ObjectBaseRef<const Element> Element::createRef(Context *rsc, RsDataType dt, RsDataKind dk, bool isNorm, uint32_t vecSize) { ObjectBaseRef<const Element> returnRef; // Look for an existing match. ObjectBase::asyncLock(); for (uint32_t ct=0; ct < rsc->mStateElement.mElements.size(); ct++) { const Element *ee = rsc->mStateElement.mElements[ct]; if (!ee->getFieldCount() && (ee->getComponent().getType() == dt) && (ee->getComponent().getKind() == dk) && (ee->getComponent().getIsNormalized() == isNorm) && (ee->getComponent().getVectorSize() == vecSize)) { // Match returnRef.set(ee); ObjectBase::asyncUnlock(); return ee; } } ObjectBase::asyncUnlock(); Element *e = new Element(rsc); returnRef.set(e); e->mComponent.set(dt, dk, isNorm, vecSize); e->compute(); ObjectBase::asyncLock(); rsc->mStateElement.mElements.push(e); ObjectBase::asyncUnlock(); return returnRef; }
RsSampler rsi_SamplerCreate(Context * rsc, RsSamplerValue magFilter, RsSamplerValue minFilter, RsSamplerValue wrapS, RsSamplerValue wrapT, RsSamplerValue wrapR, float aniso) { ObjectBaseRef<Sampler> s = Sampler::getSampler(rsc, magFilter, minFilter, wrapS, wrapT, wrapR, aniso); s->incUserRef(); return s.get(); }
void ProgramVertexState::init(Context *rsc) { ObjectBaseRef<const Element> matrixElem = Element::createRef(rsc, RS_TYPE_MATRIX_4X4, RS_KIND_USER, false, 1); ObjectBaseRef<const Element> f2Elem = Element::createRef(rsc, RS_TYPE_FLOAT_32, RS_KIND_USER, false, 2); ObjectBaseRef<const Element> f3Elem = Element::createRef(rsc, RS_TYPE_FLOAT_32, RS_KIND_USER, false, 3); ObjectBaseRef<const Element> f4Elem = Element::createRef(rsc, RS_TYPE_FLOAT_32, RS_KIND_USER, false, 4); Element::Builder constBuilder; constBuilder.add(matrixElem.get(), "MV", 1); constBuilder.add(matrixElem.get(), "P", 1); constBuilder.add(matrixElem.get(), "TexMatrix", 1); constBuilder.add(matrixElem.get(), "MVP", 1); ObjectBaseRef<const Element> constInput = constBuilder.create(rsc); Element::Builder inputBuilder; inputBuilder.add(f4Elem.get(), "position", 1); inputBuilder.add(f4Elem.get(), "color", 1); inputBuilder.add(f3Elem.get(), "normal", 1); inputBuilder.add(f2Elem.get(), "texture0", 1); ObjectBaseRef<const Element> attrElem = inputBuilder.create(rsc); ObjectBaseRef<Type> inputType = Type::getTypeRef(rsc, constInput.get(), 1, 0, 0, false, false); String8 shaderString(RS_SHADER_INTERNAL); shaderString.append("varying vec4 varColor;\n"); shaderString.append("varying vec2 varTex0;\n"); shaderString.append("void main() {\n"); shaderString.append(" gl_Position = UNI_MVP * ATTRIB_position;\n"); shaderString.append(" gl_PointSize = 1.0;\n"); shaderString.append(" varColor = ATTRIB_color;\n"); shaderString.append(" varTex0 = ATTRIB_texture0;\n"); shaderString.append("}\n"); uint32_t tmp[4]; tmp[0] = RS_PROGRAM_PARAM_CONSTANT; tmp[1] = (uint32_t)inputType.get(); tmp[2] = RS_PROGRAM_PARAM_INPUT; tmp[3] = (uint32_t)attrElem.get(); ProgramVertex *pv = new ProgramVertex(rsc, shaderString.string(), shaderString.length(), tmp, 4); Allocation *alloc = Allocation::createAllocation(rsc, inputType.get(), RS_ALLOCATION_USAGE_SCRIPT | RS_ALLOCATION_USAGE_GRAPHICS_CONSTANTS); pv->bindAllocation(rsc, alloc, 0); mDefaultAlloc.set(alloc); mDefault.set(pv); updateSize(rsc); }
void Allocation::resize1D(Context *rsc, uint32_t dimX) { uint32_t oldDimX = mHal.state.dimensionX; if (dimX == oldDimX) { return; } ObjectBaseRef<Type> t = mHal.state.type->cloneAndResize1D(rsc, dimX); if (dimX < oldDimX) { decRefs(getPtr(), oldDimX - dimX, dimX); } rsc->mHal.funcs.allocation.resize(rsc, this, t.get(), mHal.state.hasReferences); setType(t.get()); updateCache(); }
void FontState::initRenderState() { const char *shaderString = "varying vec2 varTex0;\n" "void main() {\n" " lowp vec4 col = UNI_Color;\n" " col.a = texture2D(UNI_Tex0, varTex0.xy).a;\n" " col.a = pow(col.a, UNI_Gamma);\n" " gl_FragColor = col;\n" "}\n"; const char *textureNames[] = { "Tex0" }; const size_t textureNamesLengths[] = { 4 }; size_t numTextures = sizeof(textureNamesLengths)/sizeof(*textureNamesLengths); ObjectBaseRef<const Element> colorElem = Element::createRef(mRSC, RS_TYPE_FLOAT_32, RS_KIND_USER, false, 4); ObjectBaseRef<const Element> gammaElem = Element::createRef(mRSC, RS_TYPE_FLOAT_32, RS_KIND_USER, false, 1); const char *ebn1[] = { "Color", "Gamma" }; const Element *ebe1[] = {colorElem.get(), gammaElem.get()}; ObjectBaseRef<const Element> constInput = Element::create(mRSC, 2, ebe1, ebn1); ObjectBaseRef<Type> inputType = Type::getTypeRef(mRSC, constInput.get(), 1, 0, 0, false, false, 0); uintptr_t tmp[4]; tmp[0] = RS_PROGRAM_PARAM_CONSTANT; tmp[1] = (uintptr_t)inputType.get(); tmp[2] = RS_PROGRAM_PARAM_TEXTURE_TYPE; tmp[3] = RS_TEXTURE_2D; mFontShaderFConstant.set(Allocation::createAllocation(mRSC, inputType.get(), RS_ALLOCATION_USAGE_SCRIPT | RS_ALLOCATION_USAGE_GRAPHICS_CONSTANTS)); ProgramFragment *pf = new ProgramFragment(mRSC, shaderString, strlen(shaderString), textureNames, numTextures, textureNamesLengths, tmp, 4); mFontShaderF.set(pf); mFontShaderF->bindAllocation(mRSC, mFontShaderFConstant.get(), 0); mFontSampler.set(Sampler::getSampler(mRSC, RS_SAMPLER_NEAREST, RS_SAMPLER_NEAREST, RS_SAMPLER_CLAMP, RS_SAMPLER_CLAMP, RS_SAMPLER_CLAMP).get()); mFontShaderF->bindSampler(mRSC, 0, mFontSampler.get()); mFontProgramStore.set(ProgramStore::getProgramStore(mRSC, true, true, true, true, false, false, RS_BLEND_SRC_SRC_ALPHA, RS_BLEND_DST_ONE_MINUS_SRC_ALPHA, RS_DEPTH_FUNC_ALWAYS).get()); mFontProgramStore->init(); }
ObjectBaseRef<const Element> Element::createRef(Context *rsc, size_t count, const Element **ein, const char **nin, const size_t * lengths, const uint32_t *asin) { ObjectBaseRef<const Element> returnRef; // Look for an existing match. ObjectBase::asyncLock(); for (uint32_t ct=0; ct < rsc->mStateElement.mElements.size(); ct++) { const Element *ee = rsc->mStateElement.mElements[ct]; if (ee->getFieldCount() == count) { bool match = true; for (uint32_t i=0; i < count; i++) { if ((ee->mFields[i].e.get() != ein[i]) || (ee->mFields[i].name.length() != lengths[i]) || (ee->mFields[i].name != nin[i]) || (ee->mFields[i].arraySize != asin[i])) { match = false; break; } } if (match) { returnRef.set(ee); ObjectBase::asyncUnlock(); return returnRef; } } } ObjectBase::asyncUnlock(); Element *e = new Element(rsc); returnRef.set(e); e->mFields = new ElementField_t [count]; e->mFieldCount = count; for (size_t ct=0; ct < count; ct++) { e->mFields[ct].e.set(ein[ct]); e->mFields[ct].name.setTo(nin[ct], lengths[ct]); e->mFields[ct].arraySize = asin[ct]; } e->compute(); ObjectBase::asyncLock(); rsc->mStateElement.mElements.push(e); ObjectBase::asyncUnlock(); return returnRef; }
void ProgramFragmentState::init(Context *rsc) { String8 shaderString(RS_SHADER_INTERNAL); shaderString.append("varying lowp vec4 varColor;\n"); shaderString.append("varying vec2 varTex0;\n"); shaderString.append("void main() {\n"); shaderString.append(" lowp vec4 col = UNI_Color;\n"); shaderString.append(" gl_FragColor = col;\n"); shaderString.append("}\n"); ObjectBaseRef<const Element> colorElem = Element::createRef(rsc, RS_TYPE_FLOAT_32, RS_KIND_USER, false, 4); Element::Builder builder; builder.add(colorElem.get(), "Color", 1); ObjectBaseRef<const Element> constInput = builder.create(rsc); ObjectBaseRef<Type> inputType = Type::getTypeRef(rsc, constInput.get(), 1, 0, 0, false, false); uint32_t tmp[2]; tmp[0] = RS_PROGRAM_PARAM_CONSTANT; tmp[1] = (uint32_t)inputType.get(); Allocation *constAlloc = Allocation::createAllocation(rsc, inputType.get(), RS_ALLOCATION_USAGE_SCRIPT | RS_ALLOCATION_USAGE_GRAPHICS_CONSTANTS); ProgramFragment *pf = new ProgramFragment(rsc, shaderString.string(), shaderString.length(), tmp, 2); pf->bindAllocation(rsc, constAlloc, 0); pf->setConstantColor(rsc, 1.0f, 1.0f, 1.0f, 1.0f); mDefault.set(pf); }
void ProgramFragmentState::init(Context *rsc) { const char *shaderString = RS_SHADER_INTERNAL "varying lowp vec4 varColor;\n" "varying vec2 varTex0;\n" "void main() {\n" " lowp vec4 col = UNI_Color;\n" " gl_FragColor = col;\n" "}\n"; ObjectBaseRef<const Element> colorElem = Element::createRef(rsc, RS_TYPE_FLOAT_32, RS_KIND_USER, false, 4); const char *enames[] = { "Color" }; const Element *eins[] = {colorElem.get()}; ObjectBaseRef<const Element> constInput = Element::create(rsc, 1, eins, enames); ObjectBaseRef<Type> inputType = Type::getTypeRef(rsc, constInput.get(), 1); uintptr_t tmp[2]; tmp[0] = RS_PROGRAM_PARAM_CONSTANT; tmp[1] = (uintptr_t)inputType.get(); Allocation *constAlloc = Allocation::createAllocation(rsc, inputType.get(), RS_ALLOCATION_USAGE_SCRIPT | RS_ALLOCATION_USAGE_GRAPHICS_CONSTANTS); ProgramFragment *pf = new ProgramFragment(rsc, shaderString, strlen(shaderString), nullptr, 0, nullptr, tmp, 2); pf->bindAllocation(rsc, constAlloc, 0); pf->setConstantColor(rsc, 1.0f, 1.0f, 1.0f, 1.0f); mDefault.set(pf); }
ObjectBaseRef<Sampler> Sampler::getSampler(Context *rsc, RsSamplerValue magFilter, RsSamplerValue minFilter, RsSamplerValue wrapS, RsSamplerValue wrapT, RsSamplerValue wrapR, float aniso) { ObjectBaseRef<Sampler> returnRef; ObjectBase::asyncLock(); for (uint32_t ct = 0; ct < rsc->mStateSampler.mAllSamplers.size(); ct++) { Sampler *existing = rsc->mStateSampler.mAllSamplers[ct]; if (existing->mHal.state.magFilter != magFilter) continue; if (existing->mHal.state.minFilter != minFilter ) continue; if (existing->mHal.state.wrapS != wrapS) continue; if (existing->mHal.state.wrapT != wrapT) continue; if (existing->mHal.state.wrapR != wrapR) continue; if (existing->mHal.state.aniso != aniso) continue; returnRef.set(existing); ObjectBase::asyncUnlock(); return returnRef; } ObjectBase::asyncUnlock(); void* allocMem = rsc->mHal.funcs.allocRuntimeMem(sizeof(Sampler), 0); if (!allocMem) { rsc->setError(RS_ERROR_FATAL_DRIVER, "Couldn't allocate memory for Allocation"); return NULL; } Sampler *s = new (allocMem) Sampler(rsc, magFilter, minFilter, wrapS, wrapT, wrapR, aniso); returnRef.set(s); #ifdef RS_FIND_OFFSETS ALOGE("pointer for sampler: %p", s); ALOGE("pointer for sampler.drv: %p", &s->mHal.drv); #endif ObjectBase::asyncLock(); rsc->mStateSampler.mAllSamplers.push(s); ObjectBase::asyncUnlock(); return returnRef; }
ObjectBaseRef<ProgramRaster> ProgramRaster::getProgramRaster(Context *rsc, bool pointSprite, RsCullMode cull) { ObjectBaseRef<ProgramRaster> returnRef; ObjectBase::asyncLock(); for (uint32_t ct = 0; ct < rsc->mStateRaster.mRasterPrograms.size(); ct++) { ProgramRaster *existing = rsc->mStateRaster.mRasterPrograms[ct]; if (existing->mHal.state.pointSprite != pointSprite) continue; if (existing->mHal.state.cull != cull) continue; returnRef.set(existing); ObjectBase::asyncUnlock(); return returnRef; } ObjectBase::asyncUnlock(); ProgramRaster *pr = new ProgramRaster(rsc, pointSprite, cull); returnRef.set(pr); ObjectBase::asyncLock(); rsc->mStateRaster.mRasterPrograms.push(pr); ObjectBase::asyncUnlock(); return returnRef; }
// Avoid having to reallocate memory and render quad by quad void FontState::initVertexArrayBuffers() { // Now lets write index data ObjectBaseRef<const Element> indexElem = Element::createRef(mRSC, RS_TYPE_UNSIGNED_16, RS_KIND_USER, false, 1); ObjectBaseRef<Type> indexType = Type::getTypeRef(mRSC, indexElem.get(), mMaxNumberOfQuads * 6); Allocation *indexAlloc = Allocation::createAllocation(mRSC, indexType.get(), RS_ALLOCATION_USAGE_SCRIPT | RS_ALLOCATION_USAGE_GRAPHICS_VERTEX); uint16_t *indexPtr = (uint16_t*)mRSC->mHal.funcs.allocation.lock1D(mRSC, indexAlloc); // Four verts, two triangles , six indices per quad for (uint32_t i = 0; i < mMaxNumberOfQuads; i ++) { int32_t i6 = i * 6; int32_t i4 = i * 4; indexPtr[i6 + 0] = i4 + 0; indexPtr[i6 + 1] = i4 + 1; indexPtr[i6 + 2] = i4 + 2; indexPtr[i6 + 3] = i4 + 0; indexPtr[i6 + 4] = i4 + 2; indexPtr[i6 + 5] = i4 + 3; } indexAlloc->sendDirty(mRSC); ObjectBaseRef<const Element> posElem = Element::createRef(mRSC, RS_TYPE_FLOAT_32, RS_KIND_USER, false, 3); ObjectBaseRef<const Element> texElem = Element::createRef(mRSC, RS_TYPE_FLOAT_32, RS_KIND_USER, false, 2); const char *ebn1[] = { "position", "texture0" }; const Element *ebe1[] = {posElem.get(), texElem.get()}; ObjectBaseRef<const Element> vertexDataElem = Element::create(mRSC, 2, ebe1, ebn1); ObjectBaseRef<Type> vertexDataType = Type::getTypeRef(mRSC, vertexDataElem.get(), mMaxNumberOfQuads * 4); Allocation *vertexAlloc = Allocation::createAllocation(mRSC, vertexDataType.get(), RS_ALLOCATION_USAGE_SCRIPT); mTextMeshPtr = (float*)mRSC->mHal.funcs.allocation.lock1D(mRSC, vertexAlloc); mMesh.set(new Mesh(mRSC, 1, 1)); mMesh->setVertexBuffer(vertexAlloc, 0); mMesh->setPrimitive(indexAlloc, RS_PRIMITIVE_TRIANGLE, 0); mMesh->init(); mRSC->mHal.funcs.allocation.unlock1D(mRSC, indexAlloc); mRSC->mHal.funcs.allocation.unlock1D(mRSC, vertexAlloc); }
void FontState::initTextTexture() { ObjectBaseRef<const Element> alphaElem = Element::createRef(mRSC, RS_TYPE_UNSIGNED_8, RS_KIND_PIXEL_A, true, 1); // We will allocate a texture to initially hold 32 character bitmaps mCacheHeight = 256; mCacheWidth = 1024; ObjectBaseRef<Type> texType = Type::getTypeRef(mRSC, alphaElem.get(), mCacheWidth, mCacheHeight); mCacheBuffer = new uint8_t[mCacheWidth * mCacheHeight]; Allocation *cacheAlloc = Allocation::createAllocation(mRSC, texType.get(), RS_ALLOCATION_USAGE_GRAPHICS_TEXTURE); mTextTexture.set(cacheAlloc); // Split up our cache texture into lines of certain widths int32_t nextLine = 0; mCacheLines.push(new CacheTextureLine(16, texType->getDimX(), nextLine, 0)); nextLine += mCacheLines.top()->mMaxHeight; mCacheLines.push(new CacheTextureLine(24, texType->getDimX(), nextLine, 0)); nextLine += mCacheLines.top()->mMaxHeight; mCacheLines.push(new CacheTextureLine(24, texType->getDimX(), nextLine, 0)); nextLine += mCacheLines.top()->mMaxHeight; mCacheLines.push(new CacheTextureLine(32, texType->getDimX(), nextLine, 0)); nextLine += mCacheLines.top()->mMaxHeight; mCacheLines.push(new CacheTextureLine(32, texType->getDimX(), nextLine, 0)); nextLine += mCacheLines.top()->mMaxHeight; mCacheLines.push(new CacheTextureLine(40, texType->getDimX(), nextLine, 0)); nextLine += mCacheLines.top()->mMaxHeight; mCacheLines.push(new CacheTextureLine(texType->getDimY() - nextLine, texType->getDimX(), nextLine, 0)); }
void ProgramVertexState::init(Context *rsc) { ObjectBaseRef<const Element> matrixElem = Element::createRef(rsc, RS_TYPE_MATRIX_4X4, RS_KIND_USER, false, 1); ObjectBaseRef<const Element> f2Elem = Element::createRef(rsc, RS_TYPE_FLOAT_32, RS_KIND_USER, false, 2); ObjectBaseRef<const Element> f3Elem = Element::createRef(rsc, RS_TYPE_FLOAT_32, RS_KIND_USER, false, 3); ObjectBaseRef<const Element> f4Elem = Element::createRef(rsc, RS_TYPE_FLOAT_32, RS_KIND_USER, false, 4); const char *ebn1[] = { "MV", "P", "TexMatrix", "MVP" }; const Element *ebe1[] = {matrixElem.get(), matrixElem.get(), matrixElem.get(), matrixElem.get()}; ObjectBaseRef<const Element> constInput = Element::create(rsc, 4, ebe1, ebn1); const char *ebn2[] = { "position", "color", "normal", "texture0" }; const Element *ebe2[] = {f4Elem.get(), f4Elem.get(), f3Elem.get(), f2Elem.get()}; ObjectBaseRef<const Element> attrElem = Element::create(rsc, 4, ebe2, ebn2); ObjectBaseRef<Type> inputType = Type::getTypeRef(rsc, constInput.get(), 1, 0, 0, false, false, 0); const char *shaderString = RS_SHADER_INTERNAL "varying vec4 varColor;\n" "varying vec2 varTex0;\n" "void main() {\n" " gl_Position = UNI_MVP * ATTRIB_position;\n" " gl_PointSize = 1.0;\n" " varColor = ATTRIB_color;\n" " varTex0 = ATTRIB_texture0;\n" "}\n"; uintptr_t tmp[4]; tmp[0] = RS_PROGRAM_PARAM_CONSTANT; tmp[1] = (uintptr_t)inputType.get(); tmp[2] = RS_PROGRAM_PARAM_INPUT; tmp[3] = (uintptr_t)attrElem.get(); ProgramVertex *pv = new ProgramVertex(rsc, shaderString, strlen(shaderString), NULL, 0, NULL, tmp, 4); Allocation *alloc = Allocation::createAllocation(rsc, inputType.get(), RS_ALLOCATION_USAGE_SCRIPT | RS_ALLOCATION_USAGE_GRAPHICS_CONSTANTS); pv->bindAllocation(rsc, alloc, 0); mDefaultAlloc.set(alloc); mDefault.set(pv); updateSize(rsc); }
RsProgramRaster rsi_ProgramRasterCreate(Context * rsc, bool pointSprite, RsCullMode cull) { ObjectBaseRef<ProgramRaster> pr = ProgramRaster::getProgramRaster(rsc, pointSprite, cull); pr->incUserRef(); return pr.get(); }