void GridPrintingBase::update(){ if( getStep()==0 || getStride()==0 ) return ; OFile ofile; ofile.link(*this); ofile.setBackupString("analysis"); ofile.open( filename ); printGrid( ofile ); ofile.close(); }
void CoeffsBase::writeIterationCounterAndTimeToFile(OFile& ofile) const { if(time_md>=0.0) { ofile.fmtField("%f"); ofile.addConstantField(field_time_).printField(field_time_,time_md); ofile.fmtField(); } ofile.addConstantField(field_iteration_).printField(field_iteration_,(int) iteration_opt); }
void CoeffsBase::writeCoeffsInfoToFile(OFile& ofile) const { ofile.addConstantField(field_type_).printField(field_type_,getTypeStr()); ofile.addConstantField(field_ndimensions_).printField(field_ndimensions_,(int) numberOfDimensions()); ofile.addConstantField(field_ncoeffs_total_).printField(field_ncoeffs_total_,(int) numberOfCoeffs()); for(unsigned int k=0; k<numberOfDimensions(); k++) { ofile.addConstantField(field_shape_prefix_+getDimensionLabel(k)); ofile.printField(field_shape_prefix_+getDimensionLabel(k),(int) shapeOfIndices(k)); } }
void GridPrintingBase::runFinalJobs() { if( !output_for_all_replicas ) { bool found=false; unsigned myrep=plumed.multi_sim_comm.Get_rank(); for(unsigned i=0; i<preps.size(); ++i) { if( myrep==preps[i] ) { found=true; break; } } if( !found ) return; } if( getStride()>0 ) return; OFile ofile; ofile.link(*this); ofile.open( filename ); printGrid( ofile ); }
void ReferenceAtoms::printAtoms( OFile& ofile, const double& lunits ) const { plumed_assert( indices.size()==reference_atoms.size() && align.size()==reference_atoms.size() && displace.size()==reference_atoms.size() ); for(unsigned i=0;i<reference_atoms.size();++i){ ofile.printf("ATOM %4d X RES %4u %8.3f%8.3f%8.3f%6.2f%6.2f\n", indices[i].serial(), i, lunits*reference_atoms[i][0], lunits*reference_atoms[i][1], lunits*reference_atoms[i][2], align[i], displace[i] ); } }
void PointWiseMapping::print( const std::string& method, const double & time, OFile& afile, const std::string& fmt ){ std::string descr2, descr="DESCRIPTION: results from %s analysis performed at time " + fmt +"\n"; afile.printf(descr.c_str(), method.c_str(), time ); if(fmt.find("-")!=std::string::npos){ descr="REMARK WEIGHT=" + fmt + " %s=" + fmt + " "; descr2="%s=" + fmt; } else { // This ensures numbers are left justified (i.e. next to the equals sign std::size_t psign=fmt.find("%"); plumed_assert( psign!=std::string::npos ); descr="REMARK WEIGHT=%-" + fmt.substr(psign+1) + " %s=%-" + fmt.substr(psign+1) + " "; descr2="%s=%-" + fmt.substr(psign+1); } for(unsigned i=0;i<frames.size();++i){ afile.printf(descr.c_str(), frames[i]->getWeight(), property[0].c_str(), low_dim[i][0] ); for(unsigned j=1;j<property.size();++j) afile.printf(descr2.c_str(), property[j].c_str(), low_dim[i][j]); afile.printf("\n"); frames[i]->print( afile, fmt ); } }
void MetaD::writeGaussian(const Gaussian& hill, OFile&file){ unsigned ncv=getNumberOfArguments(); file.printField("time",getTimeStep()*getStep()); for(unsigned i=0;i<ncv;++i){ file.printField(getPntrToArgument(i),hill.center[i]); } if(hill.multivariate){ hillsOfile_.printField("multivariate","true"); Matrix<double> mymatrix(ncv,ncv); unsigned k=0; for(unsigned i=0;i<ncv;i++){ for(unsigned j=i;j<ncv;j++){ mymatrix(i,j)=mymatrix(j,i)=hill.sigma[k]; // recompose the full inverse matrix k++; } } // invert it Matrix<double> invmatrix(ncv,ncv); Invert(mymatrix,invmatrix); // enforce symmetry for(unsigned i=0;i<ncv;i++){ for(unsigned j=i;j<ncv;j++){ invmatrix(i,j)=invmatrix(j,i); } } // do cholesky so to have a "sigma like" number Matrix<double> lower(ncv,ncv); cholesky(invmatrix,lower); // now this , in band form , is similar to the sigmas // loop in band form for (unsigned i=0;i<ncv;i++){ for (unsigned j=0;j<ncv-i;j++){ file.printField("sigma_"+getPntrToArgument(j+i)->getName()+"_"+getPntrToArgument(j)->getName(),lower(j+i,j)); } } } else { hillsOfile_.printField("multivariate","false"); for(unsigned i=0;i<ncv;++i) file.printField("sigma_"+getPntrToArgument(i)->getName(),hill.sigma[i]); } double height=hill.height; if(welltemp_){height*=biasf_/(biasf_-1.0);} file.printField("height",height).printField("biasf",biasf_); if(mw_n_>1) file.printField("clock",int(time(0))); file.printField(); }
void MaxEnt::WriteLagrangians(vector<double> &lagmult,OFile &file) { if(printFirstStep) { unsigned ncv=getNumberOfArguments(); file.printField("time",getTimeStep()*getStep()); for(unsigned i=0; i<ncv; ++i) file.printField(getPntrToArgument(i)->getName()+"_coupling",lagmult[i]); file.printField(); } else { if(!isFirstStep) { unsigned ncv=getNumberOfArguments(); file.printField("time",getTimeStep()*getStep()); for(unsigned i=0; i<ncv; ++i) file.printField(getPntrToArgument(i)->getName()+"_coupling",lagmult[i]); file.printField(); } } }
FuncSumHills::FuncSumHills(const ActionOptions&ao): Action(ao), Function(ao), initstride(-1), iscltool(false), integratehills(false), integratehisto(false), parallelread(false), negativebias(false), nohistory(false), beta(-1.), fmt("%14.9f") { // format parse("FMT",fmt); log<<" Output format is "<<fmt<<"\n"; // here read // Grid Stuff vector<std::string> gmin; parseVector("GRID_MIN",gmin); if(gmin.size()!=getNumberOfArguments() && gmin.size()!=0) error("not enough values for GRID_MIN"); plumed_massert(gmin.size()==getNumberOfArguments() || gmin.size()==0,"need GRID_MIN argument for this") ; vector<std::string> gmax; parseVector("GRID_MAX",gmax); if(gmax.size()!=getNumberOfArguments() && gmax.size()!=0) error("not enough values for GRID_MAX"); plumed_massert(gmax.size()==getNumberOfArguments() || gmax.size()==0,"need GRID_MAX argument for this") ; vector<unsigned> gbin; parseVector("GRID_BIN",gbin); plumed_massert(gbin.size()==getNumberOfArguments() || gbin.size()==0,"need GRID_BIN argument for this"); if(gbin.size()!=getNumberOfArguments() && gbin.size()!=0) error("not enough values for GRID_BIN"); //plumed_assert(getNumberOfArguments()==gbin.size()); // hills file: parseVector("HILLSFILES",hillsFiles); if(hillsFiles.size()==0){ integratehills=false; // default behaviour }else{ integratehills=true; for(unsigned i=0;i<hillsFiles.size();i++) log<<" hillsfile : "<<hillsFiles[i]<<"\n"; } // histo file: parseVector("HISTOFILES",histoFiles); if(histoFiles.size()==0){ integratehisto=false; }else{ integratehisto=true; for(unsigned i=0;i<histoFiles.size();i++) log<<" histofile : "<<histoFiles[i]<<"\n"; } vector<double> histoSigma; if(integratehisto){ parseVector("HISTOSIGMA",histoSigma); plumed_massert(histoSigma.size()==getNumberOfArguments()," The number of sigmas must be the same of the number of arguments "); for(unsigned i=0;i<histoSigma.size();i++) log<<" histosigma : "<<histoSigma[i]<<"\n"; } // add some automatic hills width: not in case stride is defined // since when you start from zero the automatic size will be zero! if(gmin.size()==0 || gmax.size()==0){ log<<" \n"; log<<" No boundaries defined: need to do a prescreening of hills \n"; std::vector<Value*> tmpvalues; for(unsigned i=0;i<getNumberOfArguments();i++)tmpvalues.push_back( getPntrToArgument(i) ); if(integratehills) { FilesHandler *hillsHandler; hillsHandler=new FilesHandler(hillsFiles,parallelread,*this, log); vector<double> vmin,vmax; vector<unsigned> vbin; hillsHandler->getMinMaxBin(tmpvalues,comm,vmin,vmax,vbin); log<<" found boundaries from hillsfile: \n"; gmin.resize(vmin.size()); gmax.resize(vmax.size()); if(gbin.size()==0){ gbin=vbin; }else{ log<<" found nbins in input, this overrides the automatic choice \n"; } for(unsigned i=0;i<getNumberOfArguments();i++){ Tools::convert(vmin[i],gmin[i]); Tools::convert(vmax[i],gmax[i]); log<<" variable "<< getPntrToArgument(i)->getName()<<" min: "<<gmin[i]<<" max: "<<gmax[i]<<" nbin: "<<gbin[i]<<"\n"; } } // if at this stage bins are not there then do it with histo if(gmin.size()==0){ FilesHandler *histoHandler; histoHandler=new FilesHandler(histoFiles,parallelread,*this, log); vector<double> vmin,vmax; vector<unsigned> vbin; histoHandler->getMinMaxBin(tmpvalues,comm,vmin,vmax,vbin,histoSigma); log<<" found boundaries from histofile: \n"; gmin.resize(vmin.size()); gmax.resize(vmax.size()); if(gbin.size()==0){ gbin=vbin; }else{ log<<" found nbins in input, this overrides the automatic choice \n"; } for(unsigned i=0;i<getNumberOfArguments();i++){ Tools::convert(vmin[i],gmin[i]); Tools::convert(vmax[i],gmax[i]); log<<" variable "<< getPntrToArgument(i)->getName()<<" min: "<<gmin[i]<<" max: "<<gmax[i]<<" nbin: "<<gbin[i]<<"\n"; } } log<<" done!\n"; log<<" \n"; } // needs a projection? proj.clear(); parseVector("PROJ",proj); plumed_massert(proj.size()<getNumberOfArguments()," The number of projection must be less than the full list of arguments "); if( proj.size() != 0 || integratehisto==true ) { parse("KT",beta); for(unsigned i=0;i<proj.size();i++) log<<" projection "<<i<<" : "<<proj[i]<<"\n"; plumed_massert(beta>0.,"if you make a projection or a histogram correction then you need KT flag!"); beta=1./beta; log<<" beta is "<<beta<<"\n"; } // is a cltool: then you start and then die parseFlag("ISCLTOOL",iscltool); // parseFlag("NEGBIAS",negativebias); // parseFlag("PARALLELREAD",parallelread); // stride parse("INITSTRIDE",initstride); // output suffix or names if(initstride<0){ log<<" Doing only one integration: no stride \n"; outhills="fes.dat";outhisto="correction.dat";} else{outhills="fes_";outhisto="correction_"; log<<" Doing integration slices every "<<initstride<<" kernels\n"; parseFlag("NOHISTORY",nohistory); if(nohistory)log<<" nohistory: each stride block has no memory of the previous block\n"; } //what might it be this? // here start // want something right now?? do it and return // your argument is a set of cvs // then you need: a hills / a colvar-like file (to do a histogram) // create a bias representation for this if(iscltool){ std::vector<Value*> tmpvalues; for(unsigned i=0;i<getNumberOfArguments();i++){ // allocate a new value from the old one: no deriv here tmpvalues.push_back( getPntrToArgument(i) ); } // check if the files exists if(integratehills){ checkFilesAreExisting(hillsFiles); biasrep=new BiasRepresentation(tmpvalues,comm, gmin, gmax, gbin); if(negativebias){ biasrep->setRescaledToBias(true); log<<" required the -bias instead of the free energy \n"; if(initstride<0){outhills="negativebias.dat";} else{outhills="negativebias_";} } } parse("OUTHILLS",outhills); parse("OUTHISTO",outhisto); if(integratehills)log<<" output file for fes/bias is : "<<outhills<<"\n"; if(integratehisto)log<<" output file for correction is : "<<outhisto<<"\n"; checkRead(); log<<"\n"; log<<" Now calculating...\n"; log<<"\n"; if(integratehisto){ checkFilesAreExisting(histoFiles); historep=new BiasRepresentation(tmpvalues,comm,gmin,gmax,gbin,histoSigma); } // decide how to source hills ( serial/parallel ) // here below the input control // say how many hills and it will read them from the // bunch of files provided, will update the representation // of hills (i.e. a list of hills and the associated grid) // decide how to source colvars ( serial parallel ) FilesHandler *hillsHandler; FilesHandler *histoHandler; if(integratehills) hillsHandler=new FilesHandler(hillsFiles,parallelread,*this, log); if(integratehisto) histoHandler=new FilesHandler(histoFiles,parallelread,*this, log); // read a number of hills and put in the bias representation int nfiles=0; bool ibias=integratehills; bool ihisto=integratehisto; while(true){ if( integratehills && ibias ){ if(nohistory){biasrep->clear();log<<" clearing history before reading a new block\n";}; log<<" reading hills: \n"; ibias=hillsHandler->readBunch(biasrep,initstride) ; log<<"\n"; } if( integratehisto && ihisto ){ if(nohistory){historep->clear();log<<" clearing history before reading a new block\n";}; log<<" reading histogram: \n"; ihisto=histoHandler->readBunch(historep,initstride) ; log<<"\n"; } // dump: need to project? if(proj.size()!=0){ if(integratehills){ log<<" Bias: Projecting on subgrid... \n"; BiasWeight *Bw=new BiasWeight(beta); Grid biasGrid=*(biasrep->getGridPtr()); Grid smallGrid=biasGrid.project(proj,Bw); OFile gridfile; gridfile.link(*this); std::ostringstream ostr;ostr<<nfiles; string myout; if(initstride>0){ myout=outhills+ostr.str()+".dat" ;}else{myout=outhills;} log<<" Bias: Writing subgrid on file "<<myout<<" \n"; gridfile.open(myout); smallGrid.setOutputFmt(fmt); smallGrid.writeToFile(gridfile); gridfile.close(); if(!ibias)integratehills=false;// once you get to the final bunch just give up } if(integratehisto){ log<<" Histo: Projecting on subgrid... \n"; ProbWeight *Pw=new ProbWeight(beta); Grid histoGrid=*(historep->getGridPtr()); Grid smallGrid=histoGrid.project(proj,Pw); OFile gridfile; gridfile.link(*this); std::ostringstream ostr;ostr<<nfiles; string myout; if(initstride>0){ myout=outhisto+ostr.str()+".dat" ;}else{myout=outhisto;} log<<" Histo: Writing subgrid on file "<<myout<<" \n"; gridfile.open(myout); smallGrid.setOutputFmt(fmt); smallGrid.writeToFile(gridfile); gridfile.close(); if(!ihisto)integratehisto=false;// once you get to the final bunch just give up } }else{ if(integratehills){ Grid biasGrid=*(biasrep->getGridPtr()); biasGrid.scaleAllValuesAndDerivatives(-1.); OFile gridfile; gridfile.link(*this); std::ostringstream ostr;ostr<<nfiles; string myout; if(initstride>0){ myout=outhills+ostr.str()+".dat" ;}else{myout=outhills;} log<<" Writing full grid on file "<<myout<<" \n"; gridfile.open(myout); biasGrid.setOutputFmt(fmt); biasGrid.writeToFile(gridfile); gridfile.close(); // rescale back prior to accumulate if(!ibias)integratehills=false;// once you get to the final bunch just give up } if(integratehisto){ Grid histoGrid=*(historep->getGridPtr()); histoGrid.applyFunctionAllValuesAndDerivatives(&mylog,&mylogder); histoGrid.scaleAllValuesAndDerivatives(-1./beta); OFile gridfile; gridfile.link(*this); std::ostringstream ostr;ostr<<nfiles; string myout; if(initstride>0){ myout=outhisto+ostr.str()+".dat" ;}else{myout=outhisto;} log<<" Writing full grid on file "<<myout<<" \n"; gridfile.open(myout); histoGrid.setOutputFmt(fmt); histoGrid.writeToFile(gridfile); gridfile.close(); if(!ihisto)integratehisto=false;// once you get to the final bunch just give up } } if ( !ibias && !ihisto) break; //when both are over then just quit nfiles++; } return; } // just an initialization but you need to do something on the fly?: need to connect with a metad run and its grid representation // your argument is a metad run // if the grid does not exist crash and say that you need some data // otherwise just link with it }
FuncSumHills::FuncSumHills(const ActionOptions&ao): Action(ao), Function(ao), initstride(-1), iscltool(false), integratehills(false), integratehisto(false), parallelread(false), negativebias(false), nohistory(false), minTOzero(false), doInt(false), lowI_(-1.), uppI_(-1.), beta(-1.), fmt("%14.9f"), biasrep(NULL), historep(NULL) { // format parse("FMT",fmt); log<<" Output format is "<<fmt<<"\n"; // here read // Grid Stuff vector<std::string> gmin; parseVector("GRID_MIN",gmin); if(gmin.size()!=getNumberOfArguments() && gmin.size()!=0) error("not enough values for GRID_MIN"); plumed_massert(gmin.size()==getNumberOfArguments() || gmin.size()==0,"need GRID_MIN argument for this") ; vector<std::string> gmax; parseVector("GRID_MAX",gmax); if(gmax.size()!=getNumberOfArguments() && gmax.size()!=0) error("not enough values for GRID_MAX"); plumed_massert(gmax.size()==getNumberOfArguments() || gmax.size()==0,"need GRID_MAX argument for this") ; vector<unsigned> gbin; vector<double> gspacing; parseVector("GRID_BIN",gbin); plumed_massert(gbin.size()==getNumberOfArguments() || gbin.size()==0,"need GRID_BIN argument for this") ; if(gbin.size()!=getNumberOfArguments() && gbin.size()!=0) error("not enough values for GRID_BIN"); parseVector("GRID_SPACING",gspacing); plumed_massert(gspacing.size()==getNumberOfArguments() || gspacing.size()==0,"need GRID_SPACING argument for this") ; if(gspacing.size()!=getNumberOfArguments() && gspacing.size()!=0) error("not enough values for GRID_SPACING"); if(gspacing.size()!=0 && gbin.size()==0){ log<<" The number of bins will be estimated from GRID_SPACING\n"; } else if(gspacing.size()!=0 && gbin.size()!=0){ log<<" You specified both GRID_BIN and GRID_SPACING\n"; log<<" The more conservative (highest) number of bins will be used for each variable\n"; } if(gspacing.size()!=0) for(unsigned i=0;i<getNumberOfArguments();i++){ if(gbin.size()==0) gbin.assign(getNumberOfArguments(),1); double a,b; Tools::convert(gmin[i],a); Tools::convert(gmax[i],b); unsigned n=((b-a)/gspacing[i])+1; if(gbin[i]<n) gbin[i]=n; } // Inteval keyword vector<double> tmpI(2); parseVector("INTERVAL",tmpI); if(tmpI.size()!=2&&tmpI.size()!=0) error("both a lower and an upper limits must be provided with INTERVAL"); else if(tmpI.size()==2) { lowI_=tmpI.at(0); uppI_=tmpI.at(1); if(getNumberOfArguments()!=1) error("INTERVAL limits correction works only for monodimensional metadynamics!"); if(uppI_<lowI_) error("The Upper limit must be greater than the Lower limit!"); doInt=true; } if(doInt) log << " Upper and Lower limits boundaries for the bias are activated at " << lowI_ << " - " << uppI_<<"\n"; // hills file: parseVector("HILLSFILES",hillsFiles); if(hillsFiles.size()==0){ integratehills=false; // default behaviour }else{ integratehills=true; for(unsigned i=0;i<hillsFiles.size();i++) log<<" hillsfile : "<<hillsFiles[i]<<"\n"; } // histo file: parseVector("HISTOFILES",histoFiles); if(histoFiles.size()==0){ integratehisto=false; }else{ integratehisto=true; for(unsigned i=0;i<histoFiles.size();i++) log<<" histofile : "<<histoFiles[i]<<"\n"; } vector<double> histoSigma; if(integratehisto){ parseVector("HISTOSIGMA",histoSigma); for(unsigned i=0;i<histoSigma.size();i++) log<<" histosigma : "<<histoSigma[i]<<"\n"; } // needs a projection? proj.clear(); parseVector("PROJ",proj); if(integratehills) { plumed_massert(proj.size()<getNumberOfArguments()," The number of projection must be less than the full list of arguments "); } if(integratehisto) { plumed_massert(proj.size()<=getNumberOfArguments()," The number of projection must be less or equal to the full list of arguments "); } if(integratehisto&&proj.size()==0) { for(unsigned i=0;i<getNumberOfArguments();i++) proj.push_back(getPntrToArgument(i)->getName()); } // add some automatic hills width: not in case stride is defined // since when you start from zero the automatic size will be zero! if(gmin.size()==0 || gmax.size()==0){ log<<" \n"; log<<" No boundaries defined: need to do a prescreening of hills \n"; std::vector<Value*> tmphillsvalues, tmphistovalues; if(integratehills) { for(unsigned i=0;i<getNumberOfArguments();i++)tmphillsvalues.push_back( getPntrToArgument(i) ); } if(integratehisto) { for(unsigned i=0;i<getNumberOfArguments();i++) { std::string ss = getPntrToArgument(i)->getName(); for(unsigned j=0;j<proj.size();j++) { if(proj[j]==ss) tmphistovalues.push_back( getPntrToArgument(i) ); } } } if(integratehills) { FilesHandler *hillsHandler; hillsHandler=new FilesHandler(hillsFiles,parallelread,*this, log); vector<double> vmin,vmax; vector<unsigned> vbin; hillsHandler->getMinMaxBin(tmphillsvalues,comm,vmin,vmax,vbin); log<<" found boundaries from hillsfile: \n"; gmin.resize(vmin.size()); gmax.resize(vmax.size()); if(gbin.size()==0){ gbin=vbin; }else{ log<<" found nbins in input, this overrides the automatic choice \n"; } for(unsigned i=0;i<getNumberOfArguments();i++){ Tools::convert(vmin[i],gmin[i]); Tools::convert(vmax[i],gmax[i]); log<<" variable "<< getPntrToArgument(i)->getName()<<" min: "<<gmin[i]<<" max: "<<gmax[i]<<" nbin: "<<gbin[i]<<"\n"; } delete hillsHandler; } // if at this stage bins are not there then do it with histo if(gmin.size()==0){ FilesHandler *histoHandler; histoHandler=new FilesHandler(histoFiles,parallelread,*this, log); vector<double> vmin,vmax; vector<unsigned> vbin; histoHandler->getMinMaxBin(tmphistovalues,comm,vmin,vmax,vbin,histoSigma); log<<" found boundaries from histofile: \n"; gmin.resize(vmin.size()); gmax.resize(vmax.size()); if(gbin.size()==0){ gbin=vbin; }else{ log<<" found nbins in input, this overrides the automatic choice \n"; } for(unsigned i=0;i<proj.size();i++){ Tools::convert(vmin[i],gmin[i]); Tools::convert(vmax[i],gmax[i]); log<<" variable "<< proj[i] <<" min: "<<gmin[i]<<" max: "<<gmax[i]<<" nbin: "<<gbin[i]<<"\n"; } delete histoHandler; } log<<" done!\n"; log<<" \n"; } if( proj.size() != 0 || integratehisto==true ) { parse("KT",beta); for(unsigned i=0;i<proj.size();i++) log<<" projection "<<i<<" : "<<proj[i]<<"\n"; // this should be only for projection or free energy from histograms plumed_massert(beta>0.,"if you make a projection or a histogram correction then you need KT flag!"); beta=1./beta; log<<" beta is "<<beta<<"\n"; } // is a cltool: then you start and then die parseFlag("ISCLTOOL",iscltool); // parseFlag("NEGBIAS",negativebias); // parseFlag("PARALLELREAD",parallelread); // stride parse("INITSTRIDE",initstride); // output suffix or names if(initstride<0){ log<<" Doing only one integration: no stride \n"; outhills="fes.dat";outhisto="histo.dat";} else{outhills="fes_";outhisto="histo_"; log<<" Doing integration slices every "<<initstride<<" kernels\n"; parseFlag("NOHISTORY",nohistory); if(nohistory)log<<" nohistory: each stride block has no memory of the previous block\n"; } parseFlag("MINTOZERO",minTOzero); if(minTOzero)log<<" mintozero: bias/histogram will be translated to have the minimum value equal to zero\n"; //what might it be this? // here start // want something right now?? do it and return // your argument is a set of cvs // then you need: a hills / a colvar-like file (to do a histogram) // create a bias representation for this if(iscltool){ std::vector<Value*> tmphillsvalues, tmphistovalues; if(integratehills) { for(unsigned i=0;i<getNumberOfArguments();i++){ // allocate a new value from the old one: no deriv here // if we are summing hills then all the arguments are needed tmphillsvalues.push_back( getPntrToArgument(i) ); } } if(integratehisto) { for(unsigned i=0;i<getNumberOfArguments();i++) { std::string ss = getPntrToArgument(i)->getName(); for(unsigned j=0;j<proj.size();j++) { if(proj[j]==ss) tmphistovalues.push_back( getPntrToArgument(i) ); } } } // check if the files exists if(integratehills){ checkFilesAreExisting(hillsFiles); biasrep=new BiasRepresentation(tmphillsvalues,comm, gmin, gmax, gbin, doInt, lowI_, uppI_); if(negativebias){ biasrep->setRescaledToBias(true); log<<" required the -bias instead of the free energy \n"; if(initstride<0){outhills="negativebias.dat";} else{outhills="negativebias_";} } } parse("OUTHILLS",outhills); parse("OUTHISTO",outhisto); if(integratehills)log<<" output file for fes/bias is : "<<outhills<<"\n"; if(integratehisto)log<<" output file for histogram is : "<<outhisto<<"\n"; checkRead(); log<<"\n"; log<<" Now calculating...\n"; log<<"\n"; // here it defines the column to be histogrammed, tmpvalues should be only // the list of the collective variable one want to consider if(integratehisto){ checkFilesAreExisting(histoFiles); historep=new BiasRepresentation(tmphistovalues,comm,gmin,gmax,gbin,histoSigma); } // decide how to source hills ( serial/parallel ) // here below the input control // say how many hills and it will read them from the // bunch of files provided, will update the representation // of hills (i.e. a list of hills and the associated grid) // decide how to source colvars ( serial parallel ) FilesHandler *hillsHandler; FilesHandler *histoHandler; hillsHandler=NULL; histoHandler=NULL; if(integratehills) hillsHandler=new FilesHandler(hillsFiles,parallelread,*this, log); if(integratehisto) histoHandler=new FilesHandler(histoFiles,parallelread,*this, log); // read a number of hills and put in the bias representation int nfiles=0; bool ibias=integratehills; bool ihisto=integratehisto; while(true){ if( integratehills && ibias ){ if(nohistory){biasrep->clear();log<<" clearing history before reading a new block\n";}; log<<" reading hills: \n"; ibias=hillsHandler->readBunch(biasrep,initstride) ; log<<"\n"; } if( integratehisto && ihisto ){ if(nohistory){historep->clear();log<<" clearing history before reading a new block\n";}; log<<" reading histogram: \n"; ihisto=histoHandler->readBunch(historep,initstride) ; log<<"\n"; } // dump: need to project? if(proj.size()!=0){ if(integratehills){ log<<" Bias: Projecting on subgrid... \n"; BiasWeight *Bw=new BiasWeight(beta); Grid biasGrid=*(biasrep->getGridPtr()); Grid smallGrid=biasGrid.project(proj,Bw); OFile gridfile; gridfile.link(*this); std::ostringstream ostr;ostr<<nfiles; string myout; if(initstride>0){ myout=outhills+ostr.str()+".dat" ;}else{myout=outhills;} log<<" Bias: Writing subgrid on file "<<myout<<" \n"; gridfile.open(myout); if(minTOzero) smallGrid.setMinToZero(); smallGrid.setOutputFmt(fmt); smallGrid.writeToFile(gridfile); gridfile.close(); if(!ibias)integratehills=false;// once you get to the final bunch just give up delete Bw; } // this should be removed if(integratehisto){ log<<" Histo: Projecting on subgrid... \n"; Grid histoGrid=*(historep->getGridPtr()); OFile gridfile; gridfile.link(*this); std::ostringstream ostr;ostr<<nfiles; string myout; if(initstride>0){ myout=outhisto+ostr.str()+".dat" ;}else{myout=outhisto;} log<<" Histo: Writing subgrid on file "<<myout<<" \n"; gridfile.open(myout); histoGrid.applyFunctionAllValuesAndDerivatives(&mylog,&mylogder); histoGrid.scaleAllValuesAndDerivatives(-1./beta); if(minTOzero) histoGrid.setMinToZero(); histoGrid.setOutputFmt(fmt); histoGrid.writeToFile(gridfile); gridfile.close(); if(!ihisto)integratehisto=false;// once you get to the final bunch just give up } }else{ if(integratehills){ Grid biasGrid=*(biasrep->getGridPtr()); biasGrid.scaleAllValuesAndDerivatives(-1.); OFile gridfile; gridfile.link(*this); std::ostringstream ostr;ostr<<nfiles; string myout; if(initstride>0){ myout=outhills+ostr.str()+".dat" ;}else{myout=outhills;} log<<" Writing full grid on file "<<myout<<" \n"; gridfile.open(myout); if(minTOzero) biasGrid.setMinToZero(); biasGrid.setOutputFmt(fmt); biasGrid.writeToFile(gridfile); gridfile.close(); // rescale back prior to accumulate if(!ibias)integratehills=false;// once you get to the final bunch just give up } if(integratehisto){ Grid histoGrid=*(historep->getGridPtr()); // do this if you want a free energy from a grid, otherwise do not histoGrid.applyFunctionAllValuesAndDerivatives(&mylog,&mylogder); histoGrid.scaleAllValuesAndDerivatives(-1./beta); OFile gridfile; gridfile.link(*this); std::ostringstream ostr;ostr<<nfiles; string myout; if(initstride>0){ myout=outhisto+ostr.str()+".dat" ;}else{myout=outhisto;} log<<" Writing full grid on file "<<myout<<" \n"; gridfile.open(myout); // also this is usefull only for free energy if(minTOzero) histoGrid.setMinToZero(); histoGrid.setOutputFmt(fmt); histoGrid.writeToFile(gridfile); gridfile.close(); if(!ihisto)integratehisto=false; // once you get to the final bunch just give up } } if ( !ibias && !ihisto) break; //when both are over then just quit nfiles++; } if(hillsHandler) delete hillsHandler; if(histoHandler) delete histoHandler; return; } // just an initialization but you need to do something on the fly?: need to connect with a metad run and its grid representation // your argument is a metad run // if the grid does not exist crash and say that you need some data // otherwise just link with it }
void GridPrintingBase::runFinalJobs(){ if( getStride()>0 ) return; OFile ofile; ofile.link(*this); ofile.open( filename ); printGrid( ofile ); ofile.close(); }