// starting function (executed once at the beginning of the simulation loop) void start(const OdeHandle& odeHandle, const OsgHandle& osgHandle, GlobalData& global) { setCameraHomePos(Pos(5.2728, 7.2112, 3.31768), Pos(140.539, -13.1456, 0)); setCameraMode(Follow); global.odeConfig.setParam("noise",0.1); global.odeConfig.setParam("controlinterval",4); global.odeConfig.setParam("realtimefactor",4); // global.odeConfig.setParam("gravity", 0); // no gravity for(int i=0; i<0; i++){ PassiveSphere* s = new PassiveSphere(odeHandle, osgHandle.changeColor(Color(0.0,1.0,0.0)), 0.5); s->setPosition(osg::Vec3(5,0,i*3)); global.obstacles.push_back(s); } // Spherical Robot with axis orientation sensors: Sphererobot3MassesConf conf = Sphererobot3Masses::getDefaultConf(); conf.addSensor(new AxisOrientationSensor(AxisOrientationSensor::ZProjection)); // regular behaviour conf.motorsensor=false; conf.diameter=1.0; conf.pendularrange= 0.25; conf.motorpowerfactor = 150; // conf.diameter=1.0; // conf.pendularrange= 0.35; sphere1 = new Sphererobot3Masses ( odeHandle, osgHandle.changeColor(Color(1.0,0.0,0)), conf, "Sphere1", 0.2); ((OdeRobot*)sphere1)->place ( Pos( 0 , 0 , 0.1 )); global.configs.push_back ( sphere1 ); controller = new Sox(.8,true); controller->setParam("epsA",0.3); // model learning rate controller->setParam("epsC",1); // controller learning rate controller->setParam("causeaware",0.4); controller->setParam("pseudo",2); global.configs.push_back ( controller ); One2OneWiring* wiring = new One2OneWiring ( new ColorUniformNoise() ); OdeAgent* agent = new OdeAgent ( global ); agent->init ( controller , sphere1 , wiring ); if(track) agent->setTrackOptions(TrackRobot(true, true, true, false, "zaxis", 20)); global.agents.push_back ( agent ); }
// starting function (executed once at the beginning of the simulation loop) void start(const OdeHandle& odeHandle, const OsgHandle& osgHandle, GlobalData& global) { setCameraHomePos(Pos(5.2728, 7.2112, 3.31768), Pos(140.539, -13.1456, 0)); // initialization // - set global noise sensor to 0.05 global.odeConfig.setParam("noise",0.05); // global.odeConfig.setParam("gravity", 0); // no gravity // use Playground as boundary: // - create pointer to playground (odeHandle contains things like world and space the // playground should be created in; odeHandle is generated in simulation.cpp) // - setting initial position of the playground: setPosition(osg::Vec3(double x, double y, double z)) // - push playground to the global list of obstacles (global list comes from simulation.cpp) OctaPlayground* playground = new OctaPlayground(odeHandle, osgHandle, osg::Vec3(10, 0.2, 1), 12); playground->setPosition(osg::Vec3(0,0,0)); // place and create playground global.obstacles.push_back(playground); // add passive spheres as obstacles // - create pointer to sphere (with odehandle, osghandle and // optional parameters radius and mass,where the latter is not used here) ) // - set Pose(Position) of sphere // - add sphere to list of obstacles for(int i=0; i<8; i++){ PassiveSphere* s = new PassiveSphere(odeHandle, osgHandle.changeColor(Color(0.0,1.0,0.0)), 0.5); s->setPosition(osg::Vec3(5,0,i*3)); global.obstacles.push_back(s); } // Spherical Robot with axis (gyro) sensors: // - get default configuration for robot // - create pointer to spherical robot (with odeHandle, osgHandle and configuration) // - place robot (unfortunatelly there is a type cast necessary, which is not quite understandable) Sphererobot3MassesConf conf = Sphererobot3Masses::getDefaultConf(); conf.addSensor(new AxisOrientationSensor(AxisOrientationSensor::ZProjection)); conf.diameter=1.0; conf.pendularrange= 0.35; robot = new Sphererobot3Masses ( odeHandle, osgHandle.changeColor(Color(1.0,0.0,0)), conf, "Spherical", 0.2); (robot)->place ( Pos( 0 , 0 , 0.1 )); // Selforg - Controller (Note there are several: use Sos or Sox now) // create pointer to controller // set some parameters // push controller in global list of configurables controller = new InvertMotorSpace(10); controller->setParam("epsA",0.05); // model learning rate controller->setParam("epsC",0.2); // controller learning rate controller->setParam("rootE",3); // model and contoller learn with square rooted error global.configs.push_back ( controller ); // SineController (produces just sine waves) // controller = new SineController(); // controller->setParam("sinerate", 40); // controller->setParam("phaseshift", 0.0); // create pointer to one2onewiring which uses colored-noise One2OneWiring* wiring = new One2OneWiring ( new ColorUniformNoise() ); // create pointer to agent // initialize pointer with controller, robot and wiring // push agent in globel list of agents OdeAgent* agent = new OdeAgent ( global ); agent->init ( controller , robot , wiring ); if(track){ // the following line will enables a position tracking of the robot, which is written into a file // you can customize what is logged with the TrackRobotConf TrackRobotConf tc = TrackRobot::getDefaultConf(); tc.scene = "zaxis"; tc.displayTrace = true; agent->setTrackOptions(TrackRobot(tc)); } global.agents.push_back ( agent ); }
// starting function (executed once at the beginning of the simulation loop) void start(const OdeHandle& odeHandle, const OsgHandle& osgHandle, GlobalData& global) { D=0; setCameraHomePos(Pos(-1.55424, 10.0881, 1.58559), Pos(-170.16, -7.29053, 0)); // initialization // - set noise to 0.1 // - register file chess.ppm as a texture called chessTexture (used for the wheels) global.odeConfig.setParam("noise", 0.05); global.odeConfig.setParam("controlinterval", 1); // global.odeConfig.setParam("gravity", 0); for(int i=0; i< 2; i++){ PassiveBox* b = new PassiveBox(odeHandle, osgHandle.changeColor(Color(0.,0.,0.)), osg::Vec3(1,10,0.3+i*.1),10); b->setPosition(osg::Vec3(30+i*7,0,0)); global.obstacles.push_back(b); } controller=0; /******* S L I D E R - w H E E L I E *********/ SliderWheelieConf mySliderWheelieConf = SliderWheelie::getDefaultConf(); mySliderWheelieConf.segmNumber = segmnum; mySliderWheelieConf.motorPower = 5; mySliderWheelieConf.jointLimitIn = M_PI/3; // mySliderWheelieConf.frictionGround=0.5; // mySliderWheelieConf.segmLength=1.4; mySliderWheelieConf.sliderLength = 0; mySliderWheelieConf.motorType = SliderWheelieConf::CenteredServo; //mySliderWheelieConf.drawCenter = false; vehicle = new SliderWheelie(odeHandle, osgHandle.changeColor(Color(1,222/255.0,0)), mySliderWheelieConf, "sliderWheelie_" + std::itos(teacher*10000)); vehicle->place(Pos(0,0,2)); global.configs.push_back(vehicle); // InvertMotorNStepConf cc = InvertMotorNStep::getDefaultConf(); // cc.cInit=1.0; // cc.useS=false; // cc.someInternalParams=true; // InvertMotorNStep *semox = new InvertMotorNStep(cc); // semox->setParam("steps", 1); // semox->setParam("continuity", 0.005); // semox->setParam("teacher", teacher); SeMoXConf cc = SeMoX::getDefaultConf(); cc.cInit=1.2; cc.modelExt=false; cc.someInternalParams=true; SeMoX* semox = new SeMoX(cc); // AbstractController* controller = new SineController(~0, SineController::Sine); // local variable! // // // motorpower 20 // controller->setParam("period", 300); // controller->setParam("phaseshift", 0.3); if(useSym){ semox->setParam("epsC", 0.1); semox->setParam("epsA", 0.1); }else{ semox->setParam("epsC", 0.1); semox->setParam("epsA", 0.1); } semox->setParam("rootE", 3); semox->setParam("s4avg", 1); semox->setParam("gamma_cont", 0.005); semox->setParam("gamma_teach", teacher); //controller=semox; controller = new CrossMotorCoupling( semox, semox, 0.4); // One2OneWiring* wiring = new One2OneWiring(new ColorUniformNoise(0.1)); AbstractWiring* wiring = new FeedbackWiring(new ColorUniformNoise(0.1), FeedbackWiring::Motor, 0.75); //global.plotoptions.push_back(PlotOption(GuiLogger,Robot,5)); OdeAgent* agent = new OdeAgent(global); agent->addCallbackable(&stats); agent->init(controller, vehicle, wiring); if(track) agent->setTrackOptions(TrackRobot(true,false,false, false, change < 50 ? std::itos(change).c_str() : "uni", 50)); global.agents.push_back(agent); global.configs.push_back(controller); this->getHUDSM()->setColor(Color(1.0,1.0,0)); this->getHUDSM()->setFontsize(18); this->getHUDSM()->addMeasure(teacher,"Gamma_s",ID,1); this->getHUDSM()->addMeasure(D,"D",ID,1); // if(useSym){ // int k= 0; // std::list<int> perm; // int len = controller->getMotorNumber(); // for(int i=0; i<len; i++){ // perm.push_back((i+k+(len)/2)%len); // } // CMC cmc = controller->getPermutationCMC(perm); // controller->setCMC(cmc); // } }
// starting function (executed once at the beginning of the simulation loop) void start(const OdeHandle& odeHandle, const OsgHandle& osgHandle, GlobalData& global) { setCameraHomePos(Pos(-6.32561, 5.12705, 3.17278), Pos(-130.771, -17.7744, 0)); global.odeConfig.setParam("noise", 0.05); global.odeConfig.setParam("controlinterval", 2); global.odeConfig.setParam("cameraspeed", 250); global.odeConfig.setParam("gravity", -6); setParam("UseQMPThread", false); // use Playground as boundary: AbstractGround* playground = new Playground(odeHandle, osgHandle, osg::Vec3(8, 0.2, 1), 1); // // playground->setColor(Color(0,0,0,0.8)); playground->setGroundColor(Color(2,2,2,1)); playground->setPosition(osg::Vec3(0,0,0.05)); // playground positionieren und generieren global.obstacles.push_back(playground); Boxpile* boxpile = new Boxpile(odeHandle, osgHandle); boxpile->setColor("wall"); boxpile->setPose(ROTM(M_PI/5.0,0,0,1)*TRANSM(0, 0,0.2)); global.obstacles.push_back(boxpile); // global.obstacles.push_back(playground); // double diam = .90; // OctaPlayground* playground3 = new OctaPlayground(odeHandle, osgHandle, osg::Vec3(/*Diameter*/4.0*diam, 5,/*Height*/ .3), 12, // false); // // playground3->setColor(Color(.0,0.2,1.0,1)); // playground3->setPosition(osg::Vec3(0,0,0)); // playground positionieren und generieren // global.obstacles.push_back(playground3); controller=0; // addParameter("gamma_s",&teacher); global.configs.push_back(this); for(int i=0; i< bars; i++) { PassiveBox* b = new PassiveBox(odeHandle, osgHandle.changeColor(Color(0.,0.,0.)), osg::Vec3(1,10,0.3+i*.1),10); b->setPosition(osg::Vec3(10+i*7,0,0)); global.obstacles.push_back(b); } /******* H E X A P O D *********/ int numhexapods = 1; for ( int ii = 0; ii< numhexapods; ii++) { HexapodConf myHexapodConf = Hexapod::getDefaultConf(); myHexapodConf.coxaPower = 1.5; myHexapodConf.tebiaPower = 0.8; myHexapodConf.coxaJointLimitV = .9; // M_PI/8; // angle range for vertical dir. of legs myHexapodConf.coxaJointLimitH = 1.3; //M_PI/4; myHexapodConf.tebiaJointLimit = 1.8; // M_PI/4; // +- 45 degree myHexapodConf.percentageBodyMass = .5; myHexapodConf.useBigBox = false; myHexapodConf.tarsus = true; myHexapodConf.numTarsusSections = 1; myHexapodConf.useTarsusJoints = true; // myHexapodConf.numTarsusSections = 2; OdeHandle rodeHandle = odeHandle; rodeHandle.substance.toRubber(20); vehicle = new Hexapod(rodeHandle, osgHandle.changeColor("Green"), myHexapodConf, "Hexapod_" + std::itos(teacher*10000)); // on the top vehicle->place(osg::Matrix::rotate(M_PI*1,1,0,0)*osg::Matrix::translate(0,0,1.5+ 2*ii)); // normal position // vehicle->place(osg::Matrix::translate(0,0,0)); // InvertMotorNStepConf cc = InvertMotorNStep::getDefaultConf(); // cc.cInit=1.0; // cc.useS=false; // cc.someInternalParams=true; // InvertMotorNStep *semox = new InvertMotorNStep(cc); // semox->setParam("steps", 1); // semox->setParam("continuity", 0.005); // semox->setParam("teacher", teacher); SoMLConf sc = SoML::getDefaultConf(); sc.useHiddenContr=true; sc.useHiddenModel=false; sc.someInternalParams=false; sc.useS=false; SoML* soml = new SoML(sc); soml->setParam("epsC",0.105); soml->setParam("epsA",0.05); Sox* sox = new Sox(1.2, false); sox->setParam("epsC",0.105); sox->setParam("epsA",0.05); sox->setParam("Logarithmic",1); SeMoXConf cc = SeMoX::getDefaultConf(); //cc.cInit=.95; cc.cInit=.99; cc.modelExt=false; cc.someInternalParams=true; SeMoX* semox = new SeMoX(cc); DerInfConf dc = DerInf::getDefaultConf(); dc.cInit=.599; dc.someInternalParams=false; AbstractController* derinf = new DerInf(dc); derinf->setParam("epsC",0.1); derinf->setParam("epsA",0.05); AbstractController* sine = 0; if(useSineController) { // sine = new SineController(~0, SineController::Sine); sine = new SineController(~0, SineController::Impulse); // // // // // motorpower 20 sine->setParam("period", 30); sine->setParam("phaseshift", 0.5); sine->setParam("amplitude", 0.5); } semox->setParam("epsC", 0.1); semox->setParam("epsA", 0.1); semox->setParam("rootE", 3); semox->setParam("s4avg", 1); semox->setParam("gamma_cont", 0.005); semox->setParam("gamma_teach", teacher); if(useSineController) { controller = sine; } else { // controller = semox; controller = sox; // controller = soml; // controller = derinf; } One2OneWiring* wiring = new One2OneWiring(new ColorUniformNoise(0.1)); // the feedbackwiring feeds here 75% of the motor actions as inputs and only 25% of real inputs // AbstractWiring* wiring = new FeedbackWiring(new ColorUniformNoise(0.1), // FeedbackWiring::Motor, 0.75); //global.plotoptions.push_back(PlotOption(GuiLogger,Robot,5)); OdeAgent* agent = new OdeAgent(global); agent->init(controller, vehicle, wiring); // add an operator to keep robot from falling over agent->addOperator(new LimitOrientationOperator(Axis(0,0,1), Axis(0,0,1), M_PI*0.5, 30)); if(track) { TrackRobotConf c = TrackRobot::getDefaultConf(); c.displayTrace = true; c.scene = ""; c.interval = 1; c.trackSpeed = false; c.displayTraceThickness = 0.01; agent->setTrackOptions(TrackRobot(c)); } if(tracksegm) { TrackRobotConf c = TrackRobot::getDefaultConf(); Color col = osgHandle.getColor("joint"); c.displayTrace = true; c.scene = "segm"; c.interval = 1; c.displayTraceThickness = 0.02; col.alpha() = 0.5; agent->addTracking(5, TrackRobot(c), col); agent->addTracking(8, TrackRobot(c), col); } global.agents.push_back(agent); global.configs.push_back(agent); //agent->startMotorBabblingMode(5000); // this->getHUDSM()->setColor(Color(1.0,1.0,0)); // this->getHUDSM()->setFontsize(18); // this->getHUDSM()->addMeasure(teacher,"gamma_s",ID,1); } }
void addRobot(const OdeHandle& odeHandle, const OsgHandle& osgHandle, GlobalData& global, int i){ Color col; Sphererobot3MassesConf conf = Sphererobot3Masses::getDefaultConf(); conf.addSensor(new AxisOrientationSensor(AxisOrientationSensor::ZProjection)); conf.diameter=1.0; conf.pendularrange= 0.30; // 0.15; conf.motorpowerfactor = 150; conf.spheremass = 1; conf.motorsensor=false; conf.addSensor(new SpeedSensor(5, SpeedSensor::RotationalRel)); //SphererobotArms* sphere = new SphererobotArms ( odeHandle, conf); switch(i){ case 0: col.r()=0; col.g()=1; col.b()=0.1; sphere = new Sphererobot3Masses ( odeHandle, osgHandle.changeColor(col), conf, "sphere 1", 0.4); sphere->place ( osg::Matrix::translate(9.5 , 0 , height+1 )); break; case 1: col.r()=1; col.g()=0.2; col.b()=0; sphere = new Sphererobot3Masses ( odeHandle, osgHandle.changeColor(col), conf, "sphere 2", 0.4); sphere->place ( osg::Matrix::translate( 2 , -2 , height+1 )); break; case 3: col.r()=0; col.g()=0; col.b()=1; sphere = new Sphererobot3Masses ( odeHandle, osgHandle.changeColor(col), conf, "sphere" + string(envnames[env]), 0.4); sphere->place ( osg::Matrix::translate( 0 , 0 , .5 )); break; default: case 2: col.r()=0; col.g()=1; col.b()=0.4; sphere = new Sphererobot3Masses ( odeHandle, osgHandle.changeColor(col), conf, "sphere 3", 0.4); sphere->place ( osg::Matrix::translate( double(rand())/RAND_MAX*10 , 0 , height+1 )); break; } Sox* sox = new Sox(.8,true); sox->setParam("epsC", 0.2); sox->setParam("epsA", 0.2); if(env==ElipticBasin){ sox->setParam("epsC", 0.3); sox->setParam("epsA", 0.3); } sox->setParam("Logarithmic", 0); sox->setParam("sense", 0.5); AbstractController *controller = new GroupController(sox, 3); // AbstractWiring* wiring = new One2OneWiring ( new ColorUniformNoise() ); AbstractWiring* wiring = new SelectiveOne2OneWiring(new WhiteUniformNoise(), new select_from_to(0,2), AbstractWiring::Robot); OdeAgent* agent; if(i==0 || i==3 ){ agent = new OdeAgent (global); } else agent = new OdeAgent (global, PlotOption(NoPlot)); agent->init ( controller , sphere , wiring ); if(track) agent->setTrackOptions(TrackRobot(true,true,true,false,"",2)); global.agents.push_back ( agent ); //global.configs.push_back ( controller ); global.configs.push_back ( sphere); }
/// start() is called at the start and should create all the object (obstacles, agents...). virtual void start(const OdeHandle& odeHandle, const OsgHandle& osgHandle, GlobalData& global){ setCameraHomePos(Pos(1.86452, 21.1998, 8.7964), Pos(174.993, -10.688, 0)); setCameraMode(Follow); global.odeConfig.setParam("controlinterval",1); global.odeConfig.setParam("gravity", -9.81); global.odeConfig.setParam("noise", 0); global.odeConfig.setParam("realtimefactor", 1.); int sliderwheelies = 1; int snakes = 0; Playground* playground = new Playground(odeHandle, osgHandle, osg::Vec3(120, 0.2, 2.5),.5,true); // playground->setColor(Color(1,0.2,0,0.1)); playground->setPosition(osg::Vec3(0,0,0)); // playground positionieren und generieren global.obstacles.push_back(playground); // Creation of Obstacle PassiveBox* b = new PassiveBox(odeHandle, osgHandle.changeColor(Color(180.0 / 255.0, 180.0 / 255.0, 130.0 / 255.0)), osg::Vec3(4.0, 20.0, .8), 0); b->setTexture(0,TextureDescr("Images/playfulmachines.rgb",1,1)); b->setPosition(Pos(-32, 0, 0)); global.obstacles.push_back(b); /******* S L I D E R - W H E E L I E *********/ for(int i=0; i<sliderwheelies; i++){ SliderWheelieConf mySliderWheelieConf = SliderWheelie::getDefaultConf(); mySliderWheelieConf.segmNumber=12; mySliderWheelieConf.jointLimitIn=M_PI/3; mySliderWheelieConf.frictionGround=0.5; mySliderWheelieConf.motorPower=8; mySliderWheelieConf.motorDamp=0.05; mySliderWheelieConf.sliderLength=0.5; mySliderWheelieConf.segmLength=1.4; OdeRobot* robot = new SliderWheelie(odeHandle, osgHandle, mySliderWheelieConf, "Slider Armband"); robot->place(Pos(0,0,2.0)); //controller = new Sos(1.0); controller = new OneControllerPerChannel(new ControlGen(),"OnePerJoint"); AbstractWiring* wiring = new One2OneWiring(new ColorUniformNoise(0.05)); OdeAgent* agent = new OdeAgent(global); // only the first controller is exported to guilogger and Co agent->addInspectable(((OneControllerPerChannel*)controller)->getControllers()[0]); agent->init(controller, robot, wiring); if(track) agent->setTrackOptions(TrackRobot(true,true,false,false,"split_control",1)); global.agents.push_back(agent); global.configs.push_back(agent); } //****** SNAKES **********/ for(int i=0; i<snakes; i++){ //****************/ SchlangeConf conf = Schlange::getDefaultConf(); // conf.segmMass = .2; // conf.segmLength= .5// 0.8; // conf.segmDia=.6; // conf.motorPower=.5; conf.segmNumber = 12+2*i;//-i/2; conf.jointLimit=conf.jointLimit* 1.6; conf.frictionJoint=0.02; conf.useServoVel=true; SchlangeServo2* schlange1; if (i==0) { schlange1 = new SchlangeServo2 ( odeHandle, osgHandle.changeColor(Color(0.1, 0.3, 0.8)), conf, "S1"); } else { schlange1 = new SchlangeServo2 ( odeHandle, osgHandle.changeColor(Color(0.1, 0.3, 0.8)), conf, "S2"); } //Positionieren und rotieren schlange1->place(osg::Matrix::rotate(M_PI/2,0, 1, 0)* osg::Matrix::translate(-.7+0.7*i,0,(i+1)*(.2+conf.segmNumber)/2.0/*+2*/)); // osg::Matrix::translate(5-i,2 + i*2,height+2)); schlange1->setTexture("Images/whitemetal_farbig_small.rgb"); if (i==0) { schlange1->setHeadColor(Color(1.0,0,0)); } else { schlange1->setHeadColor(Color(0,1.0,0)); } OneControllerPerChannel *controller = new OneControllerPerChannel(new ControlGen(),"OnePerJoint"); AbstractWiring* wiring = new One2OneWiring(new ColorUniformNoise(0.05)); OdeAgent* agent = new OdeAgent(global); agent->addInspectable(controller->getControllers()[0]); agent->init(controller, schlange1, wiring); global.agents.push_back(agent); global.configs.push_back(agent); }//creation of snakes End }
// starting function (executed once at the beginning of the simulation loop) void start(const OdeHandle& odeHandle, const OsgHandle& osgHandle, GlobalData& global) { // first: position(x,y,z) second: view(alpha,beta,gamma) // gamma=0; // alpha == horizontal angle // beta == vertical angle setCameraHomePos(Pos(-0.18, 20.36, 13.63), Pos(-179.93, -34.37, 0)); // initialization // - set noise to 0.1 global.odeConfig.noise=0.1; global.odeConfig.setParam("controlinterval", 10); // use Playground as boundary: // - create pointer to playground (odeHandle contains things like world and space the // playground should be created in; odeHandle is generated in simulation.cpp) // - setting geometry for each wall of playground: // setGeometry(double length, double width, double height) // - setting initial position of the playground: setPosition(double x, double y, double z) // - push playground in the global list of obstacles(globla list comes from simulation.cpp) bool labyrint=false; bool squarecorridor=false; bool normalplayground=true; bool boxes = true; if(normalplayground){ // Playground* playground = new Playground(odeHandle, osgHandle, osg::Vec3(12, 0.2, 0.5)); Playground* playground = new Playground(odeHandle, osgHandle, osg::Vec3(17, 0.2, 1.0)); playground->setPosition(osg::Vec3(0,0,0.05)); // playground positionieren und generieren // register playground in obstacles list global.obstacles.push_back(playground); } if(squarecorridor){ Playground* playground = new Playground(odeHandle, osgHandle,osg::Vec3(15, 0.2, 1.2 ), 1); playground->setGroundColor(Color(255/255.0,200/255.0,0/255.0)); playground->setGroundTexture("Images/really_white.rgb"); playground->setColor(Color(255/255.0,200/255.0,21/255.0, 0.1)); playground->setPosition(osg::Vec3(0,0,0.1)); playground->setTexture(""); global.obstacles.push_back(playground); // // inner playground playground = new Playground(odeHandle, osgHandle,osg::Vec3(10, 0.2, 1.2), 1, false); playground->setColor(Color(255/255.0,200/255.0,0/255.0, 0.1)); playground->setPosition(osg::Vec3(0,0,0.1)); playground->setTexture(""); global.obstacles.push_back(playground); } if(labyrint){ double radius=7.5; Playground* playground = new Playground(odeHandle, osgHandle,osg::Vec3(radius*2+1, 0.2, 5 ), 1); playground->setGroundColor(Color(255/255.0,200/255.0,0/255.0)); playground->setGroundTexture("Images/really_white.rgb"); playground->setColor(Color(255/255.0,200/255.0,21/255.0, 0.1)); playground->setPosition(osg::Vec3(0,0,0.1)); playground->setTexture(""); global.obstacles.push_back(playground); int obstanz=30; OsgHandle rotOsgHandle = osgHandle.changeColor(Color(255/255.0, 47/255.0,0/255.0)); OsgHandle gruenOsgHandle = osgHandle.changeColor(Color(0,1,0)); for(int i=0; i<obstanz; i++){ PassiveBox* s = new PassiveBox(odeHandle, (i%2)==0 ? rotOsgHandle : gruenOsgHandle, osg::Vec3(random_minusone_to_one(0)+1.2, random_minusone_to_one(0)+1.2 ,1),5); s->setPose(osg::Matrix::translate(radius/(obstanz+10)*(i+10),0,i) * osg::Matrix::rotate(2*M_PI/obstanz*i,0,0,1)); global.obstacles.push_back(s); } } if(boxes) { for (int i=0; i<= 2; i+=2){ PassiveBox* s1 = new PassiveBox(odeHandle, osgHandle, osg::Vec3(1,1,1), 0.4); s1->setTexture("Images/dusty.rgb"); s1->setPosition(osg::Vec3(-5+i*5,0,0)); global.obstacles.push_back(s1); Joint* fixator; Primitive* p = s1->getMainPrimitive(); fixator = new FixedJoint(p, global.environment); fixator->init(odeHandle, osgHandle); s1 = new PassiveBox(odeHandle, osgHandle, osg::Vec3(1,1,1), 0.4); s1->setTexture("Images/dusty.rgb"); s1->setPosition(osg::Vec3(0,-5+i*5,0)); global.obstacles.push_back(s1); p = s1->getMainPrimitive(); fixator = new FixedJoint(p, global.environment); fixator->init(odeHandle, osgHandle); s1 = new PassiveBox(odeHandle, osgHandle, osg::Vec3(1,1,1), 0.4); s1->setTexture("Images/dusty.rgb"); s1->setPosition(osg::Vec3(-3.5+i*3.5,-3.5+i*3.5,0)); global.obstacles.push_back(s1); p = s1->getMainPrimitive(); fixator = new FixedJoint(p, global.environment); fixator->init(odeHandle, osgHandle); s1 = new PassiveBox(odeHandle, osgHandle, osg::Vec3(1,1,1), 0.4); s1->setTexture("Images/dusty.rgb"); s1->setPosition(osg::Vec3(-3.5+i*3.5,3.5-i*3.5,0)); global.obstacles.push_back(s1); p = s1->getMainPrimitive(); fixator = new FixedJoint(p, global.environment); fixator->init(odeHandle, osgHandle); } } // add passive spheres as obstacles // - create pointer to sphere (with odehandle, osghandle and // optional parameters radius and mass,where the latter is not used here) ) // - set Pose(Position) of sphere // - set a texture for the sphere // - add sphere to list of obstacles for (int i=0; i < 0/*2*/; i++){ PassiveSphere* s1 = new PassiveSphere(odeHandle, osgHandle, 0.5); s1->setPosition(osg::Vec3(-4.5+i*4.5,0,0)); s1->setTexture("Images/dusty.rgb"); global.obstacles.push_back(s1); } // use Nimm2 vehicle as robot: // - get default configuration for nimm2 // - activate bumpers, cigar mode and infrared front sensors of the nimm2 robot // - create pointer to nimm2 (with odeHandle, osg Handle and configuration) // - place robot Nimm2Conf c = Nimm2::getDefaultConf(); c.bumper = false;//true; c.cigarMode = false;//true; c.irFront = true; c.irBack = true; //c.irSide = true; c.irRange = 1.2;//2;//3; c.force=2; c.speed=8; OdeRobot* vehicle = new Nimm2(odeHandle, osgHandle, c, "Nimm2"); vehicle->place(Pos(0,0,0.5)); // vehicle->place(Pos(0,6.25,0)); // use Nimm4 vehicle as robot: // - create pointer to nimm4 (with odeHandle and osg Handle and possible other settings, see nimm4.h) // - place robot //OdeRobot* vehicle = new Nimm4(odeHandle, osgHandle, "Nimm4"); //vehicle->place(Pos(0,1,0)); // create pointer to controller // push controller in global list of configurables AbstractController *controller = new LayeredController(10); controller->setParam("eps",0.1); controller->setParam("factor_a",0.1); controller->setParam("eps_hebb",0.03); global.configs.push_back(controller); // create pointer to one2onewiring One2OneWiring* wiring = new One2OneWiring(new ColorUniformNoise(0.1)); // create pointer to agent // initialize pointer with controller, robot and wiring // push agent in globel list of agents OdeAgent* agent = new OdeAgent(global); agent->init(controller, vehicle, wiring); agent->setTrackOptions(TrackRobot(true, false, false, false, "hebbh" ,1)); global.agents.push_back(agent); }
// starting function (executed once at the beginning of the simulation loop) void start(const OdeHandle& odeHandle, const OsgHandle& osgHandle, GlobalData& global) { setCameraHomePos(Pos(-5.44372, 7.37141, 3.31768), Pos(-142.211, -21.1623, 0)); // initialization // - set noise to 0.1 // - register file chess.ppm as a texture called chessTexture (used for the wheels) global.odeConfig.setParam("noise", 0.05); global.odeConfig.setParam("controlinterval", 1); // global.odeConfig.setParam("gravity", 0); // use Playground as boundary: // playground = new Playground(odeHandle, osgHandle, osg::Vec3(8, 0.2, 1), 1); // // playground->setColor(Color(0,0,0,0.8)); // playground->setGroundColor(Color(2,2,2,1)); // playground->setPosition(osg::Vec3(0,0,0.05)); // playground positionieren und generieren // global.obstacles.push_back(playground); controller=0; /******* S L I D E R - w H E E L I E *********/ SliderWheelieConf mySliderWheelieConf = SliderWheelie::getDefaultConf(); mySliderWheelieConf.segmNumber = segmnum; mySliderWheelieConf.motorPower = 5; mySliderWheelieConf.jointLimitIn = M_PI/3; // mySliderWheelieConf.frictionGround=0.5; // mySliderWheelieConf.segmLength=1.4; mySliderWheelieConf.sliderLength = 0; mySliderWheelieConf.motorType = SliderWheelieConf::CenteredServo; //mySliderWheelieConf.drawCenter = false; vehicle = new SliderWheelie(odeHandle, osgHandle.changeColor(Color(1,222/255.0,0)), mySliderWheelieConf, "sliderWheelie_" + std::itos(teacher*10000)); vehicle->place(Pos(0,0,0.1)); global.configs.push_back(vehicle); // create pointer to controller // push controller in global list of configurables InvertMotorNStepConf cc = InvertMotorNStep::getDefaultConf(); cc.cInit=1.0; cc.useS=false; cc.someInternalParams=true; controller = new InvertMotorNStep(cc); // AbstractController* controller = new SineController(~0, SineController::Sine); // local variable! // // // motorpower 20 // controller->setParam("period", 300); // controller->setParam("phaseshift", 0.3); controller->setParam("adaptrate", 0.000); if(useSym) { controller->setParam("epsC", 0.1); controller->setParam("epsA", 0.1); } else { controller->setParam("epsC", 0.1); controller->setParam("epsA", 0.1); } controller->setParam("rootE", 3); controller->setParam("steps", 1); controller->setParam("s4avg", 1); controller->setParam("continuity", 0.005); controller->setParam("teacher", teacher); // One2OneWiring* wiring = new One2OneWiring(new ColorUniformNoise(0.1)); AbstractWiring* wiring = new FeedbackWiring(new ColorUniformNoise(0.1), FeedbackWiring::Motor, 0.75); //plotoptions.push_back(PlotOption(GuiLogger,Robot,5)); OdeAgent* agent = new OdeAgent(global); agent->init(controller, vehicle, wiring); if(track) agent->setTrackOptions(TrackRobot(true,false,false, false, change < 50 ? std::itos(change).c_str() : "uni", 50)); global.agents.push_back(agent); global.configs.push_back(controller); }
// starting function (executed once at the beginning of the simulation loop) void start(const OdeHandle& odeHandle, const OsgHandle& osgHandle, GlobalData& global) { setCameraHomePos(Pos(-0.0114359, 6.66848, 0.922832), Pos(178.866, -7.43884, 0)); // initialization // - set noise to 0.1 // - register file chess.ppm as a texture called chessTexture (used for the wheels) global.odeConfig.setParam("noise", 0.05); global.odeConfig.setParam("controlinterval", 1); global.odeConfig.setParam("cameraspeed", 250); // use Playground as boundary: // playground = new Playground(odeHandle, osgHandle, osg::Vec3(8, 0.2, 1), 1); // // playground->setColor(Color(0,0,0,0.8)); // playground->setGroundColor(Color(2,2,2,1)); // playground->setPosition(osg::Vec3(0,0,0.05)); // playground positionieren und generieren // global.obstacles.push_back(playground); controller=0; addParameter("k",&k); addParameter("gamma_s",&teacher); global.configs.push_back(this); for(int i=0; i< bars; i++){ PassiveBox* b = new PassiveBox(odeHandle, osgHandle.changeColor(Color(0.,0.,0.)), osg::Vec3(1,10,0.3+i*.1),0.0); b->setPosition(osg::Vec3(10+i*7,0,0)); global.obstacles.push_back(b); } double h = 0.; RandGen rgen; rgen.init(2); for(int i=0; i<stairs; i++){ do{ h+=(rgen.rand()-.5)*0.6; // values between (-.25.25) }while(h<0); PassiveBox* b = new PassiveBox(odeHandle, osgHandle.changeColor(Color(0.3,0.3,0.3)), osg::Vec3(1,10,h),0.0); b->setPosition(osg::Vec3(5+i,0,0)); global.obstacles.push_back(b); } /******* S L I D E R - w H E E L I E *********/ SliderWheelieConf mySliderWheelieConf = SliderWheelie::getDefaultConf(); mySliderWheelieConf.segmNumber = segmnum; mySliderWheelieConf.motorPower = 5; mySliderWheelieConf.jointLimitIn = M_PI/3; // mySliderWheelieConf.frictionGround=0.5; // mySliderWheelieConf.segmLength=1.4; mySliderWheelieConf.sliderLength = 0; mySliderWheelieConf.motorType = SliderWheelieConf::CenteredServo; mySliderWheelieConf.showCenter = false; vehicle = new SliderWheelie(odeHandle, osgHandle.changeColor(Color(1,222/255.0,0)), mySliderWheelieConf, "sliderWheelie_" + std::itos(teacher*10000)); vehicle->place(Pos(0,0,.1)); global.configs.push_back(vehicle); // InvertMotorNStepConf cc = InvertMotorNStep::getDefaultConf(); // cc.cInit=1.0; // cc.useS=false; // cc.someInternalParams=true; // InvertMotorNStep *semox = new InvertMotorNStep(cc); // semox->setParam("steps", 1); // semox->setParam("continuity", 0.005); // semox->setParam("teacher", teacher); SeMoXConf cc = SeMoX::getDefaultConf(); //cc.cInit=.95; cc.cInit=.5; cc.modelExt=false; // cc.someInternalParams=true; cc.someInternalParams=false; SeMoX* semox = new SeMoX(cc); // AbstractController* controller = new SineController(~0, SineController::Sine); // local variable! // // // motorpower 20 // controller->setParam("period", 300); // controller->setParam("phaseshift", 0.3); if(useSym){ semox->setParam("epsC", 0.1); semox->setParam("epsA", 0.1); }else{ semox->setParam("epsC", 0.1); semox->setParam("epsA", 0.1); } semox->setParam("rootE", 3); semox->setParam("s4avg", 1); semox->setParam("gamma_cont", 0.005); semox->setParam("gamma_teach", teacher); //controller=semox; controller = new CrossMotorCoupling( semox, semox, 0.4); // AbstractWiring* wiring = new One2OneWiring(new ColorUniformNoise(0.1)); //AbstractWiring* wiring = new MotorAsSensors(new ColorUniformNoise(0.1)); AbstractWiring* wiring = new FeedbackWiring(new ColorUniformNoise(0.1), FeedbackWiring::Motor, 0.75); //global.plotoptions.push_back(PlotOption(GuiLogger,Robot,5)); OdeAgent* agent = new OdeAgent(global); agent->init(controller, vehicle, wiring); if(track) agent->setTrackOptions(TrackRobot(true,false,false, false, change != 0 ? std::itos(change).c_str() : "uni", 50)); global.agents.push_back(agent); global.configs.push_back(controller); this->getHUDSM()->setColor(Color(1.0,1.0,0)); this->getHUDSM()->setFontsize(18); this->getHUDSM()->addMeasure(teacher,"gamma_s",ID,1); this->getHUDSM()->addMeasure(k_double,"k",ID,1); setCMC(k); blink=0; }
// starting function (executed once at the beginning of the simulation loop) void start(const OdeHandle& odeHandle, const OsgHandle& osgHandle, GlobalData& global) { setCameraHomePos(Pos(-0.777389, 6.34573, 1.83396), Pos(-170.594, -5.10046, 0)); setCameraMode(Follow); // initialization // - set noise to 0.1 // - register file chess.ppm as a texture called chessTexture (used for the wheels) global.odeConfig.setParam("noise", 0.05); global.odeConfig.setParam("controlinterval", 1); global.odeConfig.setParam("realtimefactor", 1); // global.odeConfig.setParam("gravity", 0); for(int i=0; i< 4; i++){ PassiveBox* b = new PassiveBox(odeHandle, osgHandle.changeColor(Color(.6, .6, .4)), osg::Vec3(1,10,0.3+i*0.02),0); b->setTexture(0,TextureDescr("Images/playfulmachines.rgb",1,1)); b->setPosition(osg::Vec3(-75+i*30,0,0)); global.obstacles.push_back(b); } controller=0; /******* S L I D E R - w H E E L I E *********/ SliderWheelieConf mySliderWheelieConf = SliderWheelie::getDefaultConf(); mySliderWheelieConf.segmNumber = segmnum; mySliderWheelieConf.motorPower = 5; mySliderWheelieConf.jointLimitIn = M_PI/3; // mySliderWheelieConf.frictionGround=0.5; // mySliderWheelieConf.segmLength=1.4; mySliderWheelieConf.sliderLength = 0; mySliderWheelieConf.motorType = SliderWheelieConf::CenteredServo; //mySliderWheelieConf.drawCenter = false; vehicle = new SliderWheelie(odeHandle, osgHandle.changeColor(Color(1,222/255.0,0)), mySliderWheelieConf, "Armband"); vehicle->place(Pos(0,0,.1)); SeMoXConf cc = SeMoX::getDefaultConf(); cc.cInit=1.1; cc.modelExt=false; cc.someInternalParams=false; SeMoX* semox = new SeMoX(cc); if(useSym){ semox->setParam("epsC", 0.1); semox->setParam("epsA", 0.1); }else{ semox->setParam("epsC", 0.1); semox->setParam("epsA", 0.1); } semox->setParam("rootE", 3); semox->setParam("s4avg", 1); semox->setParam("gamma_cont", 0.005); semox->setParam("gamma_teach", teacher); //controller=semox; controller = new CrossMotorCoupling( semox, semox, 0.4); // One2OneWiring* wiring = new One2OneWiring(new ColorUniformNoise(0.1)); AbstractWiring* wiring = new FeedbackWiring(new ColorUniformNoise(0.1), FeedbackWiring::Motor, 0.75); //global.plotoptions.push_back(PlotOption(GuiLogger,Robot,5)); OdeAgent* agent = new OdeAgent(global); agent->addCallbackable(&stats); agent->init(controller, vehicle, wiring); if(track) agent->setTrackOptions(TrackRobot(true,false,false, false, "uni", 20)); global.agents.push_back(agent); global.configs.push_back(agent); thisConfig.controller=controller; global.configs.push_back(&thisConfig); this->getHUDSM()->setColor(osgHandle.getColor("hud")); this->getHUDSM()->setFontsize(16); // this->getHUDSM()->setColor(Color(1.0,1.0,0)); // this->getHUDSM()->setFontsize(18); this->getHUDSM()->addMeasure(teacher,"Gamma",ID,1); this->getHUDSM()->addMeasure(thisConfig.D_display,"D",ID,1); // if(useSym){ // int k= 0; // std::list<int> perm; // int len = controller->getMotorNumber(); // for(int i=0; i<len; i++){ // perm.push_back((i+k+(len)/2)%len); // } // CMC cmc = controller->getPermutationCMC(perm); // controller->setCMC(cmc); // } }