(8, Pose2(4.128877, 2.321481, -1.825391));
  expectedValues.insert(9, Pose2(3.884653, 1.327509, -1.953016));
  expectedValues.insert(10, Pose2(3.531067, 0.388263, -2.148934));
  EXPECT(assert_equal(expectedValues,*actualValues,1e-5));

  noiseModel::Diagonal::shared_ptr model = noiseModel::Diagonal::Precisions((Vector(3) << 44.721360, 44.721360, 30.901699));
  NonlinearFactorGraph expectedGraph;
  expectedGraph.add(BetweenFactor<Pose2>(0, 1, Pose2(1.030390, 0.011350, -0.081596), model));
  expectedGraph.add(BetweenFactor<Pose2>(1, 2, Pose2(1.013900, -0.058639, -0.220291), model));
  expectedGraph.add(BetweenFactor<Pose2>(2, 3, Pose2(1.027650, -0.007456, -0.043627), model));
  expectedGraph.add(BetweenFactor<Pose2>(3, 4, Pose2(-0.012016, 1.004360, 1.560229), model));
  expectedGraph.add(BetweenFactor<Pose2>(4, 5, Pose2(1.016030, 0.014565, -0.030930), model));
  expectedGraph.add(BetweenFactor<Pose2>(5, 6, Pose2(1.023890, 0.006808, -0.007452), model));
  expectedGraph.add(BetweenFactor<Pose2>(6, 7, Pose2(0.957734, 0.003159, 0.082836), model));
  expectedGraph.add(BetweenFactor<Pose2>(7, 8, Pose2(-1.023820, -0.013668, -3.084560), model));
  expectedGraph.add(BetweenFactor<Pose2>(8, 9, Pose2(1.023440, 0.013984, -0.127624), model));
  expectedGraph.add(BetweenFactor<Pose2>(9,10, Pose2(1.003350, 0.022250, -0.195918), model));
  expectedGraph.add(BetweenFactor<Pose2>(5, 9, Pose2(0.033943, 0.032439, 3.073637), model));
  expectedGraph.add(BetweenFactor<Pose2>(3,10, Pose2(0.044020, 0.988477, -1.553511), model));
  EXPECT(assert_equal(expectedGraph,*actualGraph,1e-5));
}
int main(const int argc, const char *argv[]) {

  // Read graph from file
  string g2oFile;
  if (argc < 2)
    g2oFile = findExampleDataFile("pose3example.txt");
  else
    g2oFile = argv[1];

  NonlinearFactorGraph::shared_ptr graph;
  Values::shared_ptr initial;
  bool is3D = true;
  boost::tie(graph, initial) = readG2o(g2oFile, is3D);

  // Add prior on the first key
  NonlinearFactorGraph graphWithPrior = *graph;
  noiseModel::Diagonal::shared_ptr priorModel = //
      noiseModel::Diagonal::Variances((Vector(6) << 1e-6, 1e-6, 1e-6, 1e-4, 1e-4, 1e-4));
  Key firstKey = 0;
  BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, *initial) {
    std::cout << "Adding prior to g2o file " << std::endl;
    firstKey = key_value.key;
    graphWithPrior.add(PriorFactor<Pose3>(firstKey, Pose3(), priorModel));
    break;
  }

  std::cout << "Initializing Pose3 - Riemannian gradient" << std::endl;
  bool useGradient = true;
  Values initialization = InitializePose3::initialize(graphWithPrior, *initial, useGradient);
  std::cout << "done!" << std::endl;

  std::cout << "initial error=" <<graph->error(*initial)<< std::endl;
  std::cout << "initialization error=" <<graph->error(initialization)<< std::endl;

  if (argc < 3) {
    initialization.print("initialization");
  } else {
    const string outputFile = argv[2];
    std::cout << "Writing results to file: " << outputFile  << std::endl;
    writeG2o(*graph, initialization, outputFile);
    std::cout << "done! " << std::endl;
  }
  return 0;
}
//*************************************************************************
TEST (EssentialMatrixFactor, extraMinimization) {
    // Additional test with camera moving in positive X direction

    NonlinearFactorGraph graph;
    for (size_t i = 0; i < 5; i++)
        graph.add(EssentialMatrixFactor(1, pA(i), pB(i), model1, K));

    // Check error at ground truth
    Values truth;
    truth.insert(1, trueE);
    EXPECT_DOUBLES_EQUAL(0, graph.error(truth), 1e-8);

    // Check error at initial estimate
    Values initial;
    EssentialMatrix initialE = trueE.retract(
                                   (Vector(5) << 0.1, -0.1, 0.1, 0.1, -0.1).finished());
    initial.insert(1, initialE);

#if defined(GTSAM_ROT3_EXPMAP) || defined(GTSAM_USE_QUATERNIONS)
    EXPECT_DOUBLES_EQUAL(643.26, graph.error(initial), 1e-2);
#else
    EXPECT_DOUBLES_EQUAL(639.84, graph.error(initial), 1e-2);
#endif

    // Optimize
    LevenbergMarquardtParams parameters;
    LevenbergMarquardtOptimizer optimizer(graph, initial, parameters);
    Values result = optimizer.optimize();

    // Check result
    EssentialMatrix actual = result.at<EssentialMatrix>(1);
    EXPECT(assert_equal(trueE, actual, 1e-1));

    // Check error at result
    EXPECT_DOUBLES_EQUAL(0, graph.error(result), 1e-4);

    // Check errors individually
    for (size_t i = 0; i < 5; i++)
        EXPECT_DOUBLES_EQUAL(0, actual.error(vA(i), vB(i)), 1e-6);

}
Esempio n. 27
0
/* ************************************************************************* */
TEST( dataSet, readG2o3DNonDiagonalNoise)
{
  const string g2oFile = findExampleDataFile("pose3example-offdiagonal.txt");
  NonlinearFactorGraph::shared_ptr actualGraph;
  Values::shared_ptr actualValues;
  bool is3D = true;
  boost::tie(actualGraph, actualValues) = readG2o(g2oFile, is3D);

  Values expectedValues;
  Rot3 R0 = Rot3::quaternion(1.000000, 0.000000, 0.000000, 0.000000 );
  Point3 p0 = Point3(0.000000, 0.000000, 0.000000);
  expectedValues.insert(0, Pose3(R0, p0));

  Rot3 R1 = Rot3::quaternion(0.854230, 0.190253, 0.283162, -0.392318 );
  Point3 p1 = Point3(1.001367, 0.015390, 0.004948);
  expectedValues.insert(1, Pose3(R1, p1));

  EXPECT(assert_equal(expectedValues,*actualValues,1e-5));

  Matrix Info = Matrix(6,6);
  for (int i = 0; i < 6; i++){
    for (int j = i; j < 6; j++){
      if(i==j)
        Info(i, j) = 10000;
      else{
        Info(i, j) = i+1; // arbitrary nonzero number
        Info(j, i) = i+1;
      }
    }
  }
  noiseModel::Gaussian::shared_ptr model = noiseModel::Gaussian::Covariance(Info.inverse());
  NonlinearFactorGraph expectedGraph;
  Point3 p01 = Point3(1.001367, 0.015390, 0.004948);
  Rot3 R01 = Rot3::quaternion(0.854230, 0.190253, 0.283162, -0.392318 );
  expectedGraph.add(BetweenFactor<Pose3>(0, 1, Pose3(R01,p01), model));

  EXPECT(assert_equal(expectedGraph,*actualGraph,1e-2));
}
/* ************************************************************************* */
int main(int argc, char* argv[]) {

  // Define the camera calibration parameters
  Cal3_S2::shared_ptr K(new Cal3_S2(50.0, 50.0, 0.0, 50.0, 50.0));

  // Define the camera observation noise model
  noiseModel::Isotropic::shared_ptr noise = //
      noiseModel::Isotropic::Sigma(2, 1.0); // one pixel in u and v

  // Create the set of ground-truth landmarks
  vector<Point3> points = createPoints();

  // Create the set of ground-truth poses
  vector<Pose3> poses = createPoses();

  // Create a NonlinearISAM object which will relinearize and reorder the variables
  // every "relinearizeInterval" updates
  int relinearizeInterval = 3;
  NonlinearISAM isam(relinearizeInterval);

  // Create a Factor Graph and Values to hold the new data
  NonlinearFactorGraph graph;
  Values initialEstimate;

  // Loop over the different poses, adding the observations to iSAM incrementally
  for (size_t i = 0; i < poses.size(); ++i) {

    // Add factors for each landmark observation
    for (size_t j = 0; j < points.size(); ++j) {
      // Create ground truth measurement
      SimpleCamera camera(poses[i], *K);
      Point2 measurement = camera.project(points[j]);
      // Add measurement
      graph.add(
          GenericProjectionFactor<Pose3, Point3, Cal3_S2>(measurement, noise,
              Symbol('x', i), Symbol('l', j), K));
    }

    // Intentionally initialize the variables off from the ground truth
    Pose3 noise(Rot3::Rodrigues(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20));
    Pose3 initial_xi = poses[i].compose(noise);

    // Add an initial guess for the current pose
    initialEstimate.insert(Symbol('x', i), initial_xi);

    // If this is the first iteration, add a prior on the first pose to set the coordinate frame
    // and a prior on the first landmark to set the scale
    // Also, as iSAM solves incrementally, we must wait until each is observed at least twice before
    // adding it to iSAM.
    if (i == 0) {
      // Add a prior on pose x0, with 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
      noiseModel::Diagonal::shared_ptr poseNoise = noiseModel::Diagonal::Sigmas(
          (Vector(6) << Vector3::Constant(0.3), Vector3::Constant(0.1)).finished());
      graph.add(PriorFactor<Pose3>(Symbol('x', 0), poses[0], poseNoise));

      // Add a prior on landmark l0
      noiseModel::Isotropic::shared_ptr pointNoise =
          noiseModel::Isotropic::Sigma(3, 0.1);
      graph.add(PriorFactor<Point3>(Symbol('l', 0), points[0], pointNoise));

      // Add initial guesses to all observed landmarks
      Point3 noise(-0.25, 0.20, 0.15);
      for (size_t j = 0; j < points.size(); ++j) {
        // Intentionally initialize the variables off from the ground truth
        Point3 initial_lj = points[j].compose(noise);
        initialEstimate.insert(Symbol('l', j), initial_lj);
      }

    } else {
      // Update iSAM with the new factors
      isam.update(graph, initialEstimate);
      Values currentEstimate = isam.estimate();
      cout << "****************************************************" << endl;
      cout << "Frame " << i << ": " << endl;
      currentEstimate.print("Current estimate: ");

      // Clear the factor graph and values for the next iteration
      graph.resize(0);
      initialEstimate.clear();
    }
  }

  return 0;
}
Esempio n. 29
0
int main() {

	/**
	 *    Step 1: Create a factor to express a unary constraint
	 * The "prior" in this case is the measurement from a sensor,
	 * with a model of the noise on the measurement.
	 *
	 * The "Key" created here is a label used to associate parts of the
	 * state (stored in "RotValues") with particular factors.  They require
	 * an index to allow for lookup, and should be unique.
	 *
	 * In general, creating a factor requires:
	 *  - A key or set of keys labeling the variables that are acted upon
	 *  - A measurement value
	 *  - A measurement model with the correct dimensionality for the factor
	 */
	Rot2 prior = Rot2::fromAngle(30 * degree);
	prior.print("goal angle");
	noiseModel::Isotropic::shared_ptr model = noiseModel::Isotropic::Sigma(1, 1 * degree);
	Symbol key('x',1);
	PriorFactor<Rot2> factor(key, prior, model);

	/**
	 *    Step 2: Create a graph container and add the factor to it
	 * Before optimizing, all factors need to be added to a Graph container,
	 * which provides the necessary top-level functionality for defining a
	 * system of constraints.
	 *
	 * In this case, there is only one factor, but in a practical scenario,
	 * many more factors would be added.
	 */
	NonlinearFactorGraph graph;
	graph.add(factor);
	graph.print("full graph");

	/**
	 *    Step 3: Create an initial estimate
	 * An initial estimate of the solution for the system is necessary to
	 * start optimization.  This system state is the "RotValues" structure,
	 * which is similar in structure to a STL map, in that it maps
	 * keys (the label created in step 1) to specific values.
	 *
	 * The initial estimate provided to optimization will be used as
	 * a linearization point for optimization, so it is important that
	 * all of the variables in the graph have a corresponding value in
	 * this structure.
	 *
	 * The interface to all RotValues types is the same, it only depends
	 * on the type of key used to find the appropriate value map if there
	 * are multiple types of variables.
	 */
	Values initial;
	initial.insert(key, Rot2::fromAngle(20 * degree));
	initial.print("initial estimate");

	/**
	 *    Step 4: Optimize
	 * After formulating the problem with a graph of constraints
	 * and an initial estimate, executing optimization is as simple
	 * as calling a general optimization function with the graph and
	 * initial estimate.  This will yield a new RotValues structure
	 * with the final state of the optimization.
	 */
	Values result = LevenbergMarquardtOptimizer(graph, initial).optimize();
	result.print("final result");

	return 0;
}
int main(const int argc, const char *argv[]) {

  // Read graph from file
  string g2oFile;
  if (argc < 2)
    g2oFile = findExampleDataFile("pose3example.txt");
  else
    g2oFile = argv[1];

  NonlinearFactorGraph::shared_ptr graph;
  Values::shared_ptr initial;
  bool is3D = true;
  boost::tie(graph, initial) = readG2o(g2oFile, is3D);

  bool add = false;
  Key firstKey = 8646911284551352320;

  std::cout << "Using reference key: " <<  firstKey  << std::endl;
  if(add)
    std::cout << "adding key "  << std::endl;
  else
    std::cout << "subtracting key "  << std::endl;


  if (argc < 3) {
    std::cout << "Please provide output file to write "   << std::endl;
  } else {
    const string inputFileRewritten = argv[2];
    std::cout << "Rewriting input to file: " << inputFileRewritten << std::endl;
    // Additional: rewrite input with simplified keys 0,1,...
    Values simpleInitial;
    BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, *initial) {
      Key key;
      if(add)
        key = key_value.key + firstKey;
      else
        key = key_value.key - firstKey;

      simpleInitial.insert(key, initial->at(key_value.key));
    }
    NonlinearFactorGraph simpleGraph;
    BOOST_FOREACH(const boost::shared_ptr<NonlinearFactor>& factor, *graph) {
      boost::shared_ptr<BetweenFactor<Pose3> > pose3Between =
          boost::dynamic_pointer_cast<BetweenFactor<Pose3> >(factor);
      if (pose3Between){
        Key key1, key2;
        if(add){
          key1 = pose3Between->key1() + firstKey;
          key2 = pose3Between->key2() + firstKey;
        }else{
          key1 = pose3Between->key1() - firstKey;
          key2 = pose3Between->key2() - firstKey;
        }
        NonlinearFactor::shared_ptr simpleFactor(
            new BetweenFactor<Pose3>(key1, key2, pose3Between->measured(), pose3Between->get_noiseModel()));
        simpleGraph.add(simpleFactor);
      }
    }
    writeG2o(simpleGraph, simpleInitial, inputFileRewritten);
  }
  return 0;
}